Skip to main content
Log in

Impacts of permafrost degradation on streamflow in the northern Himalayas

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Himalayan water tower provides crucial water resources for Asia. Permafrost degradation is deemed to exert important impacts on streamflow in the Himalayan rivers. Yet, the magnitudes of such impacts remain poorly quantified. Here, we established a robust hydrological model that incorporated active layer deepening and ground ice melt for the drainage basin of the largest river in the northern Himalayas-the Yarlung Zangbo River (YZR). We estimated that permafrost degradation led to ∼0.65 km3/yr decrease in surface runoff and ∼0.35 km3/yr increase in baseflow and ground ice melt contributed ∼0.25% to the annual streamflow in the YZR for the period 2001–2022. The “fill-and-spill” mechanism helps explain the seeming contradiction of observed increasing versus decreasing baseflow in different permafrost regions worldwide. We propose that the dilution of riverine dissolved organic carbon (DOC) concentrations by baseflow may lead to the riverine DOC hysteresis patterns. This study not only lays solid scientific basis for water resources management in the Himalayas, but also yields new insights into how to interpret measured river discharge and nutrient flux in permafrost regions over the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bense V F, Ferguson G, Kooi H. 2009. Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett, 36: L22401

    Google Scholar 

  • Bertola M, Blöschl G, Bohac M, Borga M, Castellarin A, Chirico G B, Claps P, Dallan E, Danilovich I, Ganora D, Gorbachova L, Ledvinka O, Mavrova M, Montanari A, Ovcharuk V A, Viglione A, Volpi E, Arheimer B, Aronica G T, Bonacci O, Čanjevac I, Csik A, Frolova N L, Gnandt B, Gribovszki Z, Gül A, Günther K, Guse B, Hannaford J, Harrigan S, Kireeva M, Kohnová S, Komma J, Kriauciuniene J, Kronvang B, Lawrence D, Lüdtke S, Mediero L, Merz B, Molnar P, Murphy C, Oskoruš D, Osuch M, Parajka J, Pfister L, Radevski I, Sauquet E, Schröter K, Šraj M, Szolgay J, Turner S, Valent P, Veijalainen N, Ward P J, Willems P, Zivkovic N. 2023. Megafloods in Europe can be anticipated from observations in hydrologically similar catchments. Nat Geosci, 16: 982–988

    CAS  Google Scholar 

  • Chang Y, Lyu S, Luo S, Li Z, Fang X, Chen B, Li R, Chen S. 2018. Estimation of permafrost on the Tibetan Plateau under current and future climate conditions using the CMIP5 data. Intl J Climatol, 38: 5659–5676

    Google Scholar 

  • Chiasson-Poirier G, Franssen J, Lafrenière M J, Fortier D, Lamoureux S F. 2020. Seasonal evolution of active layer thaw depth and hillslope-stream connectivity in a permafrost watershed. Water Resour Res, 56: e2019WR025828

    Google Scholar 

  • Clow D W, Akie G A, Striegl R G, Penn C A, Sexstone G A, Keith G L. 2023. Aquatic carbon export and dynamics in mountain headwater streams of the western U.S. J Geophys Res-Biogeosci, 128: e2023JG007538

    CAS  Google Scholar 

  • Evans S G, Ge S, Liang S. 2015. Analysis of groundwater flow in mountainous, headwater catchments with permafrost. Water Resour Res, 51: 9564–9576

    Google Scholar 

  • Fabre C, Sauvage S, Probst J L, Sánchez-Pérez J M. 2020. Global-scale daily riverine DOC fluxes from lands to the oceans with a generic model. Glob Planet Change, 194: 103294

    Google Scholar 

  • Fan L, Kuang X, Or D, Zheng C. 2023. Streamflow composition and water “imbalance” in the northern Himalayas. Water Resour Res, 59: e2022WR034243

    Google Scholar 

  • Gao H, Wang J, Yang Y, Pan X, Ding Y, Duan Z. 2021. Permafrost hydrology of the Qinghai-Tibet Plateau: A review of processes and modeling. Front Earth Sci, 8: 576838

    Google Scholar 

  • Ge S, McKenzie J, Voss C, Wu Q. 2011. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophys Res Lett, 38: L14402

    Google Scholar 

  • Guo D, Wang H, Li D. 2012. A projection of permafrost degradation on the Tibetan Plateau during the 21st century. J Geophys Res, 117: 2011JD016545

    Google Scholar 

  • Hrbáček F, Uxa T. 2020. The evolution of a near-surface ground thermal regime and modeled active-layer thickness on James Ross Island, Eastern Antarctic Peninsula, in 2006–2016. Permafrost Periglacial, 31: 141–155

    Google Scholar 

  • Ji F, Fan L, Kuang X, Li X, Cao B, Cheng G, Yao Y, Zheng C. 2022. How does soil water content influence permafrost evolution on the Qinghai-Tibet Plateau under climate warming? Environ Res Lett, 17: 064012

