Skip to main content
Log in

Characteristics and influencing factors of CO2 emission from inland waters in China

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Inland water bodies, being the most active biogeochemical cycle reactors, play a pivotal role in the global carbon cycle and CO2 budget. This study integrates existing observation dataset of CO2 flux (fCO2) in rivers, lakes and reservoirs in China, to elucidate their spatial-temporal patterns and key influencing factors and to reappraise the significance for regional carbon balance. It showed that, the fCO2 in rivers, lakes and reservoirs in China presented significant variability with large range of −379.3–4947.6, −160.1–785.0 and −74.0–1603.1 mg CO2 m−2 h−1, respectively. The median of the fCO2 in rivers was of 228.5 mg CO2 m−2 h−1, observably higher than these in lakes and reservoirs (26.0 and 28.3 mg CO2 m−2 h−1, respectively). The fCO2 in rivers and reservoirs exhibited similar decreasing trend from south to north as a result of universal climate restraint, the averaged fCO2 in Pearl River and Yangtze River basins showed much higher than that in Northeastern rivers. While, the averaged fCO2 in the Mongolia-Xinjiang lake district and the Northeast lake district were higher than other lake districts, followed by the Qinghai-Xizang lake district, and the Eastern and Yungui lake district were generally low, contradicting the climatic restriction. The water primary production enhancement resulting from human activities was the main driver of spatial variation in the fCO2 in lakes. Meanwhile, the fCO2 in rivers presented seasonal pattern with higher wet season than dry season, while opposite patterns were found in lakes and reservoirs. Seasonal temperature, precipitation and water primary production were main factors. Furthermore, it showed pH was a key factor indicating the variability of the fCO2 levels either in rivers, lakes or in reservoirs. In lakes, the fCO2 is closely linked to chlorophyll a (Chl-a) and dissolved oxygen (DO), whereas, the fCO2 in rivers is primarily associated with organic carbon (OC) and total nitrogen (TN), highlighting the diverse controlling mechanisms of fCO2 in various inland water types. In addition, we found that water body sizes play an important role in regulating the fCO2 levels, and small waters act as hotspots of CO2 flux. Additionally, widespread urbanization and agricultural activities may enhance CO2 emissions from rivers but potentially mitigating that from lakes. Nevertheless, the comprehensive impact of these factors on CO2 emissions in inland water requires further evaluation. Based on the extrapolation method, we re-estimated that the total CO2 emission of inland waters in China is approximately 117.3 Tg yr−1, which could offset 4.6%–12.8% of the total land carbon sink in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos M A, Matvienko B. 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob Biogeochem Cycle, 19: 2005GB002457

    Article  Google Scholar 

  • Almeida R M, Pacheco F S, Barros N, Rosi E, Roland F. 2017. Extreme floods increase CO2 outgassing from a large Amazonian river. Limnol Oceanogr, 62: 989–999

    Article  Google Scholar 

  • Aufdenkampe A K, Mayorga E, Raymond P A, Melack J M, Doney S C, Alin S R, Aalto R E, Yoo K. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ, 9: 53–60

    Article  Google Scholar 

  • Barros N, Cole J J, Tranvik L J, Prairie Y T, Bastviken D, Huszar V L M, del Giorgio P, Roland F. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci, 4: 593–596

    Article  CAS  Google Scholar 

  • Battin T J, Lauerwald R, Bernhardt E S, Bertuzzo E, Gener L G, Hall Jr R O, Hotchkiss E R, Maavara T, Pavelsky T M, Ran L, Raymond P, Rosentreter J A, Regnier P. 2023. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature, 613: 449–459

    Article  CAS  Google Scholar 

  • Bellido J L, Peltomaa E, Ojala A. 2011. An urban boreal lake basin as a source of CO2 and CH4. Environ Pollut, 159: 1649–1659

    Article  Google Scholar 

  • Blackburn S R, Stanley E H. 2021. Floods increase carbon dioxide and methane fluxes in agricultural streams. Freshwater Biol, 66: 62–77

    Article  CAS  Google Scholar 

  • Bogard M J, del Giorgio P A. 2016. The role of metabolism in modulating CO2 fluxes in boreal lakes. Glob Biogeochem Cycle, 30: 1509–1525

    Article  CAS  Google Scholar 

  • Bouillon S, Yambélé A, Gillikin D P, Teodoru C, Darchambeau F, Lambert T, Borges A V. 2014. Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin). Sci Rep, 4: 10

