Skip to main content
Log in

High performance 1.3 μm InGaAsN superluminescent diodes

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

High performance 1.3 μm InGaAsN superluminescent diodes (SLDs) were fabricated with Schottky contact. The structure was grown by metal organic chemical vapor deposition (MOCVD). Output power of 3 mW was obtained in continuous wave (CW) mode at room temperature. The full width at half maximum (FWHM) of the emission spectrum was 30 nm. The devices operated up to 100°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohm K, Marten P, Petermann K, et al. Low-drift fibre gyro using a superluminescent diode. Electron Lett, 1981, 17: 352–353

    Article  Google Scholar 

  2. Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography. Science, 1991, 254: 1178–1181

    Article  Google Scholar 

  3. Takada K, Yokohama I, Chida K, et al. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl Opt, 1987, 26: 1603–1606

    Article  Google Scholar 

  4. Sampson D D, Holloway W T. 100 mW spectrally uniform broadband ASE source for spectrum-sliced WDM systems. Electron Lett, 1994, 30(19): 1611–1612

    Article  Google Scholar 

  5. Semenov T, Batovrin V K, Garmash I A, et al. (GaAl)As SQW superluminescent diodes with extremely low coherence length. Electron Lett, 1995, 31(4): 314–315

    Article  Google Scholar 

  6. Takayama T, Imafuji O, Kouchi Y, et al. 100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guides self-aligned structure. IEEE J Quant Electron, 1996, 32(11): 1981–1987

    Article  Google Scholar 

  7. Lin C F, Lee B L. Extremely broadband AlGaAs/GaAs superluminescent diodes. Appl Phys Lett, 1997, 71(12): 1598–1600

    Article  Google Scholar 

  8. Middlemast I, Sarma J, Yunus S. High power tapered superluminescent diodes using novel etched deflectors. Electron Lett, 1997, 33: 903–904

    Article  Google Scholar 

  9. Gen-ei K, Tanioka A, Suhara H, et al. High coupled power 1.3 μm edge-emitting light-emitting diode with a rear window and an integrated absorber. Appl Phys Lett, 1988, 53(13): 1138–1140

    Article  Google Scholar 

  10. Norman S, Kwong K, Bar-Chaim N. High-power 1.3 μm superluminescent diode. Appl Phys Lett, 1989, 54(4): 298–300

    Article  Google Scholar 

  11. Nagai H, Noguchi Y, Sudo S. High-power, high-efficiency 1.3 μm superluminescent diode with a buried bent absorbing guide structure. Appl Phys Lett, 1989, 54(18): 1719–1721

    Article  Google Scholar 

  12. Mikami O, Yasaka H, Noguchi Y. Broader spectral width InGaAsP stacked active layer superluminescent diodes. Appl Phys Lett, 1990, 56(11): 987–989

    Article  Google Scholar 

  13. Kashima Y, Matoba A, Takano H. Performance and reliability of InGaAsP superluminescent diode. IEEE J Lightwave Technol, 1992, 10(11): 1644–1649

    Article  Google Scholar 

  14. Holtmann C, Besse P A, Melchior H. High power superluminescent diodes for 1.3 μm wavelengths. Electron Lett, 1996, 32: 1705–1706

    Article  Google Scholar 

  15. Wu B R, Fuh C, Laih L W, et al. Extremely broadband InGaAsP/InP superluminescent diodes. Electron Lett, 2000, 36: 2093–2095

    Article  Google Scholar 

  16. Chen T R, Zhuang Y H, Xu Y J, et al. 1.5 μm InGaAsP/InP buried crescent superluminescent diode on a p-InP substrate. Appl Phys Lett, 1990, 56(25): 2502–2503

    Article  Google Scholar 

  17. Noguchi Y, Yasaka H, Mikami O, et al. High-power, borad-band In-GaAsp superluminescent diode emitting at 1.5 μm. J Appl Phys, 1990, 67(5): 2665–2667

    Article  Google Scholar 

  18. Song J H, Cho S H, Han I K, et al. High-power broad-band superluminescent diode with low spectral modulation at 1.5 μm wavelength. IEEE Photonic Tech L, 2000, 12(7): 783–785

    Article  Google Scholar 

  19. Yamatoya T, Sekiguchi S, Koyama F, et al. High-power CW operation of GaInAsP/InP superluminescent light-emitting diode with tapered active region, Jpn. J Appl Phys, 2001, 40(7A): 678–680

    Article  Google Scholar 

  20. Kaniewska M, Ratajczak J. Anomalies in characteristics of broad-contact ridge waveguide SCH-SQW lasers based on AlGaAs/InGaAs grown by MBE. Phys Status Solidi A, 2003, 195(1): 44–49

    Article  Google Scholar 

  21. Li W, Turpeinen J, Manen P, et al. Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers. Appl Phys Lett, 2001, 78(1): 91–93

    Article  Google Scholar 

  22. Tansu N, Mawst L J. Low-reshold strain-compensated InGaAs(N) (λ= 1.19–1.31 μm) quantum-well lasers. IEEE Photonic Tech L, 2002, 14(4): 444–446

    Article  Google Scholar 

  23. Qu Y, Yuan S, Liu C Y, et al. High-power InAlGaAs/GaAs and AlGaAs/GaAs semiconductor laser arrays emitting at 808 nm. IEEE Photonic Tech L, 2004, 16(2): 389–291

    Article  Google Scholar 

  24. Yuan S, Kim Y, Jagadish C, et al. Anodic-oxide-induced interdiffusion in GaAs/AlGaAs quantum wells. J Appl Phys, 1998, 83(3): 1305–1311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Qu.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60677008), and the Foundation of National Key Lab on High Power Semiconductor Laser (Grant No. 9140C3102060703)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Y., Li, H., Zhang, J.X. et al. High performance 1.3 μm InGaAsN superluminescent diodes. Sci. China Ser. E-Technol. Sci. 52, 2396–2399 (2009). https://doi.org/10.1007/s11431-008-0233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0233-3

Keywords

Navigation