Skip to main content
Log in

Inertinite in coal and its geoenvironmental significance: Insights from AI and big data analysis

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Inertinite, as an important and abundant maceral group in coal, is critical for the study of palaeowildfires and their roles in the Earth’s ecosystems. Recently, there has been a significant amount of research on the relationship between palaeowildfire, palaeoclimate change and palaeovegetation evolution based on inertinite data. The reflectance of fusinite and semifusinite has been used to estimate the combustion temperature and type of palaeowildfires, and then to evaluate the combustion characteristics of different types of palaeowildfires. The relative abundance of inertinite can be used to estimate the atmospheric oxygen contents. The rapid development of artificial intelligence (AI) and online tools to search scientific databases has presented an opportunity for us to find, collect, arrange, and analyse data from the earliest to latest publications on inertinite. The data extraction tool Deep Shovel is used to collect and analyse global inertinite data from the Silurian to the Neogene. The software programs such as Gplates, ArcGIS pro and Tableau are then applied to model the relative abundance of inertinite over geological time, which can be correlated with other parameters such as atmospheric oxygen contents, plant evolution and palaeoclimate changes. The distribution of inertinite in coals varied over different geological periods, being typified by the “high inertinite content-high atmospheric oxygen level” period in the Permian and the “low inertinite content-low atmospheric oxygen level” period in the Cenozoic. This study has proposed a possible model of the positive and negative feedbacks between inertinite characteristics and palaeoenvironmental factors, and has revealed the exceptional role of inertinite in palaeoenvironmental studies. Future research on inertinite will be focused on the integrated study of organic petrology and organic geochemistry of inertinite, the big data-driven research on the temporal and spatial distribution of the global inertinite, the exploration of the functions of palaeowildfires in the Earth systems in different climatic backgrounds, and the study of modern wildfires to better predict the future frequency and intensity of wildfires due to climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair R K. 2010. Wildfires and animal extinctions at the Cretaceous/Tertiary boundary. Am J Phys, 78: 567–573

    Google Scholar 

  • Albini F A. 1993. Dynamics and modelling vegetation fires: Observations. In: Crutzen P J, Goldammer J, eds. Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation Fires. Chichester: Wiley. 39–52

    Google Scholar 

  • Bailey R W, Copeland O L. 1961. Vegetation and engineering structures in flood and erosion control. Vienna: 13th Congress of International Union of Forest Research Organizations

  • Baker S J, Belcher C M, Barclay R S, Hesselbo S P, Laurin J, Sageman B B. 2019. CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2. GSA Bull, 132: 321–333

    Google Scholar 

  • Bamforth E L, Button C L, Larsson H C E. 2014. Paleoclimate estimates and fire ecology immediately prior to the end-Cretaceous mass extinction in the Frenchman Formation (66Ma), Saskatchewan, Canada. Palaeogeogr Palaeoclimatol Palaeoecol, 401: 96–110

    Google Scholar 

  • Belcher C M, McElwain J C. 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science, 321: 1197–1200

    CAS  Google Scholar 

  • Belcher C M, Mander L, Rein G, Jervis F X, Haworth M, Hesselbo S P, Glasspool I J, McElwain J C. 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nat Geosci, 3: 426–429

    CAS  Google Scholar 

  • Belcher C M, Mills B J W, Vitali R, Baker S J, Lenton T M, Watson A J. 2021. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen. Nat Commun, 12: 503

    CAS  Google Scholar 

  • Bergman N M, Lenton T M, Watson A J. 2004. COPSE: A new model of biogeochemical cycling over Phanerozoic time. Am J Sci, 304: 397–437

    CAS  Google Scholar 

  • Berner R A. 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta, 70: 5653–5664

    CAS  Google Scholar 

  • Berner R A. 2009. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. Am J Sci, 309: 603–606

    CAS  Google Scholar 

  • Bonta M, Gosford R, Eussen D, Ferguson N, Loveless E, Witwer M. 2017. Intentional fire-spreading by “firehawk” raptors in Northern Australia. J EthnoBiol, 37: 700–718

    Google Scholar 

  • Bowman D M J S, Balch J K, Artaxo P, Bond W J, Carlson J M, Cochrane M A, D’Antonio C M, DeFries R S, Doyle J C, Harrison S P, Johnston F H, Keeley J E, Krawchuk M A, Kull C A, Marston J B, Moritz M A, Prentice I C, Roos C I, Scott A C, Swetnam T W, van der Werf G R, Pyne S J. 2009. Fire in the Earth system. Science, 324: 481–484

