Skip to main content
Log in

Geochronological and geochemical constraints on the petrogenesis and geodynamic process of Hemler, Vlinder, and Il’ichev seamount lavas in NW Pacific

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Oceanic intraplate volcanoes with linear age progressions are usually accepted to be derived from melting of an upwelling mantle plume. Several seamount groups in NW Pacific, however, show complex age-distance relationships that are difficult to explain using the classic “mantle plume hypothesis”, and thus their origins are controversial. In this study, we present 40Ar-39Ar age, geochemical, and Sr-Nd-Pb-Hf isotopic data of lavas from Hemler, Vlinder, and Il’ichev seamounts in NW Pacific, to elucidate their petrogenesis and geodynamic process. The lavas from Hemler, Vlinder, and Il’ichev seamounts are classified as alkali basalt, basanite/nephelinite, and trachyte. Lavas with MgO>8 wt.% exhibit high contents of CaO, FeOT, and TiO2, similar to the composition of melts formed from reaction between carbonated eclogite-derived melts and fertile peridotite. These lavas have elevated Zr/Hf ratios (40.6–45.2) and negative Zr and Hf anomalies, indicating the presence of a carbonate component in the mantle source. They are enriched in incompatible trace elements and have enriched mantle 1 (EM1)-like Sr-Nd-Pb-Hf isotopic compositions. The isotopic compositions of Vlinder, Il’ichev basanite, and Hemler lavas in this study are similar to the Rarotonga hotspot. Although occurring at the same seamount, the Il’ichev alkali basalts display more depleted Sr-Nd-Hf isotopic compositions compared to Il’ichev basanite. According to plate tectonic reconstruction results, the ages of Hemler (100.1 Ma), Vlinder pre- (100.2 Ma) and post-shield (87.5 Ma), and Il’ichev (56.4 Ma) lavas clearly deviate from the Macdonald, Arago, Rarotonga, and Samoa hotspot tracks, indicating that they cannot directly originate from mantle plumes. We propose that in the mid-Cretaceous, when the Pacific plate passed over Rarotonga hotspot, melting of Rarotonga plume formed the Vlinder (main-shield stage), Pako, and Ioah seamounts. The Rarotonga (and possibly Samoa) plume materials would have been dispersed into the surrounding asthenosphere by mantle convection. These diffuse plume materials would undergo decompression melting beneath lithosphere fractures that are widely distributed in the Magellan area, generating non-hotspot related Hemler and pre- and post-shield Vlinder lavas. The Il’ichev alkali basalts and basanite probably result from lithospheric fracture-induced melting of heterogeneous enriched components randomly distributed in the asthenosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams L J, Larson R L, Shipley T H, Lancelot Y. 1993. Cretaceous Volcanic Sequences and Jurassic Oceanic Crust in the East Mariana and Pigafetta Basins of the Western Pacific. In: Pringle M S, Sager W W, Sliter, W V, Stein S, eds. The Mesozoic Pacific: Geology, Tectonics, and Volcanism. AGU, Washington, D. 7–101

    Google Scholar 

  • Ballmer M D, Ito G, van Hunen J, Tackley P J. 2010. Small-scale sub-lithospheric convection reconciles geochemistry and geochronology of ‘Superplume’ volcanism in the western and south Pacific. Earth Planet Sci Lett, 290: 224–232

    Article  CAS  Google Scholar 

  • Bau M, Koschinsky A, Dulski P, Hein J R. 1996. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim Cosmochim Acta, 60: 1709–1725

    Article  CAS  Google Scholar 

  • Beier C, Vanderkluysen L, Regelous M, Mahoney J J, Garbe-Schönberg D. 2011. Lithospheric control on geochemical composition along the Louisville Seamount Chain. Geochem Geophys Geosyst, 12: Q0AM03

    Article  Google Scholar 

  • Chauvel C, Lewin E, Carpentier M, Arndt N T, Marini J C. 2008. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat Geosci, 1: 64–67

    Article  CAS  Google Scholar 

  • Chauvel C, Maury R C, Blais S, Lewin E, Guillou H, Guille G, Rossi P, Gutscher M A. 2012. The size of plume heterogeneities constrained by Marquesas isotopic stripes. Geochem Geophys Geosyst, 13: Q07005

    Article  Google Scholar 

  • Chauvel C, McDonough W, Guille G, Maury R, Duncan R. 1997. Contrasting old and young volcanism in Rurutu Island, Austral chain. Chem Geol, 139: 125–143

