Skip to main content
Log in

LES/FDF simulation of particle dispersion in a gas-particle two phase plane wake flow

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

A filtered density function (FDF) transport equation was derived for the fluid velocity seen by the particles in gas-particle two-phase flow. An LES/FDF simulation of a two-phase plane wake flow was carried out. The simulation results were compared with both the experimental photograph and the simulation results without using the FDF model, and proved that the LES/FDF model can clearly improve the spatial dispersion of the particle phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crowe C T, Troutt T R, Chung J N. Numerical models for two-phase turbulence flows. Annu Rev Fluid Mech, 1996, 28: 11–43

    Article  MathSciNet  Google Scholar 

  2. Yuu S, Yasukouchi M, Hirosawa Y, et al. Particle turbulent diffusion in a duct laden jet. AICHE J, 1978, 24: 509–519

    Article  Google Scholar 

  3. Lu Q Q, Fontaine J R, Aubertin G. Numerical study of the solid particle motion in grid-generated turbulence. Int J Heat Mass Transf, 1993, 36: 79–87

    Article  Google Scholar 

  4. Pope S B. The probability approach to modelling of turbulent reacting flows. Combust Flame, 1976, 27: 299–312

    Article  Google Scholar 

  5. Pope S B. PDF methods for turbulent reacting flows. Prog Energy Combust Sci, 1985, 11: 119–192

    Article  MathSciNet  Google Scholar 

  6. Simonin O, Deutsch E, Minier J P. Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows. Appl Sci Res, 1993, 51: 275–283

    Article  MATH  Google Scholar 

  7. Derevich I V. Statistical modelling of mass transfer inturbulent two-phase dispersed flows—1, Model development. Int J Heat Mass Transfer, 2000, 43: 3709–3723

    Article  MATH  Google Scholar 

  8. Pozorski J, Minier J P. Probability density function modeling of dispersed two-phase turbulent flows. Physical Review E, 1999, 59(1): 855–863

    Article  Google Scholar 

  9. Minier J P, Peirano E. The pdf approach to turbulent polydispersed two-phase flows. Physics Reports, 2001, 352: 1–214

    Article  MATH  MathSciNet  Google Scholar 

  10. Yeh F, Lei U. On the motion of small particles in a homogeneous isotropic turbulent flow. Phys Fluids A, 1991, 3: 2571–2588

    Article  MATH  Google Scholar 

  11. Wang Q, Squires K D. Large eddy simulation of particle-laden turbulent channel flow. Phys Fluids, 1996, 8: 1207–1223

    Article  MATH  Google Scholar 

  12. Yu K F, Lau K S, Chan C K. Numerical simulation of gas-particle flow in a single-side backward-facing step flow. J Comput Appl Math, 2004, 163(1): 319–331

    Article  MATH  MathSciNet  Google Scholar 

  13. Armenio V, Piomelli U, Fiorotto V. Effect of the subgrid scales on particles motion. Phys Fluids, 1999, 11: 3030–3042

    Article  MATH  Google Scholar 

  14. Pozorski J, Apte S V, Raman V. Filtered particle tracking for dispersed two-phase turbulent flows. In: Proceedings of the Summer Program 2004, Center for Turbulence Research. Stanford: Stanford University, 2004. 329–340

    Google Scholar 

  15. Batchelor G K. Diffusion in a field of homogeneous turbulence, I. Eulerian analysis. Austral J Sci Res, 1949, 2: 437–450

    MathSciNet  Google Scholar 

  16. Csanady G T. Turbulent diffusion of heavy particles in the atmosphere. J Atmos Sci, 1963, 20: 201–208

    Article  Google Scholar 

  17. Yeung P K. Lagrangian investigation of turbulence. Annu Rev Fluid Mech, 2002, 34: 115–142

    Article  MathSciNet  Google Scholar 

  18. Gicquel L Y M, Givi P, Jaberi F A, et al. Velocity filtered density function for large eddy simulation of turbulent flows. Phys Fluids, 2002, 14: 1196–1213

    Article  MATH  MathSciNet  Google Scholar 

  19. Pope S B. Turbulent Flows. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  20. Yang Y, Crowe C T, Chung J N, et al. Experiments on particle dispersion in a plane wake. Int J Multiphase Flow, 2000, 26: 1583–1607

    Article  MATH  Google Scholar 

  21. Orlanski I. A simple boundary condition for unbounded hyperbolic flows. J Comput Phys, 1976, 21: 251–269

    Article  MATH  Google Scholar 

  22. Luo K, Fan J R, Jin H H, et al. LES of turbulent coherent structures and particle dispersion in the gas-solid wake flow. Powder Tech, 2004, 147: 49–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HanHui Jin.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10502044, 10772162, 50736006)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Chen, S., Chen, L. et al. LES/FDF simulation of particle dispersion in a gas-particle two phase plane wake flow. Sci. China Ser. E-Technol. Sci. 52, 2943–2951 (2009). https://doi.org/10.1007/s11431-009-0266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0266-2

Keywords

Navigation