    Article  Google Scholar 

  • Butman D, Raymond P A. 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci, 4: 839–842

    Article  CAS  Google Scholar 

  • Campeau A, del Giorgio P A. 2014. Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Glob Change Biol, 20: 1075–1088

    Article  Google Scholar 

  • Chang S Q, Wang D Q, Yu L, Ren M C, Hu B B, Chen Z L. 2015. Characteristics and influencing factors of greenhouse gas emissions from urban rivers in Shanghai (in Chinese). Res Environ Sci, 28: 1375–1381

    CAS  Google Scholar 

  • Chen S, Du Y X, Das P, Lamore A F, Dimova N T, Elliott M, Broadbent E N, Roebuck Jr J A, Jaffé R, Lu Y H. 2021. Agricultural land use changes stream dissolved organic matter via altering soil inputs to streams. Sci Total Environ, 796: 148968

    Article  CAS  Google Scholar 

  • Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J, Melack J. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10: 172–185

    Article  Google Scholar 

  • Comer-Warner S A, Gooddy D C, Ullah S, Glover L, Percival A, Kettridge N, Krause S. 2019. Seasonal variability of sediment controls of carbon cycling in an agricultural stream. Sci Total Environ, 688: 732–741

    Article  CAS  Google Scholar 

  • Crawford J T, Dornblaser M M, Stanley E H, Clow D W, Striegl R G. 2015. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes. J Geophys Res-Biogeosci, 120: 952–964

    Article  CAS  Google Scholar 

  • Crawford J T, Butman D E, Loken L C, Stadler P, Kuhn C, Striegl R G. 2017. Spatial variability of CO2 concentrations and biogeochemistry in the Lower Columbia River. Inland Waters, 7: 417–427

    Article  CAS  Google Scholar 

  • das Neves Lopes M, Decarli C J, Pinheiro-Silva L, Lima T C, Leite N K, Petrucio M M. 2020. Urbanization increases carbon concentration and pCO2 in subtropical streams. Environ Sci Pollut Res, 27: 18371–18381

    Article  Google Scholar 

  • Deemer B R, Harrison J A, Li S Y, Beaulieu J J, Delsontro T, Barros N, Bezerra-Neto J F, Powers S M, dos Santos M A, Vonk J A. 2016. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. Bioscience, 66: 949–964

    Article  Google Scholar 

  • DelSontro T, Beaulieu J J, Downing J A. 2018. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnol Oceanogr Lett, 3: 64–75

    Article  CAS  Google Scholar 

  • Downing J A, Cole J J, Middelburg J J, Striegl R G, Duarte C M, Kortelainen P, Prairie Y T, Laube K A. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycle, 22: 2006GB002854

    Article  Google Scholar 

  • Drake T W, Raymond P A, Spencer R G M. 2018. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnol Oceanogr Lett, 3: 132–142

    Article  CAS  Google Scholar 

  • Du Q, Liu H Z, Xu L J, Liu Y, Wang L. 2018. The monsoon effect on energy and carbon exchange processes over a highland lake in the southwest of China. Atmos Chem Phys, 18: 15087–15104

    Article  CAS  Google Scholar 

  • Duan L, Ma X, Larssen T, Mulder J, Hao J. 2011. Response of surface water acidification in Upper Yangtze River to SO2 emissions abatement in China. Environ Sci Technol, 45: 3275–3281

    Article  CAS  Google Scholar 

  • Duan L, Yu Q, Zhang Q, Wang Z, Pan Y, Larssen T, Tang J, Mulder J. 2016. Acid deposition in Asia: Emissions, deposition, and ecosystem effects. Atmos Environ, 146: 55–69

    Article  CAS  Google Scholar 

  • Gao Y, Wang S, Lu Y, Liu J, Lyu S, Sun K, Jia J, Li Z, Yu G. 2022. Carbon budget and balance critical processes of the regional land-water-air interface: Indicating the earth system’s carbon neutrality. Sci China Earth Sci, 65: 773–782

    Article  CAS  Google Scholar 

  • Gómez-Gener L, Rocher-Ros G, Battin T, Cohen M J, Dalmagro H J, Dinsmore K J, Drake T W, Duvert C, Enrich-Prast A, Horgby Å, Johnson M S, Kirk L, Machado-Silva F, Marzolf N S, McDowell M J, McDowell W H, Miettinen H, Ojala A K, Peter H, Pumpanen J, Ran L S, Riveros-Iregui D A, Santos I R, Six J, Stanley E H, Wallin M B, White S A, Sponseller R A. 2021. Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nat Geosci, 14: 289–294