    Article  CAS  Google Scholar 

  • Chen L H, Wang X J, Liu S A. 2022. Probing recycled carbonate in the lower mantle. Natl Sci Rev, 9: nwac061

    Article  CAS  Google Scholar 

  • Chen L H, Zeng G, Liu J Q, Wang X J, Zhang C. 2022. The nature of the deep mantle chemical reservoirs: Perspective from continental intraplate volcanic rocks. Acta Petrol Sin, 38: 3703–3711

    Article  Google Scholar 

  • COMRA (China Ocean Mineral Resources R & D Association). 2017. Chinese Gazetteer of Undersea Features on the International Seabed (in Chinese). Beijing: China Ocean Press. 1–506

    Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock J. 2003. Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett, 205: 295–308

    Article  CAS  Google Scholar 

  • Dasgupta R, Hirschmann M M, Smith N D. 2007. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island Basalts. J Petrol, 48: 2093–2124

    Article  CAS  Google Scholar 

  • Dasgupta R, Hirschmann M M, Stalker K. 2006. Immiscible transition from carbonate-rich to silicate-rich melts in the 3 gpa melting interval of eclogite +CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol, 47: 647–671

    Article  CAS  Google Scholar 

  • Davis A S, Gray L B, Clague D A, Hein J R. 2002. The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension. Geochem Geophys Geosyst, 3: 1–28

    Article  Google Scholar 

  • Davis F A, Hirschmann M M, Humayun M. 2011. The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB. Earth Planet Sci Lett, 308: 380–390

    Article  CAS  Google Scholar 

  • Duncan R A, Clague D A. 1985. Pacific Plate Motion Recorded by Linear Volcanic Chains. In: Nairn A E M, Stehli F G, Uyeda S, eds. The Ocean Basins and Margins: Volume 7A The Pacific Ocean. Springer US, Boston, MA. 89–121

    Chapter  Google Scholar 

  • Eggins S M, Woodhead J D, Kinsley L P J, Mortimer G E, Sylvester P, McCulloch M T, Hergt J M, Handler M R. 1997. A simple method for the precise determination of >40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem Geol, 134: 311–326

    Article  CAS  Google Scholar 

  • Eisele J, Sharma M, Galer S J G, Blichert-Toft J, Devey C W, Hofmann A W. 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet Sci Lett, 196: 197–212

    Article  CAS  Google Scholar 

  • Finlayson V A, Konter J G, Konrad K, Koppers A A P, Jackson M G, Rooney T O. 2018. Sr-Pb-Nd-Hf isotopes and 40Ar/39Ar ages reveal a Hawaii-Emperor-style bend in the Rurutu hotspot. Earth Planet Sci Lett, 500: 168–179

    Article  CAS  Google Scholar 

  • Galer S J G. 1998. Practical Application of Lead Triple Spiking for Correction of Instrumental Mass Discrimination. Mineral Mag, 62A: 491–492

    Article  CAS  Google Scholar 

  • Garapić G, Jackson M G, Hauri E H, Hart S R, Farley K A, Blusztajn J S, Woodhead J D. 2015. A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: Implications for the origin of EM-1 (enriched mantle 1). Lithos, 228–229: 1–11

    Article  Google Scholar 

  • Gerbode C Dasgupta R. 2010. Carbonate-fluxed melting of MORB-like pyroxenite at 2.9 GPa and genesis of HIMU ocean island basalts. J Petrol, 51: 2067–2088

    Article  CAS  Google Scholar 

  • Hammouda T. 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett, 214: 357–368

    Article  CAS  Google Scholar 

  • Hanyu T, Tatsumi Y, Senda R, Miyazaki T, Chang Q, Hirahara Y, Takahashi T, Kawabata H, Suzuki K, Kimura J I, Nakai S. 2011. Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochem Geophys Geosyst, 12: Q0AC09

    Article  Google Scholar 

  • Hart S R, Dunn T. 1993. Experimental cpx/melt partitioning of 24 trace elements. Contr Mineral Petrol, 113: 1–8

    Article  CAS  Google Scholar 

  • Hauri E H, Whitehead J A, Hart S R. 1994. Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J Geophys Res, 99: 24275–24300

    Article  CAS  Google Scholar 

  • Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary Islands: Implications for origins. J Petrol, 52: 113–146