    CAS  Google Scholar 

  • Brown S A E, Scott A C, Glasspool I J, Collinson M E. 2012. Cretaceous wildfires and their impact on the Earth system. Cretac Res, 36: 162–190

    Google Scholar 

  • Cai Y F, Zhang H, Cao C Q, Zheng Q F, Jin C F, Shen S Z. 2021. Wildfires and deforestation during the Permian-Triassic transition in the southern Junggar Basin, Northwest China. Earth-Sci Rev, 218: 103670

    CAS  Google Scholar 

  • Cannon S H, Gartner J E, Rupert M G, Michael J A, Rea A H, Parrett C. 2009. Predicting the probability and volume of postwildfire debris flows in the intermountain western United States. GSA Bull, 122: 127–144

    Google Scholar 

  • Carnicer J, Alegria A, Giannakopoulos C, Di Giuseppe F, Karali A, Koutsias N, Lionello P, Parrington M, Vitolo C. 2022. Global warming is shifting the relationships between fire weather and realized fire-induced CO2 emissions in Europe. Sci Rep, 12: 10365

    CAS  Google Scholar 

  • Carvalho K S, Alencar A, Balch J, Moutinho P. 2012. Leafcutter ant nests inhibit low-intensity fire spread in the understory of transitional forests at the Amazon’s Forest-Savanna Boundary. Psyche-J Entomology, 2012: 1–7

    Google Scholar 

  • Chang Y, Huang W T, Hu Y M, Li Y H, Bu R C, Liu Y Y. 2015. Contemporary research advances on carbon emissions by forest fires and future prospects (in Chinese). Chin J Ecol, 34: 2922–2929

    Google Scholar 

  • Chen C M. 2004. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc Natl Acad Sci USA, 101: 5303–5310

    CAS  Google Scholar 

  • Chen C M, Ibekwe-SanJuan F, Hou J. 2010. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J Am Soc Inf Sci, 61: 1386–1409

    Google Scholar 

  • Christian H J, Blakeslee R J, Boccippio D J, Boeck W L, Buechler D E, Driscoll K T, Goodman S J, Hall J M, Koshak W J, Mach D M, Stewart M F. 2003. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res, 108: 4005

    Google Scholar 

  • Cope M J, Chaloner W G. 1980. Fossil charcoal as evidence of past atmospheric composition. Nature, 283: 647–649

    CAS  Google Scholar 

  • Crisp M D, Burrows G E, Cook L G, Thornhill A H, Bowman D M J S. 2011. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat Commun, 2: 193

    Google Scholar 

  • Crutzen P J, Andreae M O. 1990. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250: 1669–1678

    CAS  Google Scholar 

  • Dai S F, Han D X, Chou C L. 2006. Petrography and geochemistry of the Middle Devonian coal from Luquan, Yunnan Province, China. Fuel, 85: 456–464

    CAS  Google Scholar 

  • Dai S F, Liu J J, Ward C R, Hower J C, Xie P P, Jiang Y F, Hood M M, O’Keefe J M K, Song H J. 2015. Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geol Rev, 71: 318–349

    Google Scholar 

  • Degani-Schmidt I, Guerra-Sommer M, Mendonça J O, Mendonça Filho J G, Jasper A, Cazzulo-Klepzig M, Iannuzzi R. 2015. Charcoalified logs as evidence of hypautochthonous/autochthonous wildfire events in a peat-forming environment from the Permian of southern Paraná Basin (Brazil). Int J Coal Geol, 146: 55–67

    CAS  Google Scholar 

  • Denis E H, Toney J L, Tarozo R, Scott Anderson R, Roach L D, Huang Y S. 2012. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: Validation using HPLC-fluorescence detection. Org Geochem, 45: 7–17

    CAS  Google Scholar 

  • Diessel C F K. 2010. The stratigraphic distribution of inertinite. Int J Coal Geol, 81: 251–268

    CAS  Google Scholar 

  • Du F P, Ning S Z, Liu C Y, Qiao J W, Zhao X C, Li C C, Tan F R, Wei Y X, Luo Z. 2022. Distributions, properties and clean utilization of the low rank inertinite-rich coals in China (in Chinese). Geol China, 49: 1792–1807

    CAS  Google Scholar 

  • Edwards D, Axe L. 2004. Anatomical evidence in the detection of the earliest wildfires. Palaios, 19: 113–128