    Article  Google Scholar 

  • Gong C, Yan W, Zhang P, Yu Q, Li Y, Li X, Wang D, Jiao R. 2021. Effects of stream ecosystem metabolisms on CO2 emissions in two headwater catchments, Southeastern China. Ecol Indic, 130: 108136

    Article  CAS  Google Scholar 

  • Gu S J, Li S Y, Santos I R. 2022a. Anthropogenic land use substantially increases riverine CO2 emissions. J Environ Sci, 118: 158–170

    Article  CAS  Google Scholar 

  • Gu S J, Xu Y J, Li S Y. 2022b. Unravelling the spatiotemporal variation of pCO2 in low order streams: Linkages to land use and stream order. Sci Total Environ, 820: 153226

    Article  CAS  Google Scholar 

  • Halbedel S, Koschorreck M. 2013. Regulation of CO2 emissions from temperate streams and reservoirs. Biogeosciences, 10: 7539–7551

    Article  CAS  Google Scholar 

  • Han J, Meng X, Zhou X, Yi B L, Liu M, Xiang W N. 2017. A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: A case study in China’s Yangtze River Delta region. J Clean Prod, 141: 1040–1050

    Article  CAS  Google Scholar 

  • He H B, Wang Y, Liu Z H, Bao Q, Wei Y, Chen C Y, Sun H L. 2022. Lake metabolic processes and their effects on the carbonate weathering CO2 sink: Insights from diel variations in the hydrochemistry of a typical karst lake in SW China. Water Res, 222: 118907

    Article  CAS  Google Scholar 

  • Herath I K, Wu S, Ma M, Huang P. 2020. Reservoir CO2 evasion flux and controlling factors of carbon species traced by δ13CDIC at different regulating phases of a hydro-power dam. Sci Total Environ, 698: 134184

    Article  CAS  Google Scholar 

  • Hertwich E G. 2013. Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol, 47: 9604–9611

    Article  CAS  Google Scholar 

  • Holgerson M A, Raymond P A. 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci, 9: 222–226

    Article  CAS  Google Scholar 

  • Hotchkiss E R, Hall R O, Sponseller R A, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J. 2015. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci, 8: 696–699

    Article  CAS  Google Scholar 

  • Hu X, Zhou Y, Zhou L, Zhang Y, Wu L, Xu H, Zhu G, Jang K S, Spencer R G M, Jeppesen E, Brookes J D, Wu F. 2022. Urban and agricultural land use regulates the molecular composition and bio-lability of fluvial dissolved organic matter in human-impacted southeastern China. Carbon Res, 1: 19

    Article  Google Scholar 

  • Huang J, Li Z, Zhang K, Jiang T. 2021. Spatial-temporal dynamic analysis of phytoplankton biomass in lakes of China based on GEE (in Chinese). J Geogr Sci, 76: 1693–1707

    Google Scholar 

  • Humborg C, Mörth C, Sundbom M, Borg H, Blenckner T, Giesler R, Ittekkot V. 2010. CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob Change Biol, 16: 1966–1978

    Article  Google Scholar 

  • IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Johnson M S, Lehmann J, Riha S J, Krusche A V, Richey J E, Ometto J P H B, Couto E G. 2008. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett, 35: 2008GL034619

    Article  Google Scholar 

  • Junger P C, Dantas FCC, Nobre RLG, Kosten S, Venticinque E M, Araújo F C, Sarmento H, Angelini R, Terra I, Gaudêncio A, They N H, Becker V, Cabral C R, Quesado L, Carneiro L S, Caliman A, Amado A M. 2019. Effects of seasonality, trophic state and landscape properties on CO2 saturation in low-latitude lakes and reservoirs. Sci Total Environ, 664: 283–295

    Article  CAS  Google Scholar 

  • Kelsey S A, Grottoli A G, Bauer J E, Lorenz K, Lal R, Matsui Y, Huey-Sanders T M. 2020. Effects of agricultural and tillage practices on isotopic signatures and fluxes of organic and inorganic carbon in headwater streams. Aquat Sci, 82: 13

    Article  Google Scholar 

  • Kemenes A, Forsberg B R, Melack J M. 2011. CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). J Geophys Res, 116: G03004

    Article  Google Scholar 

  • Kortelainen P, Rantakari M, Huttunen J T, Mattsson T, Alm J, Juutinen S, Larmola T, Silvola J, Martikainen P J. 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Glob Change Biol, 12: 1554–1567

