Skip to main content
Log in

Multi-channel sampling theorems for band-limited signals with fractional Fourier transform

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Multi-channel sampling for band-limited signals is fundamental in the theory of multi-channel parallel A/D environment and multiplexing wireless communication environment. As the fractional Fourier transform has been found wide applications in signal processing fields, it is necessary to consider the multi-channel sampling theorem based on the fractional Fourier transform. In this paper, the multi-channel sampling theorem for the fractional band-limited signal is firstly proposed, which is the generalization of the well-known sampling theorem for the fractional Fourier transform. Since the periodic nonuniformly sampled signal in the fractional Fourier domain has valuable applications, the reconstruction expression for the periodic nonuniformly sampled signal has been then obtained by using the derived multi-channel sampling theorem and the specific space-shifting and phase-shifting properties of the fractional Fourier transform. Moreover, by designing different fractional Fourier filters, we can obtain reconstruction methods for other sampling strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida L B. The fractional Fourier transform and time-frequency representations. IEEE Trans Signal Proc, 1994, 42: 3084–3091

    Article  Google Scholar 

  2. Ozaktas H M, Zalevsky Z, Kutay M A. The Fractional Fourier Transform with Applications in Optics and Signal Processing. New York: Wiley, 2000. 1–513

    Google Scholar 

  3. Namias V. The fractional order Fourier transform and its application to quantum mechanics. J. Inst Math Appl, 1980, 25: 241–265

    Article  MATH  MathSciNet  Google Scholar 

  4. Tao R, Deng B, Wang Y. Research progress of the fractional Fourier in signal processing. Sci China Ser F-Inf Sci, 2006, 49(1): 1–25

    Article  MATH  MathSciNet  Google Scholar 

  5. Tao R, Qi L, Wang Y. Theory and Application of the Fractional Fourier Transform (in Chinese). Beijing: Tsinghua University Press, 2004. 23–49

    Google Scholar 

  6. Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform. J Opt Soc Amer A, 1993, 10: 2181–2186

    Article  Google Scholar 

  7. Ozaktas H M, Barshan B, Mendlovic D, et al. Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transform. J Opt Soc Amer A, 1994, 11: 547–559

    MathSciNet  Google Scholar 

  8. Lohmann A W, Soffer B H. Relationship between the Radon-Wigner and the fractional Fourier transform. J Opt Soc Amer A, 1994, 11: 1798–1801

    MathSciNet  Google Scholar 

  9. Mustard D A. The fractional Fourier transform and the Wigner distribution. J Aust Math Soc B, 1996, 38: 209–219

    MATH  MathSciNet  Google Scholar 

  10. Pei S C, Ding J J. Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans Signal Proc, 2001, 49: 1638–1655

    Article  MathSciNet  Google Scholar 

  11. Ozaktas H M, Aytur O. Fractional Fourier domains. Signal Proc, 1995, 46: 119–124

    Article  MATH  Google Scholar 

  12. Cariolaro G, Erseghe T, Kraniauskas P, et al. A unified framework for the fractional Fourier transform. IEEE Trans Signal Proc, 1998, 46: 3206–3219

    Article  MATH  MathSciNet  Google Scholar 

  13. Almeida L B. Product and convolution theorems for the fractional Fourier transform. IEEE Signal Proc Lett, 1997, 4: 15–17

    Google Scholar 

  14. Zayed A I. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Proc Lett, 1998, 5: 101–103

    Article  Google Scholar 

  15. Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform. IEEE Trans Signal Proc, 1996, 44: 2141–2150

    Article  Google Scholar 

  16. Mendlovic D, Ozaktas H M, Lohmann A W. Fractional correlation. Appl Opt, 1995, 34: 303–309

    Google Scholar 

  17. Xia X. On bandlimited signals with fractional Fourier transform. IEEE Signal Proc Lett, 1996, 3: 72–74

    Article  Google Scholar 

  18. Zayed A I. On the relationship between the Fourier transform and fractional Fourier transform. IEEE Signal Proc Lett, 1996, 3: 310–311

    Article  Google Scholar 

  19. Zayed A I, Garcia A G. New Sampling formulae for the fractional Fourier transform. Signal Proc, 1999, 77: 111–114

    Article  MATH  Google Scholar 

  20. Erseghe T, Kraniauskas P, Cariolaro G. Unified fractional Fourier transform and sampling theorem. IEEE Trans Signal Proc, 1999, 47(12): 3419–3423

    Article  MATH  MathSciNet  Google Scholar 

  21. Candan C, Ozaktas H M. Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Proc, 2003, 83: 2455–2457

    Article  MATH  Google Scholar 

  22. Zhang W Q, Tao R. Sampling theorems for bandpass signals with fractional Fourier transform. Acta Electron Sin (in Chinese), 2005, 33(7): 1196–1199

    Google Scholar 

  23. Torres R, Pellat-Finet P, Torres Y. Sampling theorem for fractional bandlimited signals: a self-contained proof. Application to digital holography. IEEE Signal Proc Lett, 2006, 13: 676–679

    Article  Google Scholar 

  24. Tao R, B. Li Z, Wang Y. Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain. IEEE Trans Signal Proc, 2007, 55(7): 3541–3547

    Article  MathSciNet  Google Scholar 

  25. Martone M. A multicarrier system based on the fractional Fourier transform for time-frequency selective channels. IEEE Trans Comm, 2001, 49(6): 1011–1020

    Article  MATH  Google Scholar 

  26. Chen E Q, Tao R, Zhang W Q, et al. The OFDM system and equalization algorithm based on the fractional Fourier transform. Acta Electron Sin (in Chinese), 2007, 35(3): 409–414

    Google Scholar 

  27. Vaidyanathan P P, Liu V C. Classical sampling theorems in the context of multirate and polyphase digital filter band structures. IEEE Trans Signal Proc, 1988, 36(9): 1480–1495

    MATH  MathSciNet  Google Scholar 

  28. Figueiras A R, Marino J B, Gomez R G. On generalized sampling expansions for deterministic signals. IEEE Trans Circuits and Systems, 1981, cas-28(2): 153–154

    Article  Google Scholar 

  29. Papoulis A. Generalized sampling expansion. IEEE Trans Circuits and Systems, 1977, cas-24(11): 652–654

    Article  MathSciNet  Google Scholar 

  30. Jenq Y C. Digital spectra of nonuniformly sampled signals: Fundamentals and high-speed waveform digitizers. IEEE Trans Instrum Meas, 1988, 37(2): 245–251

    Article  Google Scholar 

  31. Jenq Y C. Perfect reconstruction of digital spectrum from nonuniformly sampled signals. IEEE Trans Instrum Meas, 1997, 46(3): 649–652

    Article  Google Scholar 

  32. Neagoe V E. Inversion of the Van der Monde matrix. IEEE Signal Proc Lett, 1996, 2: 119–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Tao.

Additional information

Supported partially by the National Natural Science Foundation of China (Grant Nos. 60232010 and 60572094) and the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 60625104)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Tao, R. & Wang, Y. Multi-channel sampling theorems for band-limited signals with fractional Fourier transform. Sci. China Ser. E-Technol. Sci. 51, 790–802 (2008). https://doi.org/10.1007/s11431-008-0087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0087-8

Keywords

Navigation