    Article  CAS  Google Scholar 

  • Herzberg C, Asimow P D. 2008. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosyst, 9: 2008GC002057

    Article  Google Scholar 

  • Hirose K. 1997. Partial meltcompositions ofcarbonated peridotite at3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett, 24: 2837–2840

    Article  CAS  Google Scholar 

  • Hirose K, Kushiro I. 1993. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett, 114: 477–489

    Article  CAS  Google Scholar 

  • Hirschmann M M, Kogiso T, Baker M B, Stolper E M. 2003. Alkalic magmas generated by partial melting ofgarnet pyroxenite. Geology, 31: 481–484

    Article  CAS  Google Scholar 

  • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229

    Article  CAS  Google Scholar 

  • Huang S C, Zheng Y F. 2017. Mantle geochemistry: Insights from ocean island basalts. Sci China Earth Sci, 60: 1976–2000

    Article  CAS  Google Scholar 

  • Jackson M G, Dasgupta R. 2008. Compositions of HIMU, EM1 and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett, 276: 175–186

    Article  CAS  Google Scholar 

  • Jackson M G, Halldórsson S A, Price A, Kurz M D, Konter J G, Koppers A A P, Day J M D. 2020. Contrasting old and young volcanism from Aitutaki, Cook Islands: Implications for the origins of the cook-Austral volcanic chain. J Petrol, 61: egaa037

    Article  CAS  Google Scholar 

  • Jackson M G, Hart S R, Koppers A A P, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell J A. 2007. The return ofsubducted continental crust in Samoan lavas. Nature, 448: 684–687

    Article  CAS  Google Scholar 

  • Janney P E, Castillo P R. 1999. Isotope geochemistry of the Darwin Rise seamounts and the nature of long-term mantle dynamics beneath the south central Pacific. J Geophys Res, 104: 10571–10589

    Article  CAS  Google Scholar 

  • Kamber B S, Greig A, Schoenberg R, Collerson K D. 2003. A refined solution to Earth’s hidden niobium: Implications for evolution of continental crust and mode of core formation. Precambr Res, 126: 289–308

    Article  CAS  Google Scholar 

  • Kiseeva E S, Yaxley G M, Hermann J, Litasov K D, Rosenthal A, Kamenetsky V S. 2012. An experimental study of carbonated eclogite at 3.5–5.5 GPa—Implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol, 53: 727–759

    Article  CAS  Google Scholar 

  • Kogiso T, Hirschmann M M, Frost D J. 2003. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett, 216: 603–617

    Article  CAS  Google Scholar 

  • Konrad K, Koppers A A P, Steinberger B, Finlayson V A, Konter J G, Jackson M G. 2018. On the relative motions of long-lived Pacific mantle plumes. Nat Commun, 9: 854

    Article  Google Scholar 

  • Konter J G, Hanan B B, Blichert-Toft J, Koppers A A P, Plank T, Staudigel H. 2008. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth Planet Sci Lett, 275: 285–295

    Article  CAS  Google Scholar 

  • Koppers AAP. 2002. ArArCALC—Software for 40Ar/39Ar age calculations. Comput Geoscis, 28: 605–619

    Article  CAS  Google Scholar 

  • Koppers A A P, Staudigel H, Duncan R A. 2003a. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochem Geophys Geosyst, 4: 2003GC000574

    Article  Google Scholar 

  • Koppers AAP, Staudigel H, Pringle M S, Wijbrans J R. 2003b. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochem Geophys Geosyst, 4: 2003GC000533

    Article  Google Scholar 

  • Koppers A A P, Staudigel H, Wijbrans J R. 2000. Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chem Geol 166: 139–158

    Article  CAS  Google Scholar 

  • Koppers AAP, Staudigel H, Wijbrans J R, Pringle M S. 1998. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion. Earth Planet Sci Lett, 163: 53–68

    Article  CAS  Google Scholar 

  • Koppers A A P, Yamazaki T, Geldmacher J, Gee J S, Pressling N, Koppers A A P, Yamazaki T, Geldmacher J, Gee J S, Pressling N, Hoshi H, Anderson L, Beier C, Buchs D M, Chen L H, Cohen B E, Deschamps F, Dorais M J, Ebuna D, Ehmann S, Fitton J G, Fulton P M, Ganbat E, Hamelin C, Hanyu T, Kalnins L, Kell J, Machida S, Mahoney J J, Moriya K, Nichols A R L, Rausch S, Sano S, Sylvan J B, Williams R. 2012. Limited latitudinal mantle plume motion for the Louisville hotspot. Nat Geosci, 5: 911–917