    Google Scholar 

  • Jin H, Jin X, He R, Luo D, Chang X, Wang S, Marchenko S S, Yang S, Yi C, Li S, Harris S A. 2019. Evolution of permafrost in China during the last 20 ka. Sci China Earth Sci, 62: 1207–1223

    CAS  Google Scholar 

  • Jin X Y, Jin H J, Iwahana G, Sergey S M, Luo D L, Li X Y, Liang S H. 2020. Impacts of climate-induced permafrost degradation on vegetation: A review. Adv Clim Change Res, 12: 29–47

    Google Scholar 

  • Kuang X, Jiao J J. 2016. Review on climate change on the Tibetan Plateau during the last half century. J Geophys Res-Atmos, 121: 3979–4007

    Google Scholar 

  • Lamontagne-Hallé P, McKenzie J M, Kurylyk B L, Zipper S C. 2018. Changing groundwater discharge dynamics in permafrost regions. Environ Res Lett, 13: 084017

    Google Scholar 

  • Li D, Lu X, Walling D E, Zhang T, Steiner J F, Wasson R J, Harrison S, Nepal S, Nie Y, Immerzeel W W, Shugar D H, Koppes M, Lane S, Zeng Z, Sun X, Yegorov A, Bolch T. 2022. High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat Geosci, 15: 520–530

    CAS  Google Scholar 

  • Li M, Peng C, Wang M, Xue W, Zhang K, Wang K, Shi G, Zhu Q. 2017. The carbon flux of global rivers: A re-evaluation of amount and spatial Patterns. Ecol Indic, 80: 40–51

    CAS  Google Scholar 

  • Li Z, Gui J, Wang X, Feng Q, Zhao T, Ouyang C, Guo X, Zhang B, Shi Y. 2019. Water resources in inland regions of central Asia: Evidence from stable isotope tracing. J Hydrol, 570: 1–16

    CAS  Google Scholar 

  • Lu Q, Zhao D, Wu S. 2017. Simulated responses of permafrost distribution to climate change on the Qinghai-Tibet Plateau. Sci Rep, 7: 3845

    Google Scholar 

  • Ma K, Feng D, Lawson K, Tsai W P, Liang C, Huang X, Sharma A, Shen C. 2021. Transferring hydrologic data across continents-leveraging data-rich regions to improve hydrologic prediction in data-sparse regions. Water Resour Res, 57: e2020WR028600

    Google Scholar 

  • Ma Q, Jin H, Yu C, Bense V F. 2019. Dissolved organic carbon in permafrost regions: A review. Sci China Earth Sci, 62: 349–364

    CAS  Google Scholar 

  • Ma Q, Jin H, Wu Q, Yang Y, Wang Q, Luo D, Huang Y, Li Y, Li X, Şerban R D, Liang S, Gao S, Marchenko S S. 2022. Distributive features of dissolved organic carbon in aquatic systems in the source area of the Yellow River on the northeastern Qinghai-Tibet Plateau, China. Front Earth Sci, 10: 892524

    Google Scholar 

  • Ma R, Sun Z, Chang Q, Ge M, Pan Z. 2021. Control of the interactions between stream and groundwater by permafrost and seasonal frost in an alpine catchment, northeastern Tibet Plateau, China. J Geophys Res-Atmos, 126: e2020JD033689

    Google Scholar 

  • McClelland J W, Holmes R M, Peterson B J, Stieglitz M. 2004. Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change. J Geophys Res, 109: 2004JD004583

    Google Scholar 

  • McDonnell J J, Spence C, Karran D J, van Meerveld H J I, Harman C J. 2021. Fill-and-spill: A process description of runoff generation at the scale of the beholder. Water Resour Res, 57: e2020WR027514

    Google Scholar 

  • McFarlane K J, Throckmorton H M, Heikoop J M, Newman B D, Hedgpeth A L, Repasch M N, Guilderson T P, Wilson C J. 2022. Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone. Biogeosciences, 19: 1211–1223

    CAS  Google Scholar 

  • McKenzie J M, Kurylyk B L, Walvoord M A, Bense V F, Fortier D, Spence C, Grenier C. 2021. Invited perspective: What lies beneath a changing Arctic? Cryosphere, 15: 479–484

    Google Scholar 

  • O’Connor M T, Cardenas M B, Neilson B T, Nicholaides K D, Kling G W. 2019. Active layer groundwater flow: The interrelated effects of stratigraphy, thaw, and topography. Water Resour Res, 55: 6555–6576

    Google Scholar 

  • Peng X, Zhang T, Frauenfeld O W, Wang K, Luo D, Cao B, Su H, Jin H, Wu Q. 2018. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere. J Clim, 31: 251–266

