Skip to main content
Log in

Kilometer-resolution three-dimensional crustal deformation of Tibetan Plateau from InSAR and GNSS

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Located at the forefront of the collision between the Indian and Eurasian Plates, the Tibetan Plateau experiences intense crustal movement. Traditional ground-based geodetic monitoring, such as GNSS and leveling, is challenging, due to factors such as high altitude and harsh climate, making it difficult to accurately determine a high-resolution crustal deformation field of the plateau. Unaffected by ground observation conditions, InSAR technique has key advantages for obtaining extensive and high-resolution crustal deformation fields. This makes it indispensable for crustal deformation monitoring on the Tibetan Plateau. This study used Sentinel-1 data from 2014 to 2020 to compute the ascending and descending InSAR deformation fields for the Tibetan Plateau. This was conducted with a measurement accuracy of approximately 3 mm/yr. Building upon this, we integrated InSAR and GNSS data to yield kilometer-resolution three-dimensional (3D) crustal deformation and strain rate fields for the Tibetan Plateau. A spherical wavelet analysis was used to decompose the 3D deformation field and separate the non-tectonic crustal deformation to increase the strength of the tectonic deformation signal. Short-wavelength (<110 km) deformations match the distribution of fault movement, post-seismic deformations, and other non-tectonic factors. Long wavelength (>110 km) deformation mainly results from subsidence in the central plateau and uplifts along the Himalayan Arc. This indicates that the Tibetan Plateau may have stopped the entire uplift and entered a local collapse stage. Furthermore, the deformation fields at different spatial scales reveal that the plateau exhibits discontinuous deformation in short wavelengths and continuous deformation in long wavelengths. The findings of this study contribute to resolving the controversy between the Block and Continuum Deformation models of the Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard B T, Knepley M G, Williams C A. 2013. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J Geophys Res-Solid Earth, 118: 3059–3079

    Google Scholar 

  • Avouac J P, Tapponnier P. 1993. Kinematic model of active deformation in central Asia. Geophys Res Lett, 20: 895–898

    Google Scholar 

  • Bai D, Unsworth M J, Meju M A, Ma X, Teng J, Kong X, Sun Y, Sun J, Wang L, Jiang C, Zhao C, Xiao P, Liu M. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging. Nat Geosci, 3: 358–362

    CAS  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens, 40: 2375–2383

    Google Scholar 

  • Capitanio F A, Morra G, Goes S, Weinberg R F, Moresi L. 2010. India-Asia convergence driven by the subduction of the Greater Indian continent. Nat Geosci, 3: 136–139

    CAS  Google Scholar 

  • Chen J, Wu T, Zou D, Liu L, Wu X, Gong W, Zhu X, Li R, Hao J, Hu G, Pang Q, Zhang J, Yang S. 2022. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau. Remote Sens Environ, 268: 112778

    Google Scholar 

  • Chen M, Niu F, Tromp J, Lenardic A, Lee C T A, Cao W, Ribeiro J. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet. Nat Commun, 8: 15659

    CAS  Google Scholar 

  • Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28: 703–706

    Google Scholar 

  • Copley A, Avouac J P, Wernicke B P. 2011. Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet. Nature, 472: 79–81

    CAS  Google Scholar 

  • Costantini M. 1998. A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens, 36: 813–821

    Google Scholar 

  • Daout S, Doin M, Peltzer G, Socquet A, Lasserre C. 2017. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau. Geophys Res Lett, 44: 901–909

    Google Scholar 

  • Daout S, Dini B, Haeberli W, Doin M P, Parsons B. 2020. Ice loss in the Northeastern Tibetan Plateau permafrost as seen by 16 yr of ESA SAR missions. Earth Planet Sci Lett, 545: 116404

    CAS  Google Scholar 

  • Ding J, Chen L, Ji C, Hugelius G, Li Y, Liu L, Qin S, Zhang B, Yang G, Li F, Fang K, Chen Y, Peng Y, Zhao X, He H, Smith P, Fang J, Yang Y. 2017. Decadal soil carbon accumulation across Tibetan permafrost regions. Nat Geosci, 10: 420–424

