Skip to main content
Log in

Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

CaCO3 aqueous nanofluids were prepared by dispensing aqueous CaCO3 paste into distilled water under ultrasonic vibration. The actual microstructures of the CaCO3 nanofluids with different particle volume fractions were characterized by freeze etching replication transmission electron microscopy (FERTEM). Thermal conductivity and rheological behavior of the nanofluids were measured by standard analyzers. The results show that CaCO3 paste as raw material for nanofluids is advantageous to reducing aggregation of primary nanoparticles. The effective viscosities and effective thermal conductivities of the CaCO3 nanofluids are related to the aggregates of nanoparticles and can be well predicted by the modified Krieger & Dougherty formula and the modified Hamilton & Crosser model, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles. In: Singer D A, Wang H P, eds. Developments and Applications of Non-Newtonian Flows. FED-231/MD-66. New York: American Society of Mechanical Engineers, 1995. 99–105

    Google Scholar 

  2. Das S K, Choi S U S, Yu W, et al. Nanofluids: Science and Technology. New Jersey: John Wiley & Sons Inc, 2007. 2–25

    Book  Google Scholar 

  3. Zhu H T, Liu S Q, Xu L, et al. Preparation, characterization and thermal properties of nanofluids. In: Sabatini D M, eds. Leading Edge Nanotechnology Research Developments. New York: NOVA Science Publisher, 2008. 5–38

    Google Scholar 

  4. Wu D W, Zhu H T, Wang L Q, et al. Critical issues in nanofluids preparation, characterization and thermal conductivity. Curr Nanosci, 2009, 5: 103–112

    Article  Google Scholar 

  5. Krishnamurthy S, Lhattacharya P, Phelan P E, et al. Enhanced mass transport in nanofluids. Nano Lett, 2006, 6: 419–423

    Article  Google Scholar 

  6. Coursey J S, Kim J. Nanofluid boiling: The effect of surface wet-tability. Int J Heat Fluid Fl, 2008, 29: 1577–1585

    Article  Google Scholar 

  7. Wasan D T, Nikolov A D. Spreading of nanofluids on solids. Nature, 2003, 423:156–159

    Article  Google Scholar 

  8. Xie H, Wang J, Xi T, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys, 2002, 91: 4568

    Article  Google Scholar 

  9. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Fl, 2000, 21: 58–64

    Article  Google Scholar 

  10. Zhu H T, Zhang C Y, Tang Y M, et al. Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon, 2007, 45: 226–228

    Article  Google Scholar 

  11. Eastman J A, Choi S U S, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett, 2001, 78: 718

    Article  Google Scholar 

  12. Lo C H, Tsung T T, Chen L C. Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Cryst Growth, 2005, 277: 636–642

    Article  Google Scholar 

  13. Zhu H T, Lin Y S, Yin Y S. A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interf Sci, 2004, 227: 100–103

    Article  Google Scholar 

  14. Zhu H T, Zhang C Y, Liu S Q, et al. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett, 2006, 89: 023123

    Article  Google Scholar 

  15. Zhu H T, Zhang C Y, Tang Y M, et al. Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C, 2007, 111: 1646–1650

    Article  Google Scholar 

  16. Phuoc T X, Soong Y, Chyu M K. Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Opt Laser Eng, 2007, 45:1099–1106

    Article  Google Scholar 

  17. Patel H E, Das S K, Sundararagan T, et al. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Appl Phys Lett, 2003, 83: 2931

    Article  Google Scholar 

  18. Murshed S M S, Leong K C, Yang C. Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci, 2005, 44: 367–373

    Article  Google Scholar 

  19. Chen G, Yu W H, Singh D, et al. Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids. J Nanopart Res 2008, 10: 1109–1114

    Article  Google Scholar 

  20. Hong K S, Hong T K, Yang H S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett, 2006, 88: 031901

    Article  Google Scholar 

  21. Yu Q S, Kim Y J, Ma H B. Nanofluids with plasma treated diamond nanoparticles. Appl Phys Lett, 2008, 92: 103111

    Article  Google Scholar 

  22. Chen L F, Xie H Q, Li Y, et al. Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta, 2008, 477: 21–24

    Article  Google Scholar 

  23. Wang L, Lin G P, Chen H S, et al. Convective heat transfer characters of nanoparticle enhanced latent functionally thermal fluid. Sci China Ser E-Tech Sci, 2009, 52(6): 1744–1750

    Article  MathSciNet  Google Scholar 

  24. Xuan Y M, Li Q, Yao Z P. Application of lattice Boltzmann scheme to nanofluids. Sci China Ser E-Tech Sci, 2004, 47(2): 129–140

    Article  MATH  MathSciNet  Google Scholar 

  25. Ni Y H, Zhang H Y, Zhou Y Y. PAA-assisted synthesis of CaCO3 microcrystals and affecting factors under microwave irradiation. J Phys Chem Solids, 2009, 70: 197–201

    Article  Google Scholar 

  26. Lam T D, Hoang T V, Quang D T, et al. Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites. Mat Sci Eng A-Struct Mater, 2009, 501: 87–93

    Article  Google Scholar 

  27. Choi S U S. Nanofluids: From vision to reality through research. J Heat Trans, 2009, 131: 033106

    Article  Google Scholar 

  28. Keblinskii P, Prasher R, Eapen J. Thermal conductance of nanofluids: is the controversy over? J Nanopart Res, 2008, 10: 1089–1097

