Skip to main content
Log in

Physical mechanism of the rapid increase in intense and long-lived extreme heatwaves in the Northern Hemisphere since 1980

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Since 1980, both the intensity and duration of summer heatwaves in the middle and high latitudes of the Northern Hemisphere have significantly increased, leading this region to become a critical area for a significant increase in the frequency of intense and long-lived extreme heatwaves. We found that stronger and more persistent high-pressure systems and lower soil moisture before the events were the main drivers of intense and long-lived extreme heatwaves in western Europe and the middle and high latitudes of North America. However, in eastern Europe and Siberia, lower cloud cover before events is also a main driver of this type of extreme heatwave, in addition to the above drivers. These factors are coupled with each other and can change heatwave intensity and duration by influencing surface radiation processes during events. Using the self-organizing map classification method, we found that 6 weather patterns with increased frequency, intensity, and duration were the main dynamic reasons leading to the increase in intense and long-lived extreme heatwaves after 1980. In addition, the decrease in summer average soil moisture in most areas of the mid-high latitudes of the Northern Hemisphere and the decrease in average cloud cover in eastern Europe and Siberia are found to be the main thermodynamic reasons leading to the increase in these extreme heatwaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Coumou D, Petoukhov V, Rahmstorf S, Petri S, Schellnhuber H J. 2014. Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc Natl Acad Sci USA, 111: 12331–12336

    Article  CAS  Google Scholar 

  • Dang T N, Vy N T T, Thuong D T H, Phung D, Van Dung D, Le An P. 2022. Main and added effects of heatwaves on hospitalizations for mental and behavioral disorders in a tropical megacity of Vietnam. Environ Sci Pollut Res, 29: 59094–59103

    Article  Google Scholar 

  • Fang H, Qiao Y, Jian M. 2023. Dynamic and thermodynamic causes of summer extreme precipitation over South China. Atmos Res, 293: 106894

    Article  Google Scholar 

  • Fischer E M, Seneviratne S I, Lüthi D, Schär C. 2007. Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett, 34: 2006GL029068

    Article  Google Scholar 

  • García-Herrera R, Díaz J, Trigo R M, Luterbacher J, Fischer E M. 2010. A review of the European summer heat wave of 2003. Crit Rev Environ Sci Tech, 40: 267–306

    Article  Google Scholar 

  • Gloege L, Kornhuber K, Skulovich O, Pal I, Zhou S, Ciais P, Gentine P. 2022. Land-atmosphere cascade fueled the 2020 Siberian heatwave. AGU Adv, 3: e2021AV000619

    Article  Google Scholar 

  • Gibson P B, Uotila P, Perkins-Kirkpatrick S E, Alexander L V, Pitman A J. 2016. Evaluating synoptic systems in the CMIP5 climate models over the Australian region. Clim Dyn, 47: 2235–2251

    Article  Google Scholar 

  • Gu X, Zhang Q, Li J, Singh V P, Liu J, Sun P, He C, Wu J. 2019. Intensification and expansion of soil moisture drying in warm season over Eurasia under global warming. J Geophys Res-Atmos, 124: 3765–3782

    Article  Google Scholar 

  • Hirschi M, Mueller B, Dorigo W, Seneviratne S I. 2014. Using remotely sensed soil moisture for land-atmosphere coupling diagnostics: The role of surface vs. root-zone soil moisture variability. Remote Sens Envir, 154: 246–252

    Article  Google Scholar 

  • Hauser M, Orth R, Seneviratne S I. 2016. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys Res Lett, 43: 2819–2826

    Article  Google Scholar 

  • Harmel R D, Richardson C W, Hanson C L, Johnson G L. 2002. Evaluating the adequacy of simulating maximum and minimum daily air temperature with the normal distribution. J Appl Meteor, 41: 744–753

    Article  Google Scholar 

  • Jiang N, Cheung K, Luo K, Beggs P J, Zhou W. 2012. On two different objective procedures for classifying synoptic weather types over East Australia. Intl J Clim, 32: 1475–1494

    Article  Google Scholar 

  • Jiménez-Esteve B, Kornhuber K, Domeisen D I V. 2022. Heat extremes driven by amplification of phase-locked circumglobal waves forced by topography in an idealized atmospheric model. Geophys Res Lett, 49: e2021GL096337

    Article  Google Scholar 

  • Kohonen T. 2014. MATLAB Implementations and Applications of the Self-Organizing Map. Finland: Unigrafia Oy. 201

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year re-analysis project. Bull Amer Meteor Soc, 77: 437–471

    Article  Google Scholar 

  • Liu X, He B, Guo L, Huang L, Chen D. 2020. Similarities and differences in the mechanisms causing the European summer heatwaves in 2003, 2010, and 2018. Earths Future, 8: e2019EF001386

