Skip to main content
Log in

Advances in organic field-effect transistors and integrated circuits

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Organic field-effect transistors (OFETs) have received significant research interest because of their promising applications in low cast, lager area, plastic circuits, and tremendous progress has been made in materials, device performance, OFETs based circuits in recent years. In this article we introduce the advances in organic semiconductor materials, OFETs based integrating techniques, and in particular highlight the recent progress. Finally, the prospects and problems of OFETs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsumura A, Koezuka H, Ando H. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Appl Phys Lett, 1986, 49(18): 1210–1212

    Article  Google Scholar 

  2. Zschiesching U, Klauk H, Halik H, et al. Flexible organic circuits with printed gate electrodes. Adv Mater, 2003, 15(14): 1147–1152

    Article  Google Scholar 

  3. Zschieschang U, Halik M, Klauk H. Microcontact-printed self-assembled monolayers as ultrathin gate dielectrics in organic thin-film transistors and complementary circuits. Langmuir, 2008, 24(5): 1665–1669

    Article  Google Scholar 

  4. Moran I W, Briseno A L, Loser S, et al. Device fabrication by easy soft imprint nano-lithography. Chem Mater, 2008, 20(10): 4595–4608

    Article  Google Scholar 

  5. Meijer E J, De Leeuw D M, Setayesh S, et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nature Mater, 2003, 2(10): 678–682

    Article  Google Scholar 

  6. Yamagishi M, Takeya J, Tominari J, et al. High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators. Appl Phys Lett, 2007, 90(18): 182117–182120

    Article  Google Scholar 

  7. Li L Q, Tang Q X, Li H X, et al. An ultra closely π-stacked organic semiconductor for high performance field-effect transistors. Adv Mater, 2007, 19(18): 2613–2617

    Article  Google Scholar 

  8. Ebata H, Izawa T, Miyazaki E, et al. Highly soluble [1]benzothieno [3,2-b]benzothiophene(BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc, 2007, 129(51): 15732–15733

    Article  Google Scholar 

  9. Lin Y Y, Gundlach D J, Nelson S F, et al. Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett, 1997, 18(12): 606–608

    Article  Google Scholar 

  10. Lee S Y, Koo B, Shin J, et al. Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance. Appl Phys Lett, 2006, 88(16): 162109–162111

    Article  Google Scholar 

  11. Di C A, Yu G, Liu Y Q, et al. High-performance organic field-effect transistors: Molecular design, device fabrication, and physical properties. J Phys Chem B, 2007, 111(51): 14083–14096

    Article  Google Scholar 

  12. Zhang X H, Kippelen B. Low-voltage C60 organic field-effect transistors with high mobility and low contact resistance. Appl Phys Lett, 2008, 93(13): 133305–133307

    Article  Google Scholar 

  13. Ju S H, Li J H, Liu J, et al. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. Nano Lett, 2008, 8(4): 997–1004

    Article  Google Scholar 

  14. Eder F, Klauk H, Halik M, et al. Organic electronics on paper. Appl Phys Lett, 2004, 84(14): 2673–2675

    Article  Google Scholar 

  15. Koo J B, Ku C H, Lim J W, et al. Novel organic inverters with dual-gate pentacene thin-film transistor. Organic Electronics, 2007, 8(5): 552–558

    Article  Google Scholar 

  16. Lilienfeld J E. Method and apparatus for controlling electric currents. US Patent, 1745. 175, 1930

  17. Murphy A R, Frechet J M J. Organic semiconducting oligomers for use in thin film transistors. Chem Rev, 2007, 107(4): 1066–1096

    Article  Google Scholar 

  18. Jurchescu O D, Popinciuc M, van Wees B J, et al. Interface-controlled, high-mobility organic transistors. Adv Mater, 2007, 19(5): 688–692

    Article  Google Scholar 

  19. Clarise C, Riou M T, Gauneau M, et al. Field-effect transistor with diphthalocyanine thin film. Electron Lett, 1988, 24(11): 674–675

    Article  Google Scholar 

  20. Bao Z, Lovinger A J, Dodabalapur A. Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl Phys Lett, 1996, 69(20): 3066–3068

    Article  Google Scholar 

  21. Zhang J, Wang J, Wang H B, et al. Organic thin-film transistors in sandwich configuration. Appl Phys Lett, 2004, 84(1): 142–144

    Article  Google Scholar 

  22. Wu Y, Li Y, Ong B S, et al. High-performance organic thin-film transistors with solution-printed gold contacts. Adv Mater, 2005, 17(2): 184–187

    Article  Google Scholar 

  23. McCulloch I, Heeney M, Bailey C, et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Mater, 2006, 5(4): 328–333

    Article  Google Scholar 

  24. Bao Z N, Lovinger A J, Brown J. New air-stable n-channel organic thin film transistors. J Am Chem Soc, 1998, 120(1): 207–208

    Article  Google Scholar 

  25. Tang Q X, Tong Y H, Li H X, et al. Air/vacuum dielectric organic single crystalline transistors of copper-hexadecafluorophthalocyanine ribbons. Appl Phys Lett, 2008, 92(8): 083309–083311