    Article  Google Scholar 

  29. Tsai T H, Kuo L S, Chen P H, et al. Effect of viscosity of base fluid on thermal conductivity of nanofluids. Appl Phys Lett, 2008, 93: 233121

    Article  Google Scholar 

  30. Nguyen C T, Desgranges F, Roy G, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon. Int J Heat Fluid Fl, 2007, 28: 1492–1506

    Article  Google Scholar 

  31. Anoop K B, Kabelac S, Sundararajan T, et al. Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration. J Appl Phys, 2009, 106: 034909

    Article  Google Scholar 

  32. Chen H S, Witharana S, Jin Y, et al. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology, 2009, 7: 151–157

    Article  Google Scholar 

  33. Chevalier J, Tillement O, Ayela F. Rheological properties of nanofluids flowing through microchannels. Appl Phys Lett, 2007, 91: 233103

    Article  Google Scholar 

  34. Kulkarni, D P, Das D K, Patil S L. Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture. J Nanosci Nanotechnol, 2007, 7: 2318–2322

    Article  Google Scholar 

  35. Chen H S, Ding Y L, Tan C Q. Rheological behaviour of nanofluids. New J Phys, 2007, 9: 367

    Article  Google Scholar 

  36. Schmidt A J, Chiesa M, Torchinsky D H, et al. Experimental investigation of nanofluid shear and longitudinal viscosities. Appl Phys Lett, 2008, 92: 244107

    Article  Google Scholar 

  37. Chen H S, Ding Y L, Lapkin A, et al. Rheological behaviour of ethylene glycol-titanate nanotube nanofluids. J Nanopart Res, 2009, 15: 1513–1520

    Article  Google Scholar 

  38. Kulkarni D P, Das D K, Chukwu G A. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). J Nanosci Nanotechnol, 2006, 6: 1150–1154

    Article  Google Scholar 

  39. Kwak K, Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheol J, 2005, 17: 35–40

    Google Scholar 

  40. Yang Y, Grulke E A, Zhang Z G, et al. Rheological behavior of carbon nanotube and graphite nanoparticle dispersions. J Nanosci Nanotechnol, 2005, 5: 571–579

    Article  Google Scholar 

  41. Severs N J. Freeze-fracture electron microscopy. Nat Protoc, 2007, 2: 547–576

    Article  Google Scholar 

  42. Favard P, Lechaire J P, Maillard M, et al. 3-D-electron microscopy configuration of TMOS wet silica gels prepared by the quick-freeze, deep-etching-rotary-replication technique. Colloid Polym Sci, 1992, 270: 584–589

    Article  Google Scholar 

  43. Einstein A. Eine neue bestimmung der molekul-dimension. Annalen der Physik, 1906, 19: 289–306

    Article  Google Scholar 

  44. Brinkman H C. The viscosity of concentrated suspensions and solu tion. J Chem Phys, 1952, 20: 571–581

    Article  Google Scholar 

  45. Batchelor G K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech, 1977, 83: 97–117

    Article  MathSciNet  Google Scholar 

  46. Krieger I M, Dougherty T J. A mechanism for non-Newtonian flow in suspensions of rigid spheres. J Rheol, 1959, 3: 137–52

    Article  Google Scholar 

  47. Maxwell J C. A Treatise on Electricity and Magnetism. 2nd ed. Cambridge: Oxford University Press, 1904. 435

    Google Scholar 

  48. Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundamen, 1962, 1: 187–191

    Article  Google Scholar 

  49. Davis R H. The effective thermal conductivity of a composite material with spherical inclusion. Int J Thermophys, 1986, 7: 609–620

    Article  Google Scholar 

  50. Keblinski P, Eastman J A, Cahill D G. Nanofluids for thermal transport. Mater Today, 2005, 8: 36–44.

    Article  Google Scholar 

  51. Yu W, Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. J Nanopart Res, 2003, 5: 167–171

    Article  Google Scholar 

  52. Jang S P, Choi S U S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett, 2004, 84: 4316–4318

    Article  Google Scholar 

  53. Gharagozloo P E, Eaton J K, Goodson K E. Diffusion, aggregation, and the thermal conductivity of nanofluids. Appl Phys Lett, 2008, 93: 103110

    Article  Google Scholar 

  54. Lee D, Kim J W, Kim B G. A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B, 2006, 110: 4323–4328

    Article  Google Scholar 

  55. Jung J Y, Yoo J Y. Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL). Int J Heat Mass Tran, 2009, 52: 525–528

    Article  Google Scholar 

  56. Shima P D, Philip J, Raj B. Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett, 2009, 94: 223101

    Article  Google Scholar 

  57. Philip J, Shima P D, Raj B. Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology, 2008, 19: 305706

    Article  Google Scholar 

  58. Eapen J. Mean-field bounds and the classical nature of thermal conduction in nanofluids. In: ASME, ed. HT2008: Proceedings of the ASME Summer Heat Transfer Conference, Vol 1. New York: ASME, 2009. 343–344

    Google Scholar 

  59. Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys, 1962, 33: 3125

    Article  MATH  Google Scholar 

  60. Bruggeman D A G. Calculation of various physics constants in het-erogenous substances: I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Annalen der Physik, 1935, 24: 636–664

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiTao Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Li, C., Wu, D. et al. Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids. Sci. China Technol. Sci. 53, 360–368 (2010). https://doi.org/10.1007/s11431-010-0032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-0032-5

Keywords

Navigation