    Google Scholar 

  • Fletcher T L, Warden L, Damsté J S S, Brown K J, Rybczynski N, Gosse J C, Ballantyne A P. 2019. Evidence for fire in the Pliocene Arctic in response to amplified temperature. Clim Past, 15: 1063–1081

    Google Scholar 

  • Foster C N, Banks S C, Cary G J, Johnson C N, Lindenmayer D B, Valentine L E. 2020. Animals as agents in fire regimes. Trends Ecol Evol, 35: 346–356

    Google Scholar 

  • Fox C P, Holman A I, Rigo M, Al Suwaidi A, Grice K. 2022. Paleowildfire at the end-Triassic mass extinction: Smoke or fire? Glob Planet Change, 218: 103974

    Google Scholar 

  • French N H F, Kasischke E S, Williams D G. 2002. Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest. J Geophys Res, 107: 8151

    Google Scholar 

  • Friis E M, Pedersen K R, Crane P R. 2010. Cretaceous diversification of angiosperms in the western part of the Iberian Peninsula. Rev Palaeobot Palynol, 162: 341–361

    Google Scholar 

  • GB/T 18606-2017 (National Standard of P.R. China). 2017. The Test Method for Biomarkers in Sediment and Crude Oil by GC-MS (in Chinese). Beijing: Standards Press of China. 1–20

    Google Scholar 

  • Glasspool I J, Scott A C. 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat Geosci, 3: 627–630

    CAS  Google Scholar 

  • Glasspool I J, Gastaldo R A. 2022. Silurian wildfire proxies and atmospheric oxygen. Geology, 50: 1048–1052

    CAS  Google Scholar 

  • Glasspool I J, Edwards D, Axe L. 2006. Charcoal in the Early Devonian: A wildfire-derived Konservat-Lagerstätte. Rev Palaeobot Palynol, 142: 131–136

    Google Scholar 

  • Glasspool I J, Scott A C, Waltham D, Pronina N, Shao L Y. 2015. The impact of fire on the Late Paleozoic Earth system. Front Plant Sci, 6: 756

    Google Scholar 

  • Guo Y T, Bustin R M. 1998. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: Implications for studies of inertinite in coals. Int J Coal Geol, 37: 29–53

    CAS  Google Scholar 

  • Han D X, Yang Q. 1980. Coal Petrology of China (Volume II) (in Chinese). Beijing: China Coal Industry Publishing House. 415

    Google Scholar 

  • He T H, Lamont B. B. 2018. Baptism by fire: The pivotal role of ancient conflagrations in evolution of the Earth’s flora. Natl Sci Rev, 5: 237–254

    CAS  Google Scholar 

  • He T H, Pausas J G, Belcher C M, Schwilk D W, Lamont B B. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol, 194: 751–759

    Google Scholar 

  • He T, Belcher C M, Lamont B B, Lim S L. 2015. A 350-million-year legacy of fire adaptation among conifers. J Ecol, 104: 352–363

    Google Scholar 

  • Hossain Z H M, Sampei Y, Roser B P. 2013. Polycyclic aromatic hydrocarbons (PAHs) in late Eocene to early Pleistocene mudstones of the Sylhet succession, NE Bengal Basin, Bangladesh: Implications for source and paleoclimate conditions during Himalayan uplift. Org Geochem, 56: 25–39

    Google Scholar 

  • Hou H H, Shao L Y, Liang G D, Tang Y, Zhang H J, Zhang J Q. 2022. Repeated wildfires in the Middle Jurassic Xishanyao Formation (Aalenian and Bajocian Ages) in Northwestern China. Acta Geol Sin-Engl Ed, 96: 1752–1763

    Google Scholar 

  • Hou H H, Zhang H J, Shao L Y, Gao L F, Liu S J. 2023. A review of global mass extinction events at the end of Triassic (in Chinese). Geol Rev, 69: 1434–1448

    Google Scholar 

  • Hower J C, O’Keefe J M K, Watt M A, Pratt T J, Eble C F, Stucker J D, Richardson A R, Kostova I J. 2009. Notes on the origin of inertinite macerals in coals: Observations on the importance of fungi in the origin of macrinite. Int J Coal Geol, 80: 135–143

    CAS  Google Scholar 

  • Hower J C, O’Keefe J M K, Volk T J, Watt M A. 2010. Funginite-resinite associations in coal. Int J Coal Geol, 83: 64–72