    Article  Google Scholar 

  26. Song D, Wang H B, Zhu F, et al. Phthalocyanato tin (IV) dichloride: An air-stable, high-performance, n-type organic semiconductor with a high field-effect electron mobility. Adv Mater, 2008, 20(11): 2142–2144

    Article  Google Scholar 

  27. Itaka K, Yamashiro M, Yamaguchi J, et al. High-mobility C60 field-effect transistors fabricated on molecular-wetting controlled substrates. Adv Mater, 2006, 18(13): 1713–1716

    Article  Google Scholar 

  28. Malenfant P R L, Dimitrakopoulous C D, Gelorme J D, et al. N-type organic thin-film transistor with high field-effect mobility based on an N, N′-dialkyl-3, 4, 9, 10-perylene tetracarboxylic diimide derivative. Appl Phys Lett, 2002, 80(14): 2517–2519

    Article  Google Scholar 

  29. Chesterfield R J, McKeen J C, Newman C R, et al. Organic thin film transistors based on N-alkyl perylene diimides: Charge transport kinetics as a function of gate voltage and temperature. J Phys Chem B, 2004, 108(50): 19281–19292

    Article  Google Scholar 

  30. Klauk H, Zschieschang U, Pflaum J, et al. Ultralow-power organic complementary circuits. Nature, 2007, 445(7129): 745–748

    Article  Google Scholar 

  31. Bartzsch M, Kempa H, Otto M, et al. Device and circuit simulation of printed polymer electronics. Org Electron, 2007, 8(4): 431–438

    Article  Google Scholar 

  32. Lee K, Shur M, Fjeldly T, et al. Semiconductor device modeling for VLSI. New Jersey: Prentice Hall, 1993

    Google Scholar 

  33. Brown A R, Pomp A, Hart C M, et al. Logic gates made from polymer transistors and their use in ring oscillators. Science, 1995, 270(5238): 972–974

    Article  Google Scholar 

  34. Dodabalapur A, Baumbach J, Baldwin K, et al. Hybrid organic/inorganic complementary circuits. Appl Phys Lett, 1996, 68(16): 2246–2248

    Article  Google Scholar 

  35. Dobadalapur A, Laquindanum J, Katz H E, et al. Complementary circuits with organic transistors. Appl Phys Lett, 1996, 69(27): 4227–4229

    Article  Google Scholar 

  36. Drury J, Mutsaers C M J, Hart M C, et al. Low-cost all-polymer integrated circuits. Appl Phys Lett, 1998, 73(1): 108–110

    Article  Google Scholar 

  37. Gelinck G H, Geuns T C T, de Leeuw D M. High-performance all-polymer integrated circuits. Appl Phys Lett, 2000, 77(10): 1487–1489

    Article  Google Scholar 

  38. Klauk H, Gundlach D J, Jackson T N. Fast organic thin-film transistor circuits. IEEE Electron Device Lett, 1999, 20(6): 289–291

    Article  Google Scholar 

  39. Lin Y Y, Dodabalapur A, Sarpeshkar R, et al. Organic complementary ring oscillators. Appl Phys Lett, 1999, 74(18): 2714–2716

    Article  Google Scholar 

  40. Crone B K, Dodabalapur A, Sarpeshkar R, et al. Design and fabrication of organic complementary circuits. J Appl Phys, 2001, 89(9): 5125–5132

    Article  Google Scholar 

  41. Kane M G, Campi J, Hammond M S, et al. Analog and digital circuits using organic thin-film transistors on polyester substrates. IEEE Electron Device Lett, 2000, 21(11): 534–536

    Article  Google Scholar 

  42. Sirringhaus H, Kawase T, Friend R H, et al. High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290(5499): 2123–2126

    Article  Google Scholar 

  43. Steudel S, Krismyny, Arkhipov V, et al. 50 MHz rectifier based on an organic diode. Nature Mater, 2005, 4(8): 597–600

    Article  Google Scholar 

  44. Schon J H, Kloc C. Fast organic electronic circuits based on ambipolar pentacene field-effect transistors. Appl Phys Lett, 2001, 79(24): 4043–4045

    Article  Google Scholar 

  45. Huang C, Katz H E, West J E. Organic field-effect inversion-mode transistors and single-component complementary inverters on charged electrets. J Appl Phys, 2006, 100(11): 114512–114520

    Article  Google Scholar 

  46. Briseno A L, Mannsfeld S C B, Ling M M, et al. Patterning organic single-crystal transistor arrays. Nature, 2006, 444(7121): 913–917

    Article  Google Scholar 

  47. Someya T, Pal B, Huang J, et al. Semiconductor devices with enhanced field and environmental responses for novel applications. MRS BULLETIN, 2008, 33(7): 690–696

    Google Scholar 

  48. Laurs H, Heiland G. Electrical and optical properties of phthalocyanine films. Thin Solid Films, 1987, 149(2): 129–142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu.

Additional information

Supported by the National Basic Research Program of China (“973” Project) (Grant Nos. 2006CB806204, 2009CB939703) and the National Natural Science Foundation of China (Grant Nos. 90607022, 60676001, 60676008, 60825403)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Ji, Z., Liu, M. et al. Advances in organic field-effect transistors and integrated circuits. Sci. China Ser. E-Technol. Sci. 52, 3105–3116 (2009). https://doi.org/10.1007/s11431-009-0238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0238-6

Keywords

Navigation