    CAS  Google Scholar 

  • Ding L, Kapp P, Cai F, Garzione C N, Xiong Z, Wang H, Wang C. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nat Rev Earth Environ, 3: 652–667

    Google Scholar 

  • England P, Molnar P. 1997. Active deformation of Asia: From kinematics to dynamics. Science, 278: 647–650

    CAS  Google Scholar 

  • England P, Molnar P. 2005. Late Quaternary to decadal velocity fields in Asia. J Geophys Res, 110: B12401

    Google Scholar 

  • Fang X, Dupont-Nivet G, Wang C, Song C, Meng Q, Zhang W, Nie J, Zhang T, Mao Z, Chen Y. 2020. Revised chronology of central Tibet uplift (Lunpola Basin). Sci Adv, 6: eaba7298

    CAS  Google Scholar 

  • Flesch L M, Haines A J, Holt W E. 2001. Dynamics of the India-Eurasia collision zone. J Geophys Res, 106: 16435–16460

    Google Scholar 

  • Gan W, Zhang P, Shen Z K, Niu Z, Wang M, Wan Y, Zhou D, Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res, 112: B08416

    Google Scholar 

  • Ge W P, Molnar P, Shen Z K, Li Q. 2015. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements. Geophys Res Lett, 42: 5227–5235

    Google Scholar 

  • Hamling I J, Wright T J, Hreinsdóttir S, Wallace L M. 2022. A snapshot of New Zealand’s dynamic deformation field from Envisat InSAR and GNSS observations between 2003 and 2011. Geophys Res Lett, 49: e2021GL096465

    Google Scholar 

  • Han S, Zhang H, Xin H, Shen W, Yao H. 2022. USTClitho2. 0: Updated unified seismic tomography models for continental China lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion data. Seismol Res Lett, 93: 201–215

    Google Scholar 

  • Holt W E, Chamot-Rooke N, Le Pichon X, Haines A J, Shen-Tu B, Ren J. 2000. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J Geophys Res, 105: 19185–19209

    Google Scholar 

  • Hong S, Liu M. 2021. Postseismic deformation and afterslip evolution of the 2015 Gorkha earthquake constrained by InSAR and GPS observations. J Geophys Res-Solid Earth, 126: e2020JB020230

    Google Scholar 

  • Jiang M, Ding X, Tian X, Malhotra R, Kong W. 2014. A hybrid method for optimization of the adaptive Goldstein filter. ISPRS J Photogrammetry Remote Sens, 98: 29–43

    Google Scholar 

  • Krige D. 1951. A statistical approach to some mine valuations and allied problems at the Witwatersrand. Dissertation for Master’s Degree. Witwatersrand: University of the Witwatersrand

    Google Scholar 

  • Li X, Xu W, Jónsson S, Klinger Y, Zhang G. 2020. Source model of the 2014 Mw6.9 Yutian earthquake at the southwestern end of the Altyn Tagh fault in Tibet estimated from satellite images. Seismol Res Lett, 91: 3161–3170

    Google Scholar 

  • Li Y, Shan X, Qu C, Liu Y, Han N. 2018. Crustal deformation of the Altyn Tagh fault based on GPS. J Geophys Res-Solid Earth, 123: 10309–10322

    Google Scholar 

  • Li Y, Liu M, Li Y, Chen L. 2019. Active crustal deformation in southeastern Tibetan Plateau: The kinematics and dynamics. Earth Planet Sci Lett, 523: 115708

    CAS  Google Scholar 

  • Liang S, Gan W, Shen C, Xiao G, Liu J, Chen W, Ding X, Zhou D. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J Geophys Res-Solid Earth, 118: 5722–5732

    Google Scholar 

  • Liu Q Y, van der Hilst R D, Li Y, Yao H J, Chen J H, Guo B, Qi S H, Wang J, Huang H, Li S C. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat Geosci, 7: 361–365