    CAS  Google Scholar 

  • Hower J C, Wagner N J, O’Keefe J M K, Drew J W, Stucker J D, Richardson A R. 2012. Maceral types in some Permian southern African coals. Int J Coal Geol, 100: 93–107

    CAS  Google Scholar 

  • Hu H Q, Wei S J, Sun L. 2012. Estimation of carbon emissions due to forest fire in Daxing’an Mountains from 1965 to 2010 (in Chinese). Chin J Plant Ecol, 36: 629–644

    CAS  Google Scholar 

  • Hua F H, Shao L Y, Zhang T C, Bond D P G., Wang X T, Wang J, Yan Z M, Lu J, Hilton J. 2023. An astronomical timescale for the Permian-Triassic mass extinction reveals a two-step, million-year-long terrestrial crisis in South China. Earth Planet Sci Lett, 605: 118035

    CAS  Google Scholar 

  • Huang Y J, Wang C S, Gu J. 2008. Cretaceous oceanic anoxic events: Research progress and forthcoming prospects (in Chinese). Acta Geol Sin, 82: 21–30

    CAS  Google Scholar 

  • International Committee for Coal and Organic Petrology (ICCP). 2001. New inertinite classification (ICCP system 1994). Fuel, 80: 459–471

    Google Scholar 

  • ISO 7404-3. 2009. Methods for the Petrographic Analysis of Coals: Part 3. Method of Determining Maceral Group Composition. International Organization for Standardization. 1–7

  • ISO 7404-5. 2009. Methods for the Petrographic Analysis of Coals: Part 5. Method of Determining Microscopically the Reflectance of Vitrinite. International Organization for Standardization. 1–14

  • Jasper A, Uhl D, Guerra-Sommer M, Bernardes-de-Oliveira M E C, Machado N T G. 2011. Upper Paleozoic charcoal remains from South America: Multiple evidences of fire events in the coal bearing strata of the Paraná Basin, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol, 306: 205–218

    Google Scholar 

  • Jayaratne E R, Kuleshov Y. 2005. The relationship between lightning activity and surface wet bulb temperature and its variation with latitude in Australia. Meteorol Atmos Phys, 91: 17–24

    Google Scholar 

  • Jiao S L, Zhang H, Cai Y F, Chen J B, Feng Z, Shen S Z. 2023. Collapse of tropical rainforest ecosystems caused by high-temperature wildfires during the end-Permian mass extinction. Earth Planet Sci Lett, 614: 118193

    CAS  Google Scholar 

  • Jones T P. 1994. Ultrastructural and chemical studies on Oligocene fossil wood from Bovey Tracey, Devon, UK. Rev Palaeobot Palynol, 81: 279–288

    Google Scholar 

  • Jones T P. 1997. Fusain in Late Jurassic sediments from Witch Ground Graben, North Sea, U.K. In: Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 58: 93–103

    Google Scholar 

  • Jones T P, Chaloner W G. 1991. Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeogr Palaeoclimatol Palaeoecol, 97: 39–50

    Google Scholar 

  • Jones T P, Scott A C, Cope M. 1991. Reflectance measurements and the temperature of formation of modern charcoals and implications for studies of fusain. Bull Soc Geol Fr, 162: 193–200

    CAS  Google Scholar 

  • Jones T P, Scott A C, Mattey D P. 1993. Investigations of “fusain transition fossils” from the Lower Carboniferous: Comparisons with modern partially charred wood. Int J Coal Geol, 22: 37–59

    CAS  Google Scholar 

  • Kaiho K, Aftabuzzaman M, Jones D S, Tian L. 2020. Pulsed volcanic combustion events coincident with the end-Permian terrestrial disturbance and the following global crisis. Geology, 49: 289–293

    Google Scholar 

  • Karp A T, Holman A I, Hopper P, Grice K, Freeman K H. 2020. Fire distinguishers: Refined interpretations of polycyclic aromatic hydrocarbons for paleo-applications. Geochim Cosmochim Acta, 289: 93–113

    CAS  Google Scholar 

  • Kasischke E S, French N H F, Bourgeau-Chavez L L, Christensen Jr. N L. 1995. Estimating release of carbon from 1990 and 1991 forest fires in Alaska. J Geophys Res, 100: 2941–2951

    CAS  Google Scholar 

  • Keeley J E, Pausas J G, Rundel P W, Bond W J, Bradstock R A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci, 16: 406–411

    CAS  Google Scholar 

  • Keeley J E, van Mantgem P, Falk D A. 2019. Fire, climate and changing forests. Nat Plants, 5: 774–775

