Fabrication of metal suspending nanostructures by nanoimprint lithography (NIL) and isotropic reactive ion etching (RIE)


We report herein a rational approach for fabricating metal suspending nanostructures by nanoimprint lithography (NIL) and isotropic reactive ion etching (RIE). The approach comprises three principal steps: (1) mold fabrication, (2) structure replication by NIL, and (3) suspending nanostructures creation by isotropic RIE. Using this approach, suspending nanostructures with Au, Au/Ti or Ti/Au bilayers, and Au/Ti/Au sandwiched structures are demonstrated. For Au nanostructures, straight suspending nanostructures can be obtained when the thickness of Au film is up to 50 nm for nano-bridge and 90 nm for nano-finger patterns. When the thickness of Au is below 50 nm for nano-bridge and 90 nm for nano-finger, the Au suspending nanostructures bend upward as a result of the mismatch of thermal expansion between the thin Au films and Si substrate. This leads to residual stresses in the thin Au films. For Au/Ti or Ti/Au bilayers nanostructures, the cantilevers bend toward Au film, since Au has a larger thermal expansion coefficient than that of Ti. While in the case of sandwich structures, straight suspending nanostructures are obtained, this may be due to the balance of residual stress between the thin films.

This is a preview of subscription content, log in to check access.


  1. 1

    Brand O, Baltes H. Sensors, vol 4. New York: Wiley, 1998

    Google Scholar 

  2. 2

    Craighead H G. Nanoelectromechanical systems. Science, 2000, 290: 1532–1535

    Article  Google Scholar 

  3. 3

    Forsen E, Nilsson S G, Carlberg P, et al. Fabrication of cantilever based mass sensors integrated with CMOS using direct write laser lithography on resist. Nanotechnology, 2004, 15: S628–633

    Article  Google Scholar 

  4. 4

    Boisen A, Birkelund K, Hansen O, et al. Fabrication of submicron suspended structures by laser and atomic force microscopy lithography on aluminum combined with reactive ion etching. J Vac Sci Technol B, 1998, 16(6): 2977–2981

    Article  Google Scholar 

  5. 5

    Abadal G, Boisen A, Davis Z J, et al. Combined laser and atomic force microscope lithography on aluminum: Mask fabrication for nanoelec-tromechanical systems. Appl Phys Lett, 1999, 74(21): 3206–3208

    Article  Google Scholar 

  6. 6

    Davis Z J, Abadal G, Kuhn O, et al. Fabrication and characterization of nanoresonating devices for mass detection. J Vac Sci Technol B, 2000, 18(2): 612–616

    Article  Google Scholar 

  7. 7

    Abadal G., Davis Z J, Helbo B, et al. Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection. Nanotechnology, 2001, 12: 100–104

    Article  Google Scholar 

  8. 8

    Ghatnekar-Nilsson S, Forsen E, Abadal G, et al. Resonators with integrated CMOS circuitry for mass sensing applications, fabricated by electron beam lithography. Nanotechnology, 2005, 16: 98–102

    Article  Google Scholar 

  9. 9

    Gupta A, Akin D, Bashir R. Single virus particle mass detection using microresonators with nanoscale thickness. Appl phys Lett, 2004, 84(11): 1976–1978

    Article  Google Scholar 

  10. 10

    Mastrangelo C H, Hsu C H. Mechanical stability and adhesion of microstructures under capillary forces. J Microelectromech Syst, 1993, 2: 33–55

    Article  Google Scholar 

  11. 11

    Tas N, Sonnenberg T, Jansen H, et al. Stiction in surface micromachining. J Micromech Microeng, 1996, 6: 385–397

    Article  Google Scholar 

  12. 12

    Bartek M, Wolffenbuttel R F. Dry release of metal structures in oxygen plasma: process characterization and optimization. J Micromech Microeng, 1998, 8: 91–94

    Article  Google Scholar 

  13. 13

    Forsen E, Davis Z J, Dong M, et al. Dry release of suspended nanostructures. Microelect Eng, 2004, 73–74: 487–490

    Article  Google Scholar 

  14. 14

    Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymer. Appl Phys Lett, 1995, 67(21): 3114–3116

    Article  Google Scholar 

  15. 15

    Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution. Science, 1996, 272(5258): 85–87

    Article  Google Scholar 

  16. 16

    Chou S Y, Keimel C, Gu J. Ultrafast and direct imprint of nano-structures in silicon. Nature, 2002, 417(6891): 835–837

    Article  Google Scholar 

  17. 17

    Madau M. Fundamentals of Microfabrication. Boca Raton: CRC Press, 1997

    Google Scholar 

  18. 18

    Suh J W, Glander S F, Darling R B, et al. Organic thermal and electrostatic ciliary microactuator array for object manipulation. Sensors and Actuators A, 1997, 58: 51–60

    Article  Google Scholar 

  19. 19

    Kohl M, Skrobanek K D, Miyazaki S. Development of stress-optimized shape memory microvalves. Sensors and Actuators A, 1999, 72: 243–250

    Article  Google Scholar 

  20. 20

    Fu Y, Du H, Huang W, et al. TiNi-based thin films in MEMS applications: a review. Sensors and Actuators A, 2004, 112: 395–408

    Article  Google Scholar 

  21. 21

    Hsu T R. MENS & Microsystems: Design and Manufacture. Beijing: McGraw-Hill Education Co. and China Machine Press, 2004. 127

    Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to GuoYong Xie or ZhongFan Liu.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20573002) and the Major State Basic Research Development Program of China (973Pprogram) (Grant No. 2001CB6105)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xie, G., Zhang, J., Zhang, Y. et al. Fabrication of metal suspending nanostructures by nanoimprint lithography (NIL) and isotropic reactive ion etching (RIE). Sci. China Ser. E-Technol. Sci. 52, 1181–1186 (2009). https://doi.org/10.1007/s11431-008-0290-7

Download citation


  • suspending nanostructure
  • fabrication
  • nanoimprint lithography (NIL)
  • isotropic reactive ion etching (RIE)