    Article  Google Scholar 

  • Lorenz R, Jaeger E B, Seneviratne S I. 2010. Persistence of heat waves and its link to soil moisture memory. Geophys Res Lett, 37: 1–5

    Article  Google Scholar 

  • Lu C, Shen Y, Li Y, Xiang B, Qin Y. 2022. Role of intraseasonal oscillation in a compound drought and heat event over the middle of the Yangtze River basin during midsummer 2018. J Meteorol Res, 36: 643–657

    Article  Google Scholar 

  • Liu Z, Zhou W, Yuan Y. 2023. 3D DBSCAN detection and parameter sensitivity of the 2022 Yangtze River summertime heatwave and drought. Atmos Ocean Sci Lett, 16: 100324

    Article  Google Scholar 

  • Miralles D G, Teuling A J, van Heerwaarden C C, de Arellano J V G. 2014. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci, 7: 345–349

    Article  CAS  Google Scholar 

  • Matuszko D, Węglarczyk S. 2018. Long-term variability of the cloud amount and cloud genera and their relationship with circulation (Kraków, Poland). Intl J Clim, 38: e1205

    Article  Google Scholar 

  • Natarajan N, Latif S. 2024. Nonparametric versus parametric (both unimodal and mixed) probability distribution in hourly wind speed modelling for some regions of Tamil Nadu state in India. Stoch Environ Res Risk Assess, 38: 535–569

    Article  Google Scholar 

  • Perkins S E, Alexander L V, Nairn J R. 2012. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett, 39: 2012GL053361

    Article  Google Scholar 

  • Perkins-Kirkpatrick S E, Lewis S C. 2020. Increasing trends in regional heatwaves. Nat Commun, 11: 3357

    Article  CAS  Google Scholar 

  • Perlwitz J, Miller R L. 2010. Cloud cover increase with increasing aerosol absorptivity: A counterexample to the conventional semidirect aerosol effect. J Geophys Res, 115: D08203

    Article  Google Scholar 

  • Petoukhov V, Rahmstorf S, Petri S, Schellnhuber H J. 2013. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc Natl Acad Sci USA, 110: 5336–5341

    Article  CAS  Google Scholar 

  • Qiu W, Yan X. 2020. The trend of heatwave events in the Northern Hemisphere. Phys Chem Earth Parts A B C, 116: 102855

    Article  Google Scholar 

  • Russo S, Dosio A, Graversen R G, Sillmann J, Carrao H, Dunbar M B, Singleton A, Montagna P, Barbola P, Vogt J V. 2014. Magnitude of extreme heat waves in present climate and their projection in a warming world. J Geophys Res-Atmos, 119: 12500–12512

    Article  Google Scholar 

  • Rogers C D W, Kornhuber K, Perkins-Kirkpatrick S E, Loikith P C, Singh D. 2022. Sixfold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations. J Clim, 35: 1063–1078

    Article  Google Scholar 

  • Raymond C, Matthews T, Horton R M. 2020. The emergence of heat and humidity too severe for human tolerance. Sci Adv, 6: 2375–2548

    Article  Google Scholar 

  • Rohde R, Muller R, Jacobsen R, Perlmutter S, Mosher S. 2013. Berkeley earth temperature averaging process. Geoinfor Geostat-An Overview, 1: 1000103

    Article  Google Scholar 

  • Risbey J S, O’Kane T J, Monselesan D P, Franzke C L E, Horenko I. 2018. On the dynamics of austral heat waves. J Geophys Res-Atmos, 123: 38–57

    Article  Google Scholar 

  • Russo S, Sillmann J, Fischer E M. 2015. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ Res Lett, 10: 124003

    Article  Google Scholar 

  • Russo S, Sillmann J, Sterl A. 2017. Humid heat waves at different warming levels. Sci Rep, 7: 7477

    Article  Google Scholar 

  • Szyga-Pluta K. 2022. Cloudiness and cloud genera variability at the turn of the 21st century in Poznań (Poland). Időjárás, 126: 109–125

    Article  Google Scholar 

  • Sang Y F. 2012. Spatial and temporal variability of daily temperature in the Yangtze River Delta, China. Atmos Res, 112: 12–24

    Article  Google Scholar 

  • Sousa P M, Barriopedro D, García-Herrera R, Ordóñez C, Soares P M M, Trigo R M. 2020. Distinct influences of large-scale circulation and regional feedbacks in two exceptional 2019 European heatwaves. Commun Earth Environ, 1: 48

    Article  Google Scholar 

  • Scholten R C, Coumou D, Luo F, Veraverbeke S. 2022. Early snowmelt and polar jet dynamics co-influence recent extreme Siberian fire seasons. Science, 378: 1005–1009