    CAS  Google Scholar 

  • Loveless J P, Meade B J. 2011. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth Planet Sci Lett, 303: 11–24

    CAS  Google Scholar 

  • Molnar P, Tapponnier P. 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189: 419–426

    CAS  Google Scholar 

  • Molnar P, Stock J M. 2009. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28: TC3001

    Google Scholar 

  • Mulch A, Chamberlain C P. 2006. The rise and growth of Tibet. Nature, 439: 670–671

    CAS  Google Scholar 

  • Ou Q, Daout S, Weiss J R, Shen L, Lazecký M, Wright T J, Parsons B E. 2022. Large-scale interseismic strain mapping of the NE Tibetan Plateau from sentinel-1 interferometry. J Geophys Res-Solid Earth, 127: e2022JB024176

    Google Scholar 

  • Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615–621

    Google Scholar 

  • Ran Y, Li X, Cheng G, Che J, Aalto J, Karjalainen O, Hjort J, Luoto M, Jin H, Obu J, Hori M, Yu Q, Chang X. 2022. New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth Syst Sci Data, 14: 865–884

    Google Scholar 

  • Rao W, Sun W. 2022. Uplift of the Tibetan Plateau: How to accurately compute the hydrological load effect? J Geophys Res-Solid Earth, 127: e2021JB022475

    Google Scholar 

  • Royden L H, Burchfiel B C, King R W, Wang E, Chen Z, Shen F, Liu Y. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276: 788–790

    CAS  Google Scholar 

  • Ryder I, Parsons B, Wright T J, Funning G J. 2007. Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling. Geophys J Int, 169: 1009–1027

    Google Scholar 

  • Shen Z K, Lü J, Wang M, Bürgmann R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J Geophys Res, 110: B11409

    Google Scholar 

  • Shen Z K, Wang M, Zeng Y, Wang F. 2015. Optimal interpolation of spatially discretized geodetic data. Bull Seismol Soc Am, 105: 2117–2127

    Google Scholar 

  • Tape C, Musé P, Simons M, Dong D, Webb F. 2009. Multiscale estimation of GPS velocity fields. Geophys J Int, 179: 945–971

    Google Scholar 

  • Tapponnier P, Peltzer G, Le Dain A Y, Armijo R, Cobbold P. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10: 611–616

    Google Scholar 

  • Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671–1677

    CAS  Google Scholar 

  • Tong X, Sandwell D T, Smith-Konter B. 2013. High-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR. J Geophys Res-Solid Earth, 118: 369–389

    Google Scholar 

  • Wang E, Kirby E, Furlong K P, van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nat Geosci, 5: 640–645

    Google Scholar 

  • Wang H, Wright T J. 2012. Satellite geodetic imaging reveals internal deformation of western Tibet. Geophys Res Lett, 39: L07303

    Google Scholar 

  • Wang H, Wright T J, Liu-Zeng J, Peng L. 2019. Strain rate distribution in south-central Tibet from two decades of InSAR and GPS. Geophys Res Lett, 46: 5170–5179

    Google Scholar 

  • Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J Geophys Res-Solid Earth, 125: e2019JB018774

    Google Scholar 

  • Wang S, Replumaz A, Chevalier M L, Li H. 2022. Decoupling between upper crustal deformation of southern Tibet and underthrusting of Indian lithosphere. Terra Nova, 34: 62–71

    Google Scholar 

  • Wang W, Zhang P, Garzione C N, Liu C, Zhang Z, Pang J, Wang Y, Zheng D, Zheng W, Zhang H. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proc Natl Acad Sci USA, 119: e2120364119

    CAS  Google Scholar 

  • Wegmuller U. 1997. Gamma SAR Processor and Interferometry Software. Florence: 3rd ERS Symposium

  • Weiss J R, Walters R J, Morishita Y, Wright T J, Lazecky M, Wang H, Hussain E, Hooper A J, Elliott J R, Rollins C, Yu C, González P J, Spaans K, Li Z, Parsons B. 2020. High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data. Geophys Res Lett, 47: e2020GL087376