    Google Scholar 

  • Keiluweit M, Kleber M, Sparrow M A, Simoneit B R T, Prahl F G. 2012. Solvent-extractable polycyclic aromatic hydrocarbons in biochar: Influence of pyrolysis temperature and feedstock. Environ Sci Technol, 46: 9333–9341

    CAS  Google Scholar 

  • Kennedy K L, Gibling M R, Eble C F, Gastaldo R A, Gensel P G, Werner-Zwanziger U, Wilson R A. 2013. Lower devonian coaly shales of Northern New Brunswick, Canada: Plant accumulations in the early stages of terrestrial colonization. J Sediment Res, 83: 1202–1215

    CAS  Google Scholar 

  • Lenton T M. 2013. Fire Feedbacks on Atmospheric Oxygen. Hoboken: John Wiley & Sons, Ltd. 352

    Google Scholar 

  • Lenton T M, Watson A J. 2000. Redfield revisited: 2. What regulates the oxygen content of the atmosphere? Glob Biogeochem Cycle, 14: 249–268

    CAS  Google Scholar 

  • Levine J S, Iii W R C, Jr D R C, Winstead E L. 1995. Biomass burning a driver for global change. Environ Sci Technol, 29: 120A–125A

    Google Scholar 

  • Li Y N, Shao L Y, Yan Z M, Hou H H, Tang Y, Large D J. 2018. Net primary productivity and its control of the Middle Jurassic peatlands: An example from the southern Junggar coalfield. Sci China Earth Sci, 61: 1633–1643

    CAS  Google Scholar 

  • Lindstrom S, Sanei H, van de Schootbrugge B, Pedersen G K, Lesher C E, Tegner C, Heunisch C, Dybkjær K, Outridge P M. 2019. Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. Sci Adv, 5: 4018

    Google Scholar 

  • Liu B J, Zhao C L, Ma J L, Sun Y Z, Püttmann W. 2018. The origin of pale and dark layers in Pliocene lignite deposits from Yunnan Province, Southwest China, based on coal petrological and organic geochemical analyses. Int J Coal Geol, 195: 172–188

    CAS  Google Scholar 

  • Liu Z Y, Selby D, Hackley P C, Over D J. 2020. Evidence of wildfires and elevated atmospheric oxygen at the Frasnian-Famennian boundary in New York (USA): Implications for the Late Devonian mass extinction. GSA Bull, 132: 2043–2054

    CAS  Google Scholar 

  • Lu J, Yang M F, Shao L Y, Chen S C, Li Y H, Zhou K, Wang W Q. 2016. Paleoclimate change and sedimentary environment evolution, coal accumulation: A Middle Jurassic terrestrial (in Chinese). J China Coal Soc, 41: 1788–1797

    CAS  Google Scholar 

  • Lu J, Zhang P X, Yang M F, Shao L Y, Hilton J. 2020. Continental records of organic carbon isotopic composition (δ13Corg), weathering, paleoclimate and wildfire linked to the End-Permian Mass Extinction. Chem Geol, 558: 119764

    CAS  Google Scholar 

  • Lu J, Zhang P X, Dal Corso J, Yang M F, Wignall P B, Greene S E, Shao L Y, Lyu D, Hilton J. 2021. Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic). Proc Natl Acad Sci USA, 118: 2109895118

    Google Scholar 

  • Lu M, Ikejiri T, Lu Y H. 2021. A synthesis of the Devonian wildfire record: Implications for paleogeography, fossil flora, and paleoclimate. Palaeogeogr Palaeoclimatol Palaeoecol, 571: 110321

    Google Scholar 

  • Lupia R, Lidgard S, Crane P R. 1999. Comparing palynological abundance and diversity: Implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 25: 305–340

    Google Scholar 

  • McGinnes E A, Kandeel S A, Szopa P S. 1971. Some structural changes observed in the transformation of wood into charcoal. Wood Fiber Sci, 3: 77–83

    CAS  Google Scholar 

  • Mills B J W, Krause A J, Jarvis I, Cramer B D. 2023. Evolution of atmospheric O2 through the Phanerozoic, Revisited. Annu Rev Earth Planet Sci, 51: 253–276

    CAS  Google Scholar 

  • Moraes E C, Franchito S H, Brahmananda Rao V. 2004. Effects of biomass burning in Amazonia on climate: A numerical experiment with a statistical-dynamical model. J Geophys Res, 109: 2003JD003800