    Article  Google Scholar 

  • Kumar A, Yang T, Sharma M P. 2019. Greenhouse gas measurement from Chinese freshwater bodies: A review. J Clean Prod, 233: 368–378

    Article  CAS  Google Scholar 

  • Lauerwald R, Laruelle G G, Hartmann J, Ciais P, Regnier P A G. 2015. Spatial patterns in CO2 evasion from the global river network. Glob Biogeochem Cycle, 29: 534–554

    Article  CAS  Google Scholar 

  • Laurion I, Vincent W F, MacIntyre S, Retamal L, Dupont C, Francus P, Pienitz R. 2010. Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr, 55: 115–133

    Article  CAS  Google Scholar 

  • Le T P Q, Marchand C, Ho C T, Le N D, Duong T T, Lu X X, Doan P K, Nguyen T K, Nguyen T M H, Vu D A. 2018. CO2 partial pressure and CO2 emission along the lower Red River (Vietnam). Biogeosciences, 15: 4799–4814

    Article  CAS  Google Scholar 

  • Leng P F, Li F D, Du K, Li Z, Gu C K, Koschorreck M. 2020. Flow velocity and nutrients affect CO2 emissions from agricultural drainage channels in the North China Plain. Environ Sci Eur, 32: 146

    Article  CAS  Google Scholar 

  • Leng P, Li Z, Zhang Q, Li F, Koschorreck M. 2022. Fluvial CO2 and CH4 in a lowland agriculturally impacted river network: Importance of local and longitudinal controls. Environ Pollut, 303: 119125

    Article  CAS  Google Scholar 

  • Li M X, Peng C H, Zhang K R, Xu L, Wang J M, Yang Y, Li P, Liu Z L, He N P. 2021. Headwater stream ecosystem: An important source of greenhouse gases to the atmosphere. Water Res, 190: 116738

    Article  CAS  Google Scholar 

  • Li S Y, Lu X X, Bush R T. 2013. CO2 partial pressure and CO2 emission in the Lower Mekong River. J Hydrol, 504: 40–56

    Article  CAS  Google Scholar 

  • Li S Y, Bush R T, Santos I R, Zhang Q F, Song K S, Mao R, Wen Z D, Lu X X. 2018. Large greenhouse gases emissions from China’s lakes and reservoirs. Water Res, 147: 13–24

    Article  CAS  Google Scholar 

  • Liu B Y, Wang Z F, Tian M Y, Yang X K, Chan C N, Chen S, Yang Q Q, Ran L S. 2023. Basin-scale CO2 emissions from the east river in South China: Importance of small rivers, human impacts and monsoons. J Geophys Res-Biogeoscis, 128: e2022JG007291

    Article  CAS  Google Scholar 

  • Liu D, Tian L Q, Jiang X T, Wu H W, Yu S J. 2022. Human activities changed organic carbon transport in Chinese rivers during 2004–2018. Water Res, 222: 118872

    Article  CAS  Google Scholar 

  • Liu J K, Han G L. 2021. Controlling factors of riverine CO2 partial pressure and CO2 outgassing in a large karst river under base flow condition. J Hydrol, 593: 125638

    Article  CAS  Google Scholar 

  • Liu L X, Xu M. 2016. Microbial biomass in sediments affects greenhouse gas effluxes in Poyang Lake in China. J Freshwater Ecol, 31: 109–121

    Article  CAS  Google Scholar 

  • Liu S D, Kuhn C, Amatulli G, Aho K, Butman D E, Allen G H, Lin P R, Pan M, Yamazaki D, Brinkerhoff C, Gleason C, Xia X H, Raymond P A. 2022. The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proc Natl Acad Sci USA, 119: e2106322119

    Article  CAS  Google Scholar 

  • Ma Y M, Li S Y. 2020. Spatial and temporal comparisons of dissolved organic matter in river systems of the Three Gorges Reservoir region using fluorescence and UV-Visible spectroscopy. Environ Res, 189: 109925

    Article  CAS  Google Scholar 

  • Maberly S C, Barker P A, Stott A W, de Ville M M. 2013. Catchment productivity controls CO2 emissions from lakes. Nat Clim Change, 3: 391–394

    Article  CAS  Google Scholar 

  • Marx A, Dusek J, Jankovec J, Sanda M, Vogel T, van Geldern R, Hartmann J, Barth J A C. 2017. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective. Rev Geophys, 55: 560–585