    Google Scholar 

  • Wen Y, Li Z, Xu C, Ryder I, Bürgmann R. 2012. Postseismic motion after the 2001 MW7.8 Kokoxili earthquake in Tibet observed by InSAR time series. J Geophys Res, 117: 2011JB009043

    Google Scholar 

  • Wright T J, Parsons B, England P C, Fielding E J. 2004. InSAR observations of low slip rates on the major faults of western Tibet. Science, 305: 236–239

    CAS  Google Scholar 

  • Wu Y, Zheng Z, Nie J, Chang L, Su G, Yin H, Liang H, Pang Y, Chen C, Jiang Z, Bo W. 2022. High-precision vertical movement and three-dimensional deformation pattern of the Tibetan Plateau. J Geophys Res-Solid Earth, 127: e2021JB023202

    Google Scholar 

  • Xu X, Sandwell D T, Klein E, Bock Y. 2021. Integrated Sentinel-1 InSAR and GNSS time-series along the San Andreas Fault system. J Geophys Res-Solid Earth, 126: e2021JB022579

    Google Scholar 

  • Xu Z, Li G, Zhang Z, Li H, Wang Y, Peng M, Hu X, Yi Z, Zheng B. 2022. Review ten key geological issues of the Tibetan Plateau—Commemoration of the centennial anniversary of Acta Geologica Sinica (in Chinese). Acta Geol Sin, 96: 65–94

    Google Scholar 

  • Zhang P, Deng Q, Zhang G, Ma J, Gan W, Min W, Mao F, Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Sci China Ser D-Earth Sci, 46: 13–24

    CAS  Google Scholar 

  • Zhang P, Deng Q, Zhang Z, Li H. 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China (in Chinese). Sci Sin Terrae, 43: 1607–1620

    Google Scholar 

  • Zhang P Z, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P, Wang Q, Niu Z, Sun J, Wu J, Hanrong S, Xinzhao Y. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32: 809–812

    Google Scholar 

  • Zhao D, Qu C, Bürgmann R, Gong W, Shan X, Qiao X, Zhao L, Chen H, Liu L. 2022. Large-scale crustal deformation, slip-rate variation, and strain distribution along the Kunlun Fault (Tibet) from Sentinel-1 In-SAR observations (2015-2020). J Geophys Res-Solid Earth, 127: e2021JB022892

    Google Scholar 

  • Zheng G, Wang H, Wright T J, Lou Y, Zhang R, Zhang W, Shi C, Huang J, Wei N. 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J Geophys Res-Solid Earth, 122: 9290–9312

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Peizhen ZHANG of Sun Yat-sen University for helpful discussions. Appreciation is extended to three anonymous reviewers for their constructive comments and valuable suggestions on the revisions of this manuscript. Special thanks go to the National Earthquake Data Backup Center for providing computing power support through their supercomputing platform. The authors also acknowledge the support provided by the following institutions: Sentinel-1 SAR data from the Copernicus Open Access Hub (https://scihub.copernicus.eu), meteorological reanalysis data (ECMWF/ERA5) from the European Center for Medium-Range Weather Forecasts (https://www.ecmwf.int), SRTM DEM data downloaded freely from the U.S. Geological Survey (https://earthexplorer.usgs.gov), and global hydrological quality change data provided by Dr. Weilong RAO from Changsha University of Science & Technology. This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (SETP) (Grant No. 2019QZKK0901), the National Natural Science Foundation of China (Grant Nos. 42130101, 42074007, and 42104061), the National Key Research and Development Program of China (Grant No. 2017YFC1500501), and the Natural Science Basic Research Program of Shaanxi (Grant No. 2023-JC-QN-0292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caijun Xu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ji, L., Zhu, L. et al. Kilometer-resolution three-dimensional crustal deformation of Tibetan Plateau from InSAR and GNSS. Sci. China Earth Sci. 67, 1818–1835 (2024). https://doi.org/10.1007/s11430-023-1289-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1289-4

Keywords

Navigation