    Google Scholar 

  • Morandini F, Silvani X. 2010. Experimental investigation of the physical mechanisms governing the spread of wildfires. Int J Wildland Fire, 19: 570

    Google Scholar 

  • Nabbefeld B, Grice K, Summons R E, Hays L E, Cao C. 2010. Significance of polycyclic aromatic hydrocarbons (PAHs) in Permian/Triassic boundary sections. Appl Geochem, 25: 1374–1382

    CAS  Google Scholar 

  • National Interagency Fire Center. 2020. 2020 National Large Incident Year-to-Date Report. https://web.archive.org/web/20201229021815/, https://gacc.nifc.gov/sacc/predictive/intelligence/NationalLargeIncidentYTDReport.pdf

  • Nichols G, Jones T P.. 1992. Fusain in carboniferous shallow marine sediments, Donegal, Ireland: The sedimentological effects of wildfire. Sedimentology, 39: 487–502

    Google Scholar 

  • Nyman P, Sheridan G J, Smith H G, Lane P N J. 2014. Modeling the effects of surface storage, macropore flow and water repellency on infiltration after wildfire. J Hydrol, 513: 301–313

    Google Scholar 

  • O’Keefe J M K, Bechtel A, Christanis K, Dai S, DiMichele W A, Eble C F, Esterle J S, Mastalerz M, Raymond A L, Valentim B V, Wagner N J, Ward C R, Hower J C. 2013. On the fundamental difference between coal rank and coal type. Int J Coal Geol, 118: 58–87

    Google Scholar 

  • Pan Y D, Birdsey R A, Fang J Y, Houghton R, Kauppi P E, Kurz W A, Phillips O L, Shvidenko A, Lewis S L, Canadell J G, Ciais P, Jackson R B, Pacala S W, McGuire A D, Piao S L, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science, 333: 988–993

    CAS  Google Scholar 

  • Pausas J G, Keeley J E. 2019. Wildfires as an ecosystem service. Front Ecol Environ, 17: 289–295

    Google Scholar 

  • Petersen H I. 1993. Petrographic facies analysis of Lower and Middle Jurassic coal seams on the island of Bornholm, Denmark. Int J Coal Geol, 22: 189–216

    CAS  Google Scholar 

  • Petersen H I, Lindstrom S. 2012. Synchronous wildfire activity rise and mire deforestation at the Triassic Jurassic boundary. Plos One, 7: e47236

    CAS  Google Scholar 

  • Price C G. 2013. Lightning applications in weather and climate research. Surv Geophys, 34: 755–767

    Google Scholar 

  • Pyne S J, Andrews P L, Laven R D. 1996. Introduction to Wildland Fire. 2nd ed. New York: Wiley. 808

    Google Scholar 

  • Rahiminejad A H, Zand-Moghadam H, Mirshahani M, Khajehzadeh A. 2022. Famennian inertinite-bearing marine shale facies as indicator of wildfire event in north of Gondwana. Historical Biol, 34: 1752–1768

    Google Scholar 

  • Rimmer S M, Hawkins S J, Scott A C, Cressler W L. 2015. The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change. Am J Sci, 315: 713–733

    CAS  Google Scholar 

  • Rowe N P, Jones T P. 2000. Devonian charcoal. Palaeogeogr Palaeoclimatol Palaeoecol, 164: 331–338

    Google Scholar 

  • Sanderson B M, Fisher R A. 2020. A fiery wake-up call for climate science. Nat Clim Chang, 10: 175–177

    Google Scholar 

  • Santin C, Doerr S H, Preston C M, González-Rodríguez G. 2015. Pyrogenic organic matter production from wildfires: A missing sink in the global carbon cycle. Glob Change Biol, 21: 1621–1633

    Google Scholar 

  • Scotese C R, Wright N. 2018. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PALEOMAP Project, https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/

  • Scotese C R, Song H J, Mills B J W, van der Meer D G. 2021. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Sci Rev, 215: 103503

    CAS  Google Scholar 

  • Scott A C. 1989. Observations on the nature and origin of fusain. Int J Coal Geol, 12: 443–475

    CAS  Google Scholar 

  • Scott A C. 2000. The Pre-Quaternary history of fire. Palaeogeogr Palaeoclimatol Palaeoecol, 164: 281–329

    Google Scholar 

  • Scott A C. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr Palaeoclimatol Palaeoecol, 291: 11–39

    Google Scholar 

  • Scott A C, Glasspool I J. 2005. Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology, 33: 589–592