    Article  Google Scholar 

  • Miller B L, Chen H, He Y, Yuan X, Holtgrieve G W. 2019. Magnitudes and drivers of greenhouse gas fluxes in floodplain ponds during drawdown and inundation by the Three Gorges Reservoir. J Geophys Res-Biogeoscis, 124: 2499–2517

    Article  CAS  Google Scholar 

  • Ni M F, Li S Y. 2019. Biodegradability of riverine dissolved organic carbon in a Dry-hot Valley Region: Initial trophic controls and variations in chemical composition. J Hydrol, 574: 430–435

    Article  CAS  Google Scholar 

  • Peng W J, Li Q, Song A, Jin Z J. 2018. Effect of primary productivity on spatio-temporal variation of carbon dioxide and methane emission rates at the water-air interface in Wulixia Reservoir (in Chinese). Environ Sci, 39: 2673–2679

    Google Scholar 

  • Pumpanen J, Lindén A, Miettinen H, Kolari P, Ilvesniemi H, Mammarella I, Hari P, Nikinmaa E, Heinonsalo J, Bäck J, Ojala A, Berninger F, Vesala T. 2014. Precipitation and net ecosystem exchange are the most important drivers of DOC flux in upland boreal catchments. J Geophys Res-Biogeosci, 119: 1861–1878

    Article  Google Scholar 

  • Qi T C, Xiao Q T, Cao Z G, Shen M, Ma J G, Liu D, Duan H T. 2020. Satellite estimation of dissolved carbon dioxide concentrations in China’s Lake Taihu. Environ Sci Technol, 54: 13709–13718

    Article  CAS  Google Scholar 

  • Ran L S, Lu X X, Richey J E, Sun H, Han J, Yu R, Liao S Y, Yi Q H. 2015. Long-term spatial and temporal variation of CO2 partial pressure in the Yellow River, China. Biogeosciences, 12: 921–932

    Article  Google Scholar 

  • Ran L S, Butman D E, Battin T J, Yang X K, Tian M Y, Duvert C, Hartmann J, Geeraert N, Liu S D. 2021. Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nat Commun, 12: 1730

    Article  CAS  Google Scholar 

  • Ran L, Yue R, Shi H, Meng X, Ngai Chan C, Fang N, Shi Z. 2022. Seasonal and diel variability of CO2 emissions from a semiarid hard-water reservoir. J Hydrol, 608: 127652

    Article  CAS  Google Scholar 

  • Raymond P A, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P. 2013. Global carbon dioxide emissions from inland waters. Nature, 503: 355–359

    Article  CAS  Google Scholar 

  • Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J, Arndt S, Arnosti C, Borges A V, Dale A W, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe D E, Leifeld J, Meysman F J R, Munhoven G, Raymond P A, Spahni R, Suntharalingam P, Thullner M. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci, 6: 597–607

    Article  CAS  Google Scholar 

  • Romeijn P, Comer-Warner S A, Ullah S, Hannah D M, Krause S. 2019. Streambed Organic Matter Controls on Carbon Dioxide and Methane Emissions from Streams. Environ Sci Technol, 53: 2364–2374

    Article  CAS  Google Scholar 

  • Salgado J, Duc T A, Nga D T, Panizzo V N, Bass A M, Zheng Y, Taylor S, Roberts L R, Lacey J H, Leng M J, McGowan S. 2022. Urbanization and seasonality strengthens the CO2 capacity of the Red River Delta, Vietnam. Environ Res Lett, 17: 104052

    Article  CAS  Google Scholar 

  • Sánchez-Carrillo S, Alcocer J, Vargas-Sánchez M, Soria-Reinoso I, Rivera-Herrera E M, Cortés-Guzmán D, Cuevas-Lara D, Guzmán-Arias A P, Merino-Ibarra M, Oseguera L A. 2022. Greenhouse gas emissions from Mexican inland waters: First estimation and uncertainty using an up-scaling approach. Inland Waters, 12: 294–310

    Article  Google Scholar 

  • Scofield V, Melack J M, Barbosa P M, Amaral J H F, Forsberg B R, Farjalla V F. 2016. Carbon dioxide outgassing from Amazonian aquatic ecosystems in the Negro River basin. Biogeochemistry, 129: 77–91

    Article  CAS  Google Scholar 

  • Selvam B P, Natchimuthu S, Arunachalam L, Bastviken D. 2014. Methane and carbon dioxide emissions from inland waters in India—Implications for large scale greenhouse gas balances. Glob Change Biol, 20: 3397–3407

