Skip to main content
Log in

Molecular dynamics simulation of the test of single-walled carbon nanotubes under tensile loading

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations were performed to do the test of single-walled carbon nanotubes (SWCNT) under tensile loading with the use of Brenner potential to describe the interactions of atoms in SWCNTs. The Young’s modulus and tensile strength for SWCNTs were calculated and the values found are 4.2 TPa and 1.40–1.77 TPa, respectively. During the simulation, it was found that if the SWCNTs are unloaded prior to the maximum stress, the stress-strain curve for unloading process overlaps with the loading one, showing that the SWCNT’s deformation up to its fracture point is completely elastic. The MD simulation also demonstrates the fracture process for several types of SWCNT and the breaking mechanisms for SWCNTs were analyzed based on the energy and structure behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S. Helical microtubes of graphitic carbon. Nature, 1991, 354: 56–58

    Article  Google Scholar 

  2. Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678–680

    Article  Google Scholar 

  3. Krishnan A, Dujardin E, Ebbesen T W, et al. Young’s modulus of single-walled nanotubes. Phys Rev B, 1998, 58(20): 14013–14019

    Article  Google Scholar 

  4. Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277: 1971–1975

    Article  Google Scholar 

  5. Salvetat J P, Briggs GAD, Bonard J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett, 1999, 82: 944–947

    Article  Google Scholar 

  6. Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 1999, 283: 1513–1516

    Article  Google Scholar 

  7. Wang Z L, Poncharal P, de Heer W A. Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J Phys Chem Solids, 2000, 61: 1025–1030

    Article  Google Scholar 

  8. Gao R, Wang Z L, Bai Z G, et al. Nanomechanics of aligned carbon nanotube arrays. Phys Rev Lett, 2000, 85: 622–625

    Article  Google Scholar 

  9. Dresselhaus M S, Dresselhaus G, Eklund P C. Science of Fullerenes and Carbon Nanotubes. San Diego: Academic Press, 1996

    Google Scholar 

  10. Cornwell C F, Wille L T. Elastic properties of single-walled carbon nanotubes in compression. Solid State Comm, 1997, 101: 555–558

    Article  Google Scholar 

  11. Cornwell C F, Wille L T. Critical strain and catalytic growth of single-walled carbon nanotubes. J Chem Phys, 1998, 109: 763–767

    Article  Google Scholar 

  12. Yakobson B I, Brabec C J, Bernholc J, et al. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys Rev Lett, 1996, 76(14): 2511–2514

    Article  Google Scholar 

  13. Lu J P. Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett, 1997, 79(7): 1297–1300

    Article  Google Scholar 

  14. Hernandez E, Goze C, Bernier P, et al. Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett, 1998, 80(20): 4502–4505

    Article  Google Scholar 

  15. Wang Y, Wang X X, Ni X G, et al. Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes. Comput Mater Sci, 2005, 32: 141–146

    Article  Google Scholar 

  16. Liu J Z, Zheng Q S, Jiang Q. Effect of bending instabilities on the measurements of mechanical properties of multiwalled carbon nanotubes. Phys Rev B, 2003, 67: 075414

    Google Scholar 

  17. Wang L F, Zheng Q S, Liu J Z, et al. Size dependence of the thin-shell model for carbon nanotubes. Phys Rev Lett, 2005, 95: 105501

    Google Scholar 

  18. Zhou X, Zhou J J, Ouyang Z C. Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys Rev B, 2000, 62(20): 13692–13696

    Article  Google Scholar 

  19. Li F, Cheng H M, Bai S, et al. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett, 2000, 77: 3161–3163

    Article  Google Scholar 

  20. Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000, 287: 637–640

    Article  Google Scholar 

  21. Yu M F, Files B S, Arepalli S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett, 2000, 84(24): 5552–5555

    Article  Google Scholar 

  22. Yu M F, Dyer M J, Skidmore G D, et al. Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology, 1999, 10: 244–252

    Article  Google Scholar 

  23. Waters J F, Guduru P R, Jouzi M, et al. Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Appl Phys Lett, 2005, 87: 103109

    Google Scholar 

  24. Zhou L G, Shi S Q. Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with an without hydrogen storage. Compos Mater Sci, 2002, 23: 166–174

    Article  Google Scholar 

  25. Yakobson B I, Smalley R E. Fullerene nanotubes. Am Sci, 1997, 85: 324–337

    Google Scholar 

  26. Yakobson B I, Brabec C J, Bemholc J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys Rev Lett, 1996, 76: 2511–2514

    Article  Google Scholar 

  27. Yakobson B I. Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl Phys Lett, 1998, 72: 918–920

    Article  Google Scholar 

  28. Yakobson B I, Avouris P. Mechanical properties of carbon nanotubes. In: Dresselhaus M S, Dresselhaus G, Avouris P, eds. Carbon Nanotubes, Topics in Applied Physics, vol. 80. Berlin/Heidelberg: Springer Verlag, 2001. 287–329

    Google Scholar 

  29. Cheng H M. Carbon Nanotubes Synthesis, Microstructure Properties and Applications (in Chinese). Beijing: Chemical Industry Press, 2002. 209–210

    Google Scholar 

  30. Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B, 1990, 42: 9458–9471

    Article  Google Scholar 

  31. Dereli G, OZdogan C. Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain. Phys Rev B, 2003, 67: 035416

    Google Scholar 

  32. Mylvaganam K, Zhang L C. Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes. Carbon, 2004, 42: 2025–2031

    Article  Google Scholar 

  33. Stone A J, Wales D J. Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett, 1986, 128: 501–503

    Article  Google Scholar 

  34. Wang Y, Wang X X, Ni X G, et al. Buckling behavior of carbon nanotube under compression. Acta Phys Sinca (in Chinese), 2003, 52(12): 3120–3124

    Google Scholar 

  35. Timoshenko S P, Gere J M. Theory of Elastic Stability. New York: McGraw-Hill, International Book Company, 1961. 457

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen YunFei.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2006CB300404), the National Natural Science Foundation of China (Grant Nos. 50276011, 50275026, 50475077), Jiangsu Province Natural Science Foundation (BK2002060) and the Research Fund for the Doctoral Program of Higher Education (Grant No. 20050286019)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, C., Chen, Y. & Jiao, J. Molecular dynamics simulation of the test of single-walled carbon nanotubes under tensile loading. SCI CHINA SER E 50, 7–17 (2007). https://doi.org/10.1007/s11431-007-0009-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-007-0009-1

Keywords

Navigation