    Article  CAS  Google Scholar 

  • Schumacher D L, Keune J, van Heerwaarden C C, de Arellano J V G, Teuling A J, Miralles D G. 2019. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat Geosci, 12: 712–717

    Article  CAS  Google Scholar 

  • Suarez-Gutierrez L, Müller W A, Li C, Marotzke J. 2020. Dynamical and thermodynamical drivers of variability in European summer heat extremes. Clim Dyn, 54: 4351–4366

    Article  Google Scholar 

  • Schaller N, Sillmann J, Anstey J, Fischer E M, Grams C M, Russo S. 2018. Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles. Environ Res Lett, 13: 054015

    Article  Google Scholar 

  • Teng H, Branstator G. 2019. Amplification of waveguide teleconnections in the boreal summer. Curr Clim Change Rep, 5: 421–432

    Article  Google Scholar 

  • Tomczyk A M, Bednorz E. 2019. Heat waves in Central Europe and tropospheric anomalies of temperature and geopotential heights. Intl J Clim, 39: 4189–4205

    Article  Google Scholar 

  • Tuel A, Eltahir E A B. 2021. Mechanisms of European summer drying under climate change. J Clim, 34: 8913–8931

    Google Scholar 

  • Thomas C, Voulgarakis A, Lim G, Haigh J, Nowack P. 2021. An unsupervised learning approach to identifying blocking events: The case of European summer. Weather Clim Dynam, 2: 581–608

    Article  Google Scholar 

  • Wang H, Gao Y, Wang Y, Sheng L. 2022. Arctic sea ice modulation of summertime heatwaves over western North America in recent decades. Environ Res Lett, 17: 074015

    Article  Google Scholar 

  • Wirth V, Riemer M, Chang E K M, Martius O. 2018. Rossby wave packets on the midlatitude waveguide—A review. Mon Weather Rev, 146: 1965–2001

    Article  Google Scholar 

  • Wang P, Tang J, Sun X, Wang S, Wu J, Dong X, Fang J. 2017. Heat waves in China: Definitions, leading patterns, and connections to large-scale atmospheric circulation and SSTs. J Geophys Res-Atmos, 122: 10679–10699

    Article  Google Scholar 

  • Wang Y, Wang C. 2023. Classification of extreme heatwave events in the Northern Hemisphere through a new method. Clim Dyn, 61: 1947–1969

    Article  Google Scholar 

  • Wang A, Zeng X. 2013. Development of global hourly 0.5° land surface air temperature datasets. J Clim, 26: 7676–7691

    Article  Google Scholar 

  • Wang W, Zhou W, Li X, Wang X, Wang D. 2016. Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Clim Dyn, 46: 2923–2941

    Article  Google Scholar 

  • Xia X. 2012. Significant decreasing cloud cover during 1954–2005 due to more clear-sky days and less overcast days in China and its relation to aerosol. Ann Geophys, 30: 573–582

    Article  Google Scholar 

  • Xu F, Chan T O, Luo M. 2020. Different changes in dry and humid heat waves over China. Intl J Clim, 41: 1369–1382

    Article  Google Scholar 

  • Xu Z, FitzGerald G, Guo Y, Jalaludin B, Tong S. 2016. Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. Environ Int, 89–90: 193–203

    Article  Google Scholar 

  • Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci, 30: 611–627

    Article  Google Scholar 

  • Yu B, Lin H, Mo R, Li G. 2023. A physical analysis of summertime North American heatwaves. Clim Dyn, 61: 1551–1565

    Article  Google Scholar 

  • Yang Y, Maraun D, Ossó A, Tang J. 2023. Increased spatial extent and likelihood of compound long-duration dry and hot events in China, 1961–2014. Nat Hazards Earth Syst Sci, 23: 693–709

    Article  Google Scholar 

  • Yang J, Yin P, Sun J, Wang B, Zhou M, Li M, Tong S, Meng B, Guo Y, Liu Q. 2019. Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Sci Total Environ, 649: 695–702

    Article  CAS  Google Scholar 

  • Zhang J Y, Wu L Y. 2011. Land-atmosphere coupling amplifies hot extremes over China. Chin Sci Bull, 56: 3328–3332

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 42192563 & 42192564), the National Key R&D Program of China (Grant No. 2019YFA0606701), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42000000), and the Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences (Grant No. SCSIO202208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Zhou or Chunzai Wang.

Ethics declarations

Conflict of interest The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, W. & Wang, C. Physical mechanism of the rapid increase in intense and long-lived extreme heatwaves in the Northern Hemisphere since 1980. Sci. China Earth Sci. (2024). https://doi.org/10.1007/s11430-023-1332-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11430-023-1332-x

Keywords

Navigation