Skip to main content
Log in

Droplet creator based on electrowetting-on-dielectric for lab on a chip

  • Published:
Science in China Series E Aims and scope Submit manuscript

Abstract

Electrowetting-on-dielectric (EWOD) is to directly control the wettability of liquids on the solid surface by applying the electric potential to the microelectrode array under the dielectric layer. The prototype of the EWOD droplet creator with the sandwiched structure is used: the droplet is sandwiched between the top and bottom plates; the bottom plate consists of silicon used as the substrate of the microelectrode array, nitride silicon film deposited by low pressure chemical vapor deposition as the dielectric layer and the fluorocarbon polymer film deposited by inductively coupled plasma chemical vapor deposition as the hydrophobic layer; and the top plate is the transparent electrode covered with the hydrophobic layer. To obtain the required minimum voltage, the process and the criterion of creating droplets are analyzed. At the voltage of 35 V the deionized water droplet surrounded in silicone oil is successfully created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwartz, J. A., Vykoukal, J. V., Gascoyne, P. R. C., Droplet-based chemistry on a programmable micro-chip, Lab Chip, 2004, 4: 11–17.

    Article  Google Scholar 

  2. Trimmer, W. S. N., Microrobots and micromechanical systems, Sensors and Actuators, 1989, 19(3): 267–287.

    Article  Google Scholar 

  3. Adamson, A. W., Gast, A. P., Physical Chemistry of Surfaces, New York: John Wiley and Sons Inc., 1997.

    Google Scholar 

  4. Jun, T. K., Kim, C. J., Valveless pumping using traversing vapour bubbles in microchannels, Journal of Applied Physics, 1998, 83(11): 5658–5664.

    Article  Google Scholar 

  5. Togo, H., Sato, M., Shimokawa, F., Multi-element thermo-capillary optical switch and sub-nanometer oil injection for its fabrication, Proceedings IEEE MEMS’ 99, 1998, 418–423.

    Google Scholar 

  6. Jones, T. B., On the relationship of dielectrophoresis and electrowetting, Langmuir, 2002, 18: 4437–4443.

    Google Scholar 

  7. Zeng, X. F., Yue, R. F., Wu, J. G. et al., Actuation and control of droplets by using electrowetting-on-dielectric, Chinese Physics Letter, 2004, 21(9): 1851–1854.

    Google Scholar 

  8. Pollack, M. G., Fair, R. B., Electrowetting-based actuation of liquid droplets for microfluidic application, Applied Physics Letter, 2000, 77(11): 1725–1726.

    Google Scholar 

  9. Cho, S. K., Moon, H., Kim, C. J., Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, Journal of MicroElectroMechanical System, IEEE, 2003, 12(1): 70–80.

    Google Scholar 

  10. Lee, S. H., Lee, C. S., Kim, B. G. et al., Quantitatively controlled nanoliter liquid manipulation using hydrophobic valving and control of surface wettability, J. Micromech. Microeng., 2003, 13: 89–97.

    Google Scholar 

  11. Washizu, M., Electrostatic actuation of liquid droplets for micro-reactor applications, IEEE Trans. Ind. Appl., 1998, 34(4): 732–737.

    Article  Google Scholar 

  12. Ajdari, A., Pumping liquids using asymmetric electrode arrays, Physical Review E, 2000, 61(1): 45–48.

    Article  Google Scholar 

  13. Gallardo, B. S., Gupta, V. K., Eagerton, F. D. et al., Electrochemical principles for active control of liquids on submillimeter scales, Science, 1999, 283: 57–60.

    Article  Google Scholar 

  14. Dupont Inc., Product Information: Teflon AF 1601S Amorphous Fluoropolymer Solutions, 234264C, February 1998.

  15. Lippmann, M. G., Relations entre les phénomènes electriques et capillaries, Ann. Chim. Phys., 1875, 5(11): 494–549.

    Google Scholar 

  16. Peykov, V., Quinn, A., Ralston, J., Electrowetting: a model for contact-angle saturation, Colloid Polym. Sci., 2000, 278: 789–793.

    Article  Google Scholar 

  17. Verheijen, H. J. J., Prins, M. W. J., Reversible electrowetting and trapping of charge: Model and experiments, Langmuir, 1999, 15: 6616–6620.

    Article  Google Scholar 

  18. Vallet, M., Vallade, M., Berge, B., Limiting phenomena for the spreading of water on polymer films by electrowetting, The European Physical Journal B, 1999, 11: 583–591.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng Xuefeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Yue, R., Wu, J. et al. Droplet creator based on electrowetting-on-dielectric for lab on a chip. SCI CHINA SER E 49, 248–256 (2006). https://doi.org/10.1007/s11431-006-0248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-006-0248-6

Keywords

Navigation