Skip to main content
Log in

Investigation on the temperature-dependence of absorption properties of solar cells with micro-structured surfaces

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The temperature of a solar cell will increase when it is exposed to the sunlight, which results in variations of optical parameters and thermal expansion coefficient of the cell, thus affecting its spectral absorption feature. This paper is aimed to investigate the effects of temperature on the absorption property of solar cells with micro-structured surfaces. By taking hemispherical, cylindrical and spherical surfaces as models, numerical computation is conducted to obtain spectral distribution of absorptance of such surfaces with different structural parameters by means of the finite difference time domain (FDTD) method. Furthermore, the effects of material properties and structural period on the absorption property are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang H M, Yin Y H. Research status and development trend of solar cells. Water Resour Power, 2008, 26(6): 193–197

    Google Scholar 

  2. Cheng Z X, Wang X L. The summarization of solar cells. Inform Record Datum, 2007, 8(2): 41–47

    Google Scholar 

  3. Xu M, Xia D L, Sheng Y, et al. Thin-film solar cells. Mater Rev, 2006, 20(9): 109–111

    Google Scholar 

  4. Ikeda K, Miyazaki H T, Kasaya T, et al. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities. Appl Phys Lett, 2008, 92: 021117

    Article  Google Scholar 

  5. Carsten R, Falk L. Photon management by metallic nanodiscs in thin film solar cells. Appl Phys Lett, 2009, 94: 213102

    Article  Google Scholar 

  6. Chiu C H, Yu P C. Broadband and omnidirectional antireflection employing disordered GaN nanopillars. Opt Express, 2008, 16(12): 8748–8754

    Article  Google Scholar 

  7. Irina P, Schaich W L. Narrow-band, tunable infrared emission from arrays of microstrip patches. Appl Phys Lett, 2008, 92: 021117

    Article  Google Scholar 

  8. Mapel J K, Singh M, Baldo M A. Plasmonic excitation of organic double hetero-structure solar cells. Appl Phys Lett, 2007, 90: 121102

    Article  Google Scholar 

  9. Ferry V E, Sweatlock L A, Pacifici D, et al. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett, 2008, 12(8): 4391–4397

    Article  Google Scholar 

  10. Rand B P, Peumans P, Forrest S R. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys, 2004, 96(12): 7519–7526

    Article  Google Scholar 

  11. Hägglund C, Zäch M, Göran P, et al. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett, 2008, 92: 053110

    Article  Google Scholar 

  12. Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett, 2008, 93: 121904

    Article  Google Scholar 

  13. Derkacs D, Lim S H, Matheu P, et al. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett, 2006, 89: 093103

    Article  Google Scholar 

  14. Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett, 2008, 93: 191113

    Article  Google Scholar 

  15. Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells. J Appl Phys, 2007, 101: 093105

    Article  Google Scholar 

  16. Springer J, Poruba A, Mullerova L, et al. Absorption loss at nanorough silver back reflector of thin-film silicon solar cells. J Appl Phys, 2004, 95 (3): 1427–1429

    Article  Google Scholar 

  17. Ge D B, Yan Y B. Finite-Difference Time-Domain Method for Electromagnetic Waves (in Chinese). Xi’an: Xidian University Press, 2005

    Google Scholar 

  18. Taflove A, Hagness S. Computational Eelectrodynamics: The Finite- Difference Time-Domain Method. 2nd ed. Norwood: Artech House Publishers, 2000

    MATH  Google Scholar 

  19. Tang J F, Gu P F. Thin-film Optics and Technology (in Chinese). Beijing: China Machine Press, 1989

    Google Scholar 

  20. Jellison G E, Modine F A. Optical functions of silicon between 1.7 and 4.7 eV at elevated temperature. Phys Rev B, 1983, 27(12): 7466–7472

    Article  Google Scholar 

  21. Anuj K S, Banshi D G. Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor. Appl Opt, 2006, 45(1): 151–161

    Article  Google Scholar 

  22. Yasumasa O, Tokumaru Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J Appl Phys, 1984, 56(2): 314–320

    Article  Google Scholar 

  23. Liu C, Zheng R L. The expansion coefficient and elastic modulus of FCC Crystal. J Southwest China Norm Univ (Nat Sci), 2006, 31(5): 83–87

    Google Scholar 

  24. Heinz R. Surface Plasmons. Berlin: Springer-Verlag, 1988

    Google Scholar 

  25. Stefan A M. Plasmonics: Fundamentals and Applications. New York: Springer-Verlag, 2007

    Google Scholar 

  26. Hitoshi S. Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices. J Opt Soc Am A, 2005, 22(9): 1805–1813

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiMin Xuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Xuan, Y., Han, Y. et al. Investigation on the temperature-dependence of absorption properties of solar cells with micro-structured surfaces. Sci. China Technol. Sci. 53, 2304–2310 (2010). https://doi.org/10.1007/s11431-009-3237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-3237-8

Keywords

Navigation