Skip to main content
Log in

Far ultraviolet auroral imager

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Reviewing the technology development of imaging the global FUV auroral morphology, we introduce a space-based FUV auroral imager prototype developed by the Center for Space Science and Applied Research (CSSAR). It is designed to obtain continuous observations on the temporal and spatial morphology of the aurora which occupies highly elliptical high-altitude near-polar orbits. Primarily composed of a telescope system, image intensifier system, CCD, and collection and control system, the instrument works in the spectral region from 140–190 nm in the field of view 25°×25°, and the spatial resolution is better than 0.1°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mende S B, Frey H U, Immel T J, et al. Global imaging of proton and electron aurora in the far ultraviolet. Space Sci Rev, 2003, 109(1–4): 211–254

    Article  Google Scholar 

  2. Meier R R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci Rev, 1991, 58(1–2): 1–185

    Article  Google Scholar 

  3. Strickland D J, Jasperse J P. Dependence of auroral FUV emissions on the incident electron spectrum and neutral atmosphere. J Geophys Res, 1983, 88(A11): 8051–8062

    Article  Google Scholar 

  4. Li X, Ramachandran R, Movva S, et al. Dayglow removal from FUV auroral images. IEEE, 2004, 6: 3774–3777

    Google Scholar 

  5. Torr D G, Zukic M, Johnson R B, et al. A far ultraviolet imager for the international solar-terrestrial physics VLD, LCCL mission. Space Sci Rev, 1995, 71(1–4): 329–383

    Article  Google Scholar 

  6. Germany G A, Torr M R, Richards P G. Use of FUV auroral emissions as diagnostic indicator. J Geophys Res, 1994, 99(A1): 383–388

    Article  Google Scholar 

  7. Germany G A, Parks G K, Brittnacher M. Remote determination of auroral energy characteristics during substorm activity. Geophys Res Lett, 1997, 24(8): 995–998

    Article  Google Scholar 

  8. Germany G A, Torr D G, Richards P G. Determination of ionospheric conductivities from FUV auroral emission. J Geophys Res, 1994, 99(A12): 23297–23305

    Article  Google Scholar 

  9. Frank L A, Craven J D, Ackerson K L, et al. Global auroral imaging instrumentation for the dynamics explorer mission. Space Sci Instrum, 1981, 5(12): 369–393

    Google Scholar 

  10. Anger C D, Babey S K, Broadfoot A L, et al. An ultraviolet auroral imager for the viking spacecraft. Geophys Res Lett, 1987, 14(4): 387–390

    Article  Google Scholar 

  11. Murpheree J S, King R A. The FREJA ultraviolet imager. Space Sci Rev, 1994, 70(3–4): 421–446

    Article  Google Scholar 

  12. Mender S B, Heetderks H, Frey H U, et al. Far ultraviolet imaging from the image spacecraft: 1. System design. Space Sci Rev, 2000, 91(1): 243–270

    Article  Google Scholar 

  13. Zong Q G, Fu S Y, Pu Z Y. Auroral particle precipitation and its spectra transport in the atmosphere in Antarctic region (in Chinese). Chin J Polar Res, 1999, 11(3): 203–220

    Google Scholar 

  14. Cai H T, Ma S Y, Pu Z Y. Numerical study of the auroral particle transport in the polar upper atmosphere. Sci China Ser E-Tech Sci, 2008, 38(11): 1958–1969

    Google Scholar 

  15. Strickland D J, Anderson D E. Radiation transport effects on the OI 1356A limb intensity profile in the dayglow. J Geophys Res, 1983, 88(A11): 9260–9264

    Article  Google Scholar 

  16. Frey H U, Menbe S B, Immel T J. Summary of quantitative interpretation of far ultraviolet auroral image data. Space Sci Rev, 2003, 109(1–4): 255–283

    Article  Google Scholar 

  17. Zhang B, Li H R. The application of the Csl cathode to the microchanne plate photoelectron multiplier tube (MCP-PMT). Optoelectron Tech, 1999, 19(1): 74–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiPing Fu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40474051, 40874099)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, L., Wang, Y., Wang, Y. et al. Far ultraviolet auroral imager. Sci. China Ser. E-Technol. Sci. 52, 3709–3714 (2009). https://doi.org/10.1007/s11431-009-0400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0400-1

Keywords

Navigation