    Article  CAS  Google Scholar 

  • Larson R L. 1991. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 19: 547

    Article  Google Scholar 

  • Lee J Y, Marti K, Severinghaus J P, Kawamura K, Yoo H S, Lee J B, Kim J S. 2006. A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta, 70: 4507–4512

    Article  CAS  Google Scholar 

  • Leng W, Liu H. 2023. Progress in the numerical modeling of mantle plumes. Sci China Earth Sci, 66: 685–702

    Article  Google Scholar 

  • Li S Z, Cao X Z, Wang G Z, Liu B, Li X Y, Suo Y H, Jiang Z X, Guo L L, Zhou J, Wang P C, Zhu J J, Wang G, Zhao S J, Liu Y J, Zhang G W. 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific plate (in Chinese). J Geomec, 25: 642–677

    Google Scholar 

  • Long X, Geldmacher J, Hoernle K, Hauff F, Wartho J, Garbe-Schönberg C. 2020. Origin of isolated seamounts in the Canary Basin (East Atlantic): The role of plume material in the origin of seamounts not associated with hotspot tracks. Terra Nova, 32: 390–398

    Article  CAS  Google Scholar 

  • Longhi J. 2002. Some phase equilibrium systematics of lherzolite melting: I. Geochem Geophys Geosyst, 3: 1–33

    Article  Google Scholar 

  • Makishima A, Nath B N, Nakamura E. 2008. New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC-ICP-MS and TIMS. Geochem J, 42: 237–246

    Article  Google Scholar 

  • Mallik A, Dasgupta R. 2013. Reactive infiltration ofmorb-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and Genesis of Alkalic Magmas. J Petrol, 54: 2267–2300

    Article  CAS  Google Scholar 

  • McDonough W F, Sun S. 1995. The composition of the Earth. Chem Geol, 120: 223–253

    Article  CAS  Google Scholar 

  • McNutt M K, Caress D W, Reynolds J, Jordahl K A, Duncan R A. 1997. Failure of plume theory to explain midplate volcanism in the southern Austral islands. Nature, 389: 479–482

    Article  CAS  Google Scholar 

  • Míková J, Denková P. 2007. Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. J Geosci, 52: 221–226

    Google Scholar 

  • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42–43

    Article  Google Scholar 

  • Nakanishi M. 1993. Topographic Expression of Five Fracture Zones in the Northwestern Pacific Ocean. In: Pringle M S, Sager W W, Sliter W V, Stein S, eds. The Mesozoic Pacific: Geology, Tectonics, and Volcanism. AGU, Washington D C. 121–136

    Chapter  Google Scholar 

  • Nakanishi M, Tamaki K, Kobayashi K. 1992. Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean. Geophys J Int, 109: 701–719

    Article  Google Scholar 

  • Obayashi M, Yoshimitsu J, Sugioka H, Ito A, Isse T, Shiobara H, Reymond D, Suetsugu D. 2016. Mantle plumes beneath the South Pacific superswell revealed by finite frequency P tomography using regional seafloor and island data. Geophys Res Lett, 43: 11628–11634

    Article  Google Scholar 

  • Peretyazhko I S, Savina E A. 2023. Cretaceous intraplate volcanism of Govorov Guyot and formation models of the Magellan seamounts, Pacific Ocean. Int Geol Rev, 65: 2479–2505

    Article  Google Scholar 

  • Pertermann M, Hirschmann M M. 2003. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res, 108: 2000JB000118

    Article  Google Scholar 

  • Price A A, Jackson M G, Blichert-Toft J, Konrad K, Bizimis M, Koppers A A P, Konter J G, Finlayson V A, Sinton J M. 2022. Distinguishing volcanic contributions to the overlapping samoan and cook-austral hotspot tracks. J Petrol, 63: egac032

    Article  Google Scholar 

  • Pringle M S. 1992. Radiometric ages of basaltic basement recovered at sites 800, 801, and 802, Leg 129, Western Pacific Ocean. In: Larson R L, Lancelot Y, eds. Proc Ocean Drill Program Sci Results. 389–404