    CAS  Google Scholar 

  • Scott A C, Glasspool I J. 2007. Observations and experiments on the origin and formation of inertinite group macerals. Int J Coal Geol, 70: 53–66

    CAS  Google Scholar 

  • Scott A C, David M J S, Bowman W J, Bond S J, Pyne M E A. 2014. Fire on Earth: An Introduction. John Wiley & Sons, Ltd. 434

  • Seiler W, Crutzen P J. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change, 2: 207–247

    CAS  Google Scholar 

  • Sen S. 1999. A new model of coal seam formation vis-a-vis banded structure and distribution of minerals in coal seams. Energy Sources, 21: 573–580

    Google Scholar 

  • Shao L Y, Wang H, Xiaohui Y U, Jing L U, Zhang M Q. 2012. Paleo-fires and atmospheric oxygen levels in the latest Permian: Evidence from maceral compositions of coals in eastern Yunnan, southern China. Acta Geol Sin-Engl Ed, 86: 949–962

    CAS  Google Scholar 

  • Shearer J C, Moore T A. 1997. Understanding taphonomy in a peat bog: The role of petrographic analysis. In: Rieley J O, Page S E, eds. Biodiversity and Sustainability of Tropical Peatlands. Cardigan: Samara Publishing. 169–177

    Google Scholar 

  • Shen J, Yin R, Algeo T J, Svensen H H, Schoepfer S D. 2022. Mercury evidence for combustion of organic-rich sediments during the end-Triassic crisis. Nat Commun, 13: 1307

    CAS  Google Scholar 

  • Shen W J, Sun Y G, Lin Y T, Liu D H, Chai P X. 2011. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochim Cosmochim Acta, 75: 1992–2006

    CAS  Google Scholar 

  • Song Y, Algeo T J, Wu W J, Luo G M, Li L Q, Wang Y D, Xie S C. 2020. Distribution of pyrolytic PAHs across the Triassic-Jurassic boundary in the Sichuan Basin, southwestern China: Evidence of wildfire outside the Central Atlantic Magmatic Province. Earth-Sci Rev, 201: 102970

    CAS  Google Scholar 

  • Stach E M, Mackowsky T M, Teichmuller G H, Taylor D, Sfuftgarf. 1982. Stach’s Textbook of Coal Petrology. Berlin: Gebruder Borntraeger. 535

    Google Scholar 

  • Stogiannidis E, Laane R. 2015. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. In: Whitacre D M, ed. Reviews of Environmental Contamination and Toxicology. Dordrecht: Springer. 49–133

    Google Scholar 

  • Sun Y Z. 2024. Review and update on the applications of inertinite macerals in coal geology, paleoclimatology, and paleoecology. Palaeoworld, https://doi.org/10.1016/j.palwor.2024.03.003

  • SY/T 5125-2014 (Standard for the Petroleum and Natural Gas Industry of P.R. China). 2014. Method of identification microscopically the macerals of kerogen and indivision the kerogen type by transmitted-light and fluorescence (in Chinese). Beijing: Petroleum Industry Press. 1–24

    Google Scholar 

  • Taylor G H, Teichmüller M, Davis A, Diessel C F K, Robert P. 1998. Organic Petrology. Berlin: Gebruder Borntraeger. 704

    Google Scholar 

  • Thomas L. 2020. Coal Resources and Reserves. In: Thomas L, ed. Coal Geology. 3rd ed. John Wiley & Sons Ltd. 207–242

  • Veevers J J. 2006. Updated gondwana (Permian-Cretaceous) earth history of Australia. Gondwana Res, 9: 231–260

    Google Scholar 

  • Wang D D, Mao Q, Dong G Q, Yang S P, Lv D W, Yin L S. 2020. The primary investigation of the genetic mechanism of inertinite in the Middle Jurassic inertinite-rich coal seams of the southern Ordos Basi. J Geol Res, 1, https://doi.org/10.30564/jgr.v1i3.1404

  • Wang D D, Yin L S, Shao L Y, Lyu D W, Liu H Y, Wang S, Dong G Q 2021. Characteristics and evolution of inertinite abundance and atmospheric pO2 during China’s coal-forming periods. J Palaeogeogr, 10: 13

    Google Scholar 

  • Wang S, Shao L Y, Yan Z M, Shi M J, Zhang Y H. 2019. Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China. J Palaeogeogr, 8: 17

