Skip to main content
Log in

Application of time reversal mirror technique in microwave-induced thermo-acoustic tomography system

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Microwave-induced thermo-acoustic tomography (MITAT) is a promising technique with great potential in biomedical imaging. It has both the high contrast of the microwave imaging and the high resolution of the ultrasound imaging. In this paper, the proportional relationship between the absorbed microwave energy distribution and the induced ultrasound source distribution is derived. Further, the time reversal mirror (TRM) technique based on the pseudo-spectral time domain (PSTD) method is applied to MITAT system. The simulation results show that high contrast and resolution can be achieved by the TRM technique based on PSTD method even for the received signals with very low signal-to-noise ratio (SNR) and the model parameter with random fluctuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin J C. On microwave-induced hearing sensation. IEEE Trans Microwave Theory Tech, 1997, 25(7): 605–612

    Article  Google Scholar 

  2. Feldman K T. Review of the literature on sound-house thermo-acoustic phenomena. Sound Vib, 1968, 7(1): 75–83

    Google Scholar 

  3. Guo T C, Guo W Y W, Larsen L E. Microwave-induced thermo-acoustic effect in dielectrics and its coupling to external medium-A thermo dynamical formulation. IEEE Trans Microwave Theory Tech, 1984, 32(8): 835–843

    Article  Google Scholar 

  4. Jin T. A thermo-acoustically driven pulse tube refrigerator capable of working below 120K. Cryogenics, 2001, 41: 595–601

    Article  Google Scholar 

  5. Yazaki T, Biwa T, Tominaga A. A pistonless stirling cooler. Applied Physics Lett, 2002, 80(1): 157–159

    Article  Google Scholar 

  6. Kruger R A, Kiser W L, Reinecke D R, et al. Thermoacoustic computed tomography of the breast at 434 MHz. IEEE MIT-S Digest, 1999, (2): 591–595

  7. Kruger R A, Kiser W L, Miller Jr K D, et al. Thermoacoutic CT: Imaging principles. Proc SPIE, 2000, 317-274-2768: 1–10

  8. Xu M, Wang L V. RF-induced thermo-acoutic tomography. In: Proceedings of the Second Joint EMBS/BMES Conference, 2002. 1211–1212

  9. Xu Y, Xu M, Wang L V. Exact frequency-domain reconstruction for thermoacoustic tomography-I: Planar geometry. IEEE Trans Med Imaging, 2002, 53(3): 823–829

    Google Scholar 

  10. Xu M, Wang L V. Photoacoustic imaging in biomedicine. Review of Scientific Instruments, 2006, 77(44): 041101–041123

    Article  Google Scholar 

  11. Zeng L, Xing D. A fast microwave-induced thermoacoustic tomography system for imaging of biological tissues. Proc SPIE, 2006, 6047: 60470K-0-7

  12. Lim K H, Lee J H, Liu Q H. Thermoacoustic tomography forward modeling with the spectral element method. Medical Physics, 2008, 35(1): 4–12

    Article  Google Scholar 

  13. Chen G P, Yu W B, Zhao Z Q, et al. The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror. J Electromagnetic Waves Appl, 2008, 22(18): 1565–1574

    Article  Google Scholar 

  14. Anastasio M A, Wang K, Zhang J, et al. Improving limited-view reconstruction in photoacoustic tomography by incorporating a priori boundary information. Proc SPIE, 2008, 6856: 68561B.1-b856B.6

  15. Mrozowski M, Okoniewski M. Human organs dosimetry for transient electromagnetic fields. Microwave Symposium Digest, 1997, MTT-S Digest: 95–98

  16. Joines W T, Zhang Y, Li C, et al. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Am Assoc Phys Med, 1994, 21: 547–551

    Google Scholar 

  17. Paulsen K D, Meaney P M. Alternative Breast Imaging. Springer Press, 2006

  18. Fink M. Time reversal of ultrasonic fields: I. Basic principles, ultrasonics, ferroelectrics and frequency control. IEEE Trans Ferroelectrics, Frequency Control, 1992, 39(5): 555–567

    Article  Google Scholar 

  19. Fouque J P, Papanicolaou G. Wave Propagation and Time Reversal in Randomly Layered Media. Vienna: Springer Press, 2007

    Google Scholar 

  20. Melan E, Parkus H. Warmespannungen Infolge Stationarer Temperaturfelder. Vienna: Springer Press, 1953. 8

    Google Scholar 

  21. Norton S J, Linzer M. Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans Biomedical Eng, 1981, 28(2): 202–220

    Article  Google Scholar 

  22. Kyritsi P, Papanicolaou G. Time-reversal: Spatial-temporal focusing and its dependence on channel correlation. IEEE Trans Antennas Propagation, 2007, (1): 1–10

  23. Borcea L. Imaging and time reversal in random media. Inverse Problems, 2002, 18: 1247–1279

    Article  MATH  MathSciNet  Google Scholar 

  24. Fornberg B. A fast spectral algorithm for nonlinear wave equations with linear dispersion. J Comput Phys, 1999, 155: 456–467

    Article  MATH  MathSciNet  Google Scholar 

  25. Wojcik G, Fomberg B, Waag R, et al. Pseudo-spectral methods for large-scale bioacoustic models. In: IEEE Ultrasonics Symposium. Canada: IEEE, 1997. 2: 1501–1507

    Google Scholar 

  26. Mast T D. Empirical relationships between acoustic parameters in human soft tissues. Acoustics Res Lett Online, 2000, 1(37): 37–43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiQin Zhao.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60771042), the National Hi-Tech Research and Development Program (“863” Project) (Grant No. 2007AA12Z159), 111 Project (Grant No. B07046), SiChuan Excellent Youth Foundation (Grant No. 08ZQ026-039), Program for New Century Excellent Talents in University of China and Program for Changjiang Scholars

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Zhao, Z., Zheng, W. et al. Application of time reversal mirror technique in microwave-induced thermo-acoustic tomography system. Sci. China Ser. E-Technol. Sci. 52, 2087–2095 (2009). https://doi.org/10.1007/s11431-009-0148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0148-7

Keywords

Navigation