  • Rudnick R L, McDonough W F, Chappell B W. 1993. Carbonatite meta-somatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics. Earth Planet Sci Lett, 114: 463–475

    Article  CAS  Google Scholar 

  • Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci Rev, 113: 212–270

    Article  Google Scholar 

  • Shi J H, Zhong Y, Chen L H, Zhang G L. 2017. Isotopic characteristics of intraplate basalts in West Pacific (in Chinese). Mar Geol Quat Geol, 37: 15–22

    CAS  Google Scholar 

  • Smith W H F, Staudigel H, Watts A B, Pringle M S. 1989. The Magellan seamounts: Early Cretaceous record of the South Pacific isotopic and thermal anomaly. J Geophys Res, 94: 10501–10523

    Article  Google Scholar 

  • Spandler C, Yaxley G, Green D H, Rosenthal A. 2007. Phase relations and melting of anhydrous K-bearing Eclogite from 1200 to 1600 C and 3 to 5 GPa. J Petrol, 49: 771–795

    Article  Google Scholar 

  • Staudigel H, Park K H, Pringle M, Rubenstone J L, Smith W H F, Zindler A. 1991. The longevity of the South Pacific isotopic and thermal anomaly. Earth Planet Sci Lett, 102: 24–44

    Article  Google Scholar 

  • Takahashi E. 1986. Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle. J Geophys Res, 91: 9367–9382

    Article  CAS  Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C. 2000. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol, 168: 279–281

    Article  Google Scholar 

  • Tang L, Dong Y, Chu F, Chen L, Ma W, Liu Y. 2019. Geochemistry and age of seamounts in the West Pacific: Mantle processes and petrogenetic implications. Acta Oceanol Sin, 38: 71–77

    Article  CAS  Google Scholar 

  • Thirlwall M F. 1991. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem Geol, 94: 85–104

    Article  CAS  Google Scholar 

  • Thompson PME, Kempton P D, Kerr A C. 2008. Evaluation of the effects of alteration and leaching on Sm-Nd and Lu-Hf systematics in submarine mafic rocks. Lithos, 104: 164–176

    Article  CAS  Google Scholar 

  • Walter M J. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol, 39: 29–60

    Article  CAS  Google Scholar 

  • Wang S. 1983. Age determinations of 40Ar-40K, 40Ar-39Ar and radiogenic 40Ar released characteristics on K-Ar geostandards of china (in Chinese). Sci Geol Sin, 4: 315–323

    Google Scholar 

  • Wang X J, Chen L H, Hofmann A W, Hanyu T, Kawabata H, Zhong Y, Xie L W, Shi J H, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov B S, Kimura J I. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc Natl Acad Sci USA, 115: 8682–8687

    Article  CAS  Google Scholar 

  • Wei X, Shi X F, Xu Y G, Castillo P R, Zhang Y, Zhang L, Zhang H. 2022a. Mid-Cretaceous Wake seamounts in NW Pacific originate from secondary mantle plumes with Arago hotspot composition. Chem Geol, 587: 120632

    Article  CAS  Google Scholar 

  • Wei X, Zhang G L, Castillo P R, Shi X F, Yan Q S, Guan Y L. 2020. New geochemical and Sr-Nd-Pb isotope evidence for FOZO and Azores plume components in the sources of DSDP Holes 559 and 561 MORBs. Chem Geol, 557: 119858

    Article  CAS  Google Scholar 

  • Wei X, Zhang Y, Shi X F, Castillo P R, Xu Y G, Yan Q S, Liu J H. 2022b. Co-occurrence of HIMU and EM1 components in a single magellan seamount: implications for the formation of West Pacific seamount province. J Petrol, 63: egac022

    Article  Google Scholar 

  • Weiss Y, Class C, Goldstein S L, Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537: 666–670

    Article  CAS  Google Scholar 

  • Wessel P, Kroenke L W. 1998. The geometric relationship between hot spots and seamounts: implications for Pacific hot spots. Earth Planet Sci Lett, 158: 1–18

    Article  CAS  Google Scholar 

  • Wessel P, Kroenke L W. 2008. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. J Geophys Res, 113: 2007JB005499

    Article  Google Scholar 

  • Willbold M, Stracke A. 2010. Formation ofenriched mantle components by recycling of upper and lower continental crust. Chem Geol, 276: 188–197

