Skip to main content
Log in

Domain structure and defects of highly ordered Bi4Si3O12 micro-crystals

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Highly ordered Bi4Si3O12 micro-crystals were prepared at normal atmosphere. Phase identification of the prepared crystals was accomplished by X-ray diffractometer (XRD). Domain structure and defects were characterized by environmental scanning electron microscopy (ESEM). XRD shows that the obtained micro-crystals are of eulytite structure with chemical formulation of Bi4Si3O12. A highly ordered growth pattern is confirmed due to the faster growth of the {124} faces than that of the {204} faces by ESEM. The growing process of the domain structure is of pollen parent and filial generation pattern. The filial generations of Bi4Si3O12 crystals are generated from the pollen parent. Cracks generate from the defect areas and propagate along the {124} faces due to their lower binding energy under a proper temperature gradient, contributing to the total transcrystalline fracture. It is confirmed that the generation and development of the voids in the crystal grains can be developed when unmatched dimensions of the two opposite faces are formed. And the development of the voids is dependent on the dimensions and orientations of the two opposite faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sammes N M, Tompsett G A, Naefe H, et al. Bismuth based oxide electrolytes-structure and ionic conductivity. J Eur Ceram Soc, 1999, 19(10): 1801–1826

    Article  Google Scholar 

  2. Sato K I. Present status and future perspective of high-temperature superconductors. SEI Tech Rev, 2008, 66: 55–67

    Google Scholar 

  3. Zhereb V P, Skorikov V M. Metastable states in bismuth-containing oxide systems. Inorg Mater, 2003, 39(2): 121–145

    Article  Google Scholar 

  4. Speranskaya E I, Arshakuni A A. System Bi2O3-GeO2. Zh Neorg Khim, 1964, 9(2): 414–421

    Google Scholar 

  5. Kargin Y F. Thermal stability of γ-Bi2O3. Zh Neorg Khim, 1993, 38(10): 1640–1643

    Google Scholar 

  6. Hwang C, Fujino S, Morinaga K. Density of Bi2O3-B2O3 binary melts. J Am Ceram Soc, 2004, 87(9): 1677–1682

    Article  Google Scholar 

  7. Chentsov V P, Denisov V M, Korchemkina N V, et al. Density and surface tension of Bi2O3-GeO2 melts. Rasplavy, 1990, (6): 107–108

  8. Istomin S A, Belousova N V, Pastukhov E A, et al. Density and surface tensions of Bi2O3-V2O5, Bi2O3-TiO2 and Bi2O3-B2O3 melts. Rasplavy, 2001, (2): 3–7

  9. Kaplun A B, Meshalkin A B. Melting points of Bi12GeO20 and Bi3Ge4O12. Inorg Mater (Engl Transl), 1998, 34(5): 484–486

    Google Scholar 

  10. Belousova N V, Pastukhov E A, Gil’debrandt E M. Properties of Bi2O3-Ga2O3 and Bi2O3-La2O3 melts. Rasplavy, 1997, (1): 47–54

  11. Pastukhov E A, Istomin S A, Belousova N V, et al. Physicochemical properties of Bi2O3-Fe2O3 and Bi2O3-V2O5 melts. Rasplavy, 2000, (1): 8–13

  12. Chentsov V P, Buzovkina N V, Denisov V M, et al. Contact interaction of GeO2-Bi2O3 melts with platinum. Rasplavy, 1990, (4): 107–109

  13. Kargin Y F, Zhereb V P, Skorikov V M. Stable and metastable phase equilibria in the Bi2O3-SiO2 system. Zh Neorg Khim, 1991, 36(10): 2611–2616

    Google Scholar 

  14. Kaplun A B, Meshalkin A B. Stable and metastable phase equilibrium in system Bi2O3-GeO2. J Cryst Growth, 1996, 167(1–2): 171–175

    Article  Google Scholar 

  15. Zavartsev F Y, Koutovoi S A, Voronov V V, et al. Phenomenon of metastable liquation during BiB3O6 crystallization. J Cryst Growth, 2005, 275(1–2): 637–641

    Article  Google Scholar 

  16. Zhukov V P, Zhukovskii V M, Zainullina V M, et al. Electronic structure and chemical bonding in bismuth oxide polymorphs. Zh Strukt Khim, 1999, 40(6): 1029–1036

    Google Scholar 

  17. Fei Y T, Fan S J, Sun R Y, et al. Crystallizing behavior of Bi2O3-SiO2 system. J Mater Sci Lett, 2000, 19(10): 893–895

    Article  Google Scholar 

  18. Fei Y T, Fan S J, Sun R Y, et al. Study on the metastable phase equilibrium of Bi2SiO5 (in Chinese). J Chin Ceram Soc, 1999, 27(2): 230–236

    Google Scholar 

  19. Tananaev I V, Skorikov V M, Kutvitskii V A, et al. Pt solubility in Bi2O3-AxOy(A=Si, Ti, Ge, Zn, Cd) melts. Izv Akad Nauk SSSR, Neorg Mater, 1981, 17(4): 663–668