    Google Scholar 

  • Quinton W L, Baltzer J L. 2013. The active-layer hydrology of a Peat Plateau with thawing permafrost (Scotty Creek, Canada). Hydrogeol J, 21: 201–220

    Google Scholar 

  • Rawlins M A, Ye H, Yang D, Shiklomanov A, McDonald K C. 2009. Divergence in seasonal hydrology across northern Eurasia: Emerging trends and water cycle linkages. J Geophys Res, 114: 2009JD011747

    Google Scholar 

  • Raymond P A, McClelland J W, Holmes R M, Zhulidov A V, Mull K, Peterson B J, Striegl R G, Aiken G R, Gurtovaya T Y. 2007. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers. Glob Biogeochem Cycle, 21: 2007GB002934

    Google Scholar 

  • Runkel R L, Crawford C G, Cohn T A. 2004. Load estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and Rivers. U.S. Geological Survey Techniques and Methods Book, US Geological Survey, 4(A5): 69

    Google Scholar 

  • Smith L C, Pavelsky T M, MacDonald G M, Shiklomanov A I, Lammers R B. 2007. Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle. J Geophys Res, 112: 2006JG000327

    Google Scholar 

  • Song C, Wang G, Mao T, Dai J, Yang D. 2020. Linkage between permafrost distribution and river runoff changes across the arctic and the Tibetan Plateau. Sci China Earth Sci, 63: 292–302

    Google Scholar 

  • Speetjens N J, Tanski G, Martin V S, Wagner J, Richter A, Hugelius G, Boucher C, Lodi R, Knoblauch C, Koch B P, Wünsch U, Lantuit H, Vonk J E. 2022. Dissolved organic matter characterization in soils and streams in a small coastal low-arctic catchment. Biogeosciences, 19: 3073–3097

    CAS  Google Scholar 

  • St. Jacques J M, Sauchyn D J. 2009. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys Res Lett, 36: 2008GL035822

    Google Scholar 

  • Stefan J. 1891. Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmee. Annalen der Physik, 278: 269–286

    Google Scholar 

  • Tananaev N I, Makarieva O M, Lebedeva L S. 2016. Trends in annual and extreme flows in the Lena River basin, Northern Eurasia. Geophys Res Lett, 43: 10,764–10,772

    Google Scholar 

  • Walvoord M A, Striegl R G. 2007. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett, 34: L12402

    Google Scholar 

  • Walvoord M A, Kurylyk B L. 2016. Hydrologic impacts of thawing permafrost—A review. Vadose Zone J, 15: 1–20

    Google Scholar 

  • Wang T, Yang D, Yang Y, Zheng G, Jin H, Li X, Yao T, Cheng G. 2023. Unsustainable water supply from thawing permafrost on the Tibetan Plateau in a changing climate. Sci Bull, 68: 1105–1108

    Google Scholar 

  • Yang Y, Wu Q, Hou Y, Zhang Z, Zhan J, Gao S, Jin H. 2017. Unraveling of permafrost hydrological variabilities on central Qinghai-Tibet Plateau using stable isotopic technique. Sci Total Environ, 605–606: 199–210

    Google Scholar 

  • Zeng C, Zhang F, Lu X, Wang G, Gong T. 2018. Improving sediment load estimations: The case of the Yarlung Zangbo River (the upper Brahmaputra, Tibet Plateau). Catena, 160: 201–211

    Google Scholar 

  • Zhang G, Nan Z, Hu N, Yin Z, Zhao L, Cheng G, Mu C. 2022. Qinghai-Tibet Plateau permafrost at risk in the late 21st Century. Earths Future, 10: e2022EF002652

    Google Scholar 

  • Zhang T, Li D, Lu X. 2022. Response of runoff components to climate change in the source-region of the Yellow River on the Tibetan Plateau. Hydrol Process, 36: e14633

    Google Scholar 

  • Zhao J, Zhao L, Sun Z, Niu F, Hu G, Zou D, Liu G, Du E, Wang C, Wang L, Qiao Y, Shi J, Zhang Y, Gao J, Wang Y, Li Y, Yu W, Zhou H, Xing Z, Xiao M, Yin L, Wang S. 2022. Simulating the current and future northern limit of permafrost on the Qinghai-Tibet Plateau. Cryosphere, 16: 4823–4846

    Google Scholar 

  • Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G. 2017. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere, 11: 2527–2542

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 92047202), the Hundred Talents Program of the Chinese Academy of Sciences, and the Science and Technology Research Program of the Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (Grant No. IMHE-ZDRW-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linfeng Fan or Chunmiao Zheng.

Ethics declarations

Conflict of interest The authors declare that there are no conflicts of interest.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Ji, F., Kuang, X. et al. Impacts of permafrost degradation on streamflow in the northern Himalayas. Sci. China Earth Sci. 67, 1990–2000 (2024). https://doi.org/10.1007/s11430-023-1297-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1297-4

Keywords

Navigation