    Article  CAS  Google Scholar 

  • Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol, 20: 325–343

    Article  CAS  Google Scholar 

  • Xu R, Liu Y S, Zhang Y F, Zou Z Q, Zhang J B. 2022. Carbonated eclogite in the mantle source of intraplate alkaline basalts. Acta Petrol Sin, 38: 3771–3784

    Article  Google Scholar 

  • Yan Q, Milan L, Saunders J E, Shi X. 2021. Petrogenesis of basaltic lavas from the West Pacific seamount province: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. J Geophys Res-Solid Earth, 126: e2020JB021598

    Article  CAS  Google Scholar 

  • Yang Y H, Wu F Y, Wilde S A, Xie LW. 2011. A straightforward protocol for Hf purification by single step anion-exchange chromatography and isotopic analysis by MC-ICP-MS applied to geological reference materials and zircon standards. Int J Mass Spectr, 299: 47–52

    Article  CAS  Google Scholar 

  • Yang Z F, Zhou J H. 2013. Can we identify source lithology of basalt? Sci Rep, 3: 1856

    Article  Google Scholar 

  • Zhang G L, Chen L H, Jackson M G, Hofmann A W. 2017. Evolution of carbonated melt to alkali basalt in the South China Sea. Nat Geosci, 10: 229–235

    Article  CAS  Google Scholar 

  • Zhang G L, Wang S, Zhang J, Zhan M J, Zhao Z H. 2020a. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume. Geochim Cosmochim Acta, 290: 391–407

    Article  CAS  Google Scholar 

  • Zhang G, Zhang J, Wang S, Zhao J. 2020b. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau. Chem Geol, 540: 119566

    Article  CAS  Google Scholar 

  • Zhang H F, Gao S. 2012. Trace element geochemistry (in Chinese). In: Zhang H F, Gao S, eds. Geochemistry. Beijing: Geology Press. 115–148

    Google Scholar 

  • Zhang J C, Yang X D, Lin J X, Qu M, Luo Y M. 2022. Characteristics and formation mechanisms of faults on the Jurassic oceanic crust in the western Pacific Ocean (in Chinese). J Trop Oceanogr, 41: 1–15

    Google Scholar 

  • Zhang W F, Li J J, Zheng D W, Sun S H, Guo Y F, Zhang J, Xiao M, Wang J J, Zhang Y L, Jiang Y D, Xu Y G. 2023. Sample neutron irradiation with the Min Jiang Testing Reactor (MJTR): Implications for high-precision 40Ar/39Ar dating. J Anal At Spectrom, 38: 1540–1548

    Article  CAS  Google Scholar 

  • Zhang W F, Zheng D W, He P L, Xu Y G, Zhang Y Q, Zhang Y L, Wang J. 2022a. Sanidine in obsidian and its applicability in neutron flux monitor development for 40Ar/39Ar dating. J Anal At Spectrom, 37: 2286–2293

    Article  CAS  Google Scholar 

  • Zhang X Y, Chen L H, Wang X J, Hanyu T, Hofmann A W, Komiya T, Nakamura K, Kato Y, Zeng G, Gou W X, Li W Q. 2022b. Zinc isotopic evidence for recycled carbonate in the deep mantle. Nat Commun, 13: 6085

    Article  CAS  Google Scholar 

  • Zhu K C. 2002. Petrology of the substrate in seamounts MA, MC, MD, ME and MF from Magellan Seamounts (in Chinese). Mar Geol Quat Geol, 22: 49–56

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the China Ocean Sample Repository for providing samples. We are grateful to Dr. Wanfeng Zhang and Mr. Wenchang Wu for their assistance during sample analysis. We also appreciate the responsible editor and two anonymous reviewers for their thorough review and constructive comments, which have significantly improved the quality of this manuscript. This work was supported by the Basic Scientific Fund for National Public Research Institutes of China (Grant No. 2023S02), the National Natural Science Foundation of China (Grant Nos. 42076076 & 42376075), and the Taishan Scholar Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xun Wei or Xuefa Shi.

Ethics declarations

Conflict of interest The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Zhang, Y., Shi, X. et al. Geochronological and geochemical constraints on the petrogenesis and geodynamic process of Hemler, Vlinder, and Il’ichev seamount lavas in NW Pacific. Sci. China Earth Sci. (2024). https://doi.org/10.1007/s11430-024-1327-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11430-024-1327-0

Keywords

Navigation