    Google Scholar 

  20. Cai M Q, Yin Z, Zhang M S, et al. First-principles study of ferroelectric and nonlinear optical property in bismuth titanate. Chem Phys Lett, 2005, 401(4–6): 405–409

    Article  Google Scholar 

  21. Zhereb V P, Kargin Y F, Skorikov V M. Structural model of Bi2O3-AO2 (A=Si, Ge) melts. Izv Akad Nauk SSSR, Neorg Mater, 1978, 14(11): 2029–2031

    Google Scholar 

  22. Yordanov S, Dimitriev Y, Ivanova Y, et al. Phase equilibrium in the SeO2-Bi2O3 system. J Therm Anal Calorim, 2001, 65(3): 971–974

    Article  Google Scholar 

  23. Turkoglu O, Soylak M, Belenli I. Synthesis and characterization of &beta: type solid solution in the binary system of Bi2O3-Eu2O3. Bull Mater Sci, 2002, 25(7): 583–588

    Article  Google Scholar 

  24. Drache M, Roussel P, Wignacourt J P, et al. Bi17Yb7O36 and BiYbO3: two new compounds from the Bi2O3-Yb2O3 equilibrium phase diagram determination. Mater Res Bull, 2004, 39(10): 1393–1405

    Article  Google Scholar 

  25. Su P, Virkar A V. Subsolidus phase diagram of the Bi2O3-Gd2O3 system and the morphology of phase separation. J Am Chem Soc, 1999, 82(8): 2225–2232

    Google Scholar 

  26. Baek H D, Virkar A V. Thermodynamic investigations of Bi2O3-MO (M=Ca, Sr, and Ba) systems using galvanic cells. J Electrochem Soc, 1992, 139(11): 3174–3182

    Article  Google Scholar 

  27. Klinkova L A, Nikolaichik V I, Barkovskii N V, et al. BaO-BiO1.5 phase diagram in the region 80–100 mol% BiO1.5 at p O2=21kPa. Russ J Inorg Chem, 2006, 51(7): 1122–1131

    Article  Google Scholar 

  28. Guha J P, Kunej S, Suvorov D. Phase equilibrium relations in the binary system Bi2O3-ZnO. J Mater Sci, 2004, 39(3): 911–918

    Article  Google Scholar 

  29. Kaplun A B, Meshalkin A B. Investigation of phase equilibrium in the triple system Li2O-Cs2O-Bi2O3 in the region of triborates crystallization. J Cryst Growth, 2001, 229(1–4): 248–251

    Article  Google Scholar 

  30. Jardiel T, Caballero A C, Villegas M, et al. Equilibrium phases in the Bi2O3-TiO2-WO3 system. J Eur Ceram Soc, 2006, 26(14): 2931–2935

    Article  Google Scholar 

  31. Sanz O, Haro-Poniatowski E, Gonzalo J, et al. Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J Non-Cryst Solids, 2006, 352(8): 761–768

    Article  Google Scholar 

  32. Oniyama E, Wahlbeck P G. Phase equilibria in the bismuth-oxygen system. J Phys Chem Bull, 1998, 102(22): 4418–4425

    Article  Google Scholar 

  33. Denisov V M, Chentsov V P, Shalaumov S I, et al. Contact interaction of Bi2O3-based melts with solid metals and oxides. Izv Akad Nauk SSSR, Neorg Mater, 1991, 27(4): 763–765

    Google Scholar 

  34. Szaller Z, Poppl L. Reactions and phases within the TeO2-rich part of the Bi2O3-TeO2 system: the non-equilibrium phase diagram. J Therm Anal Calorim, 2003, 74(2): 375–386

    Article  Google Scholar 

  35. Fei Y T, Fan S J, Sun R Y, et al. Study on phase diagram of Bi2O3-SiO2 system (in Chinese). J Inorg Mater, 1998, 13(6): 798–802

    Google Scholar 

  36. Wang Y, Wang X F, Tian Q Q. Melting character of Bi2O3-SiO2 system in synthesizing polycrystalline Bi12SiO20 (in Chinese). J Funct Mater, 2006, 37(Suppl): 96–98

    Google Scholar 

  37. Wang Y, Wang X F, Yu C L, et al. Study on solid-state reaction in Bi2O3-SiO2 system (in Chinese). Bull Chin Ceram Soc, 2007, 26(2): 378–381

    Google Scholar 

  38. Wang Y, Wang X F, Yu C L, et al. Effects of reaction temperature and time on synthesis of Bi2SiO5 (in Chinese). Inorg Chem Ind, 2007, 39(4): 38–40

    Google Scholar 

  39. Tian Q Q, Wang X F, Yu C L, et al. Highly ordered structure of Bi4Si3O12 micro-crystals. Mater Technol, (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuFeng Wang.

Additional information

Supported by the Innovation Research Team Funds of Shaanxi University of Science & Technology (Grant No. SUST-A04)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Q., Wang, X., Yu, C. et al. Domain structure and defects of highly ordered Bi4Si3O12 micro-crystals. Sci. China Ser. E-Technol. Sci. 52, 2295–2301 (2009). https://doi.org/10.1007/s11431-008-0344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0344-x

Keywords

Navigation