    Google Scholar 

  • Wang T, Shao L Y. 2013. Forming-Conditions and Resource assessment of Jurassic Coals in Northwestern China (in Chinese). Beijing: Geology Press. 196

    Google Scholar 

  • Watson A, Lovelock J E, Margulis L. 1978. Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems, 10: 293–298

    CAS  Google Scholar 

  • Wellman C H, Osterloff P L, Mohiuddin U. 2003. Fragments of the earliest land plants. Nature, 425: 282–285

    CAS  Google Scholar 

  • Wolbach W S, Gilmour I, Anders E, Orth C J, Brooks R R. 1988. Global fire at the Cretaceous-Tertiary boundary. Nature, 334: 665–669

    CAS  Google Scholar 

  • World Wide Fund for Nature Australia. 2020. Australia’s 2019–2020 Bushfires: The Wildlife Toll. 1–5

  • Wu Q, Zhang H, Ramezani J, Zhang F F, Erwin D H, Feng Z, Shao L Y, Cai Y F, Zhang S H, Xu Y G, Shen S Z. 2024. The terrestrial end-Permian mass extinction in the paleotropics postdates the marine extinction. Sci Adv, 10: eadi7284

    CAS  Google Scholar 

  • Xiao L, Zhao Q, Wang J, Mishra V, Arbuzov S I, Zhang M. 2020. Wildfire evidence from the Middle and Late Permian Hanxing Coalfield, North China Basin. Geol Acta, 18: 1–11

    Google Scholar 

  • Xie W, Tan J, Wang W, Jia J, Liu Z, Wu J, Wang Y, Song X. 2022. Record of Middle Jurassic wildfire and its incidental mercury emissions in northern Qaidam Basin, China: Evidence from the inertinite and mercury anomalies in coal. Int J Coal Geol, 261: 104078

    CAS  Google Scholar 

  • Xu X T, Shao L Y, Eriksson K A, Zhou J M, Wang D D, Hou H H, Hilton J, Wang S, Lu J, Jones T P. 2022. Widespread wildfires linked to early Albian Ocean Anoxic Event 1b: Evidence from the Fuxin lacustrine basin, NE China. Glob Planet Change, 215: 103858

    Google Scholar 

  • Xu Y, Uhl D, Zhang N, Zhao C L, Qin S J, Liang H D, Sun Y Z. 2020. Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate. Palaeogeogr Palaeoclimatol Palaeoecol, 559: 109819

    Google Scholar 

  • Yan Z M, Shao L Y, Glasspool I J, Wang J, Wang X T, Wang H. 2019. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event. Int J Coal Geol, 207: 75–83

    CAS  Google Scholar 

  • Yang Y K. 1996. Atlas for Coal Petrography of China (in Chinese). Xuzhou: China University of Mining and Technology Press. 321

    Google Scholar 

  • Yue C, Ciais P, Zhu D, Wang T, Peng S S, Piao S L. 2016. How have past fire disturbances contributed to the current carbon balance of boreal ecosystems? Biogeosciences, 13: 675–690

    Google Scholar 

  • Yunker M B, Macdonald R W, Vingarzan R, Mitchell R H, Goyette D, Sylvestre S. 2002. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem, 33: 489–515

    CAS  Google Scholar 

  • Zhang S H, Zhang X P. 2009. Soil Animal Community Diversity in the burned areas of the Great Xing’an Mountains, China (in Chinese). Chin J Appl Environ Biol, 5: 672–676

    Google Scholar 

  • Zhang Z H, Wang C S, Lv D W, Hay W W, Wang T T, Cao S. 2020. Precession-scale climate forcing of peatland wildfires during the early middle Jurassic greenhouse period. Glob Planet Change, 184: 103051

    Google Scholar 

  • Zhao W, Yang F S, Yang Z Y, Zhou A N. 2017. Interface structure between vitrinite and inertinite from Shenmu coal during pyrolysis. ACS Earth Space Chem, 1: 179–186

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jason HILTON and the responsible editor Maoyan ZHU for their constructivediscussion and comments. Four anonymousreviewers are particularly acknowledged for their critical evaluations of the manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 42321002, 41572090) and the Deep-time Digital Earth (DDE) Big Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longyi Shao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, L., Zhou, J., Jones, T.P. et al. Inertinite in coal and its geoenvironmental significance: Insights from AI and big data analysis. Sci. China Earth Sci. 67, 1779–1801 (2024). https://doi.org/10.1007/s11430-023-1325-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1325-5

Keywords

Navigation