    Article  Google Scholar 

  • She W, Yang J, Wu G, Jiang H. 2022. The synergy of environmental and microbial variations caused by hydrologic management affects the carbon emission in the Three Gorges Reservoir. Sci Total Environ, 821: 153446

    Article  CAS  Google Scholar 

  • Shen L, Zhao Q C, Wu X E, Li X Z, Li Q B, Wang Y P. 2016. Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors. Renew Sustain Energy Rev, 54: 1358–1367

    Article  CAS  Google Scholar 

  • Sinha E, Michalak A M, Balaji V. 2017. Eutrophication will increase during the 21st century as a result of precipitation changes. Science, 357: 405–408

    Article  CAS  Google Scholar 

  • Smith R M, Kaushal S S, Beaulieu J J, Pennino M J, Welty C. 2017. Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams. Biogeosciences, 14: 2831–2849

    Article  CAS  Google Scholar 

  • Song K S, Wen Z D, Xu Y J, Yang H, Lyu L L, Zhao Y, Fang C, Shang Y X, Du J. 2018. Dissolved carbon in a large variety of lakes across five limnetic regions in China. J Hydrol, 563: 143–154

    Article  CAS  Google Scholar 

  • Sun H Y, Lu X X, Yu R H, Yang J, Liu X Y, Cao Z X, Zhang Z Z, Li M X, Geng Y. 2021. Eutrophication decreased CO2 but increased CH4 emissions from lake: A case study of a shallow Lake Ulansuhai. Water Res, 201: 117363

    Article  CAS  Google Scholar 

  • Tan D B, Luo T F, Zhao D Z, Li C. 2019. Carbon dioxide emissions from the Geheyan Reservoir over the Qingjiang River Basin, China. Ecohydrol Hydrobiol, 19: 499–514

    Article  Google Scholar 

  • Tang W Z, Pei Y S, Zheng H, Zhao Y, Shu L M, Zhang H. 2022. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere, 295: 133875

    Article  CAS  Google Scholar 

  • Tang W, Xu Y J, Li S Y. 2021. Rapid urbanization effects on partial pressure and emission of CO2 in three rivers with different urban intensities. Ecol Indic, 125: 107515

    Article  CAS  Google Scholar 

  • Teodoru C R, del Giorgio P A, Prairie Y T, Camire M. 2009. Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada. Glob Biogeochem Cycle, 23: 2008GB003404

    Article  Google Scholar 

  • Tian M Y, Yang X K, Ran L S, Su Y R, Li L Y, Yu R H, Hu H Z, Lu X X. 2018. High riverine CO2 outgassing affected by land cover types in the Yellow River source region. Biogeosci Discuss, 1–36, doi: https://doi.org/10.5194/BG-2018-292

  • Tranvik L J, Downing J A, Cotner J B, Loiselle S A, Striegl R G, Ballatore T J, Dillon P, Finlay K, Fortino K, Knoll L B, Kortelainen P L, Kutser T, Larsen S, Laurion I, Leech D M, McCallister S L, McKnight D M, Melack J M, Overholt E, Porter J A, Prairie Y, Renwick W H, Roland F, Sherman B S, Schindler D W, Sobek S, Tremblay A, Vanni M J, Verschoor A M, von Wachenfeldt E, Weyhenmeyer G A. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr, 54: 2298–2314

    Article  CAS  Google Scholar 

  • Tranvik L J, Cole J J, Prairie Y T. 2018. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnol Oceanogr Lett, 3: 41–48

    Article  Google Scholar 

  • Trentman M T, Tank J L, Davis R T, Hanrahan B R, Mahl U H, Roley S S. 2022. Watershed-scale Land Use Change Increases Ecosystem Metabolism in an Agricultural Stream. Ecosystems, 25: 441–456

    Article  CAS  Google Scholar 

  • Tsutsumi Y, Mori K., Hirahara T. 2009. Technical report of global analysis method for major greenhouse gases by the world date centre for greenhouse gases. WMO

  • Wang F S, Wang B L, Liu C Q, Wang Y C, Guan J, Liu X L, Yu Y X. 2011. Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China. Atmos Environ, 45: 3827–3834

    Article  CAS  Google Scholar 

  • Wang J L, Zhou Y Q, Zhou L, Zhang Y L, Qin B Q, Spencer R G M, Brookes J D, Jeppesen E, Weyhenmeyer G A, Wu F C. 2023. Urbanization in developing countries overrides catchment productivity in fueling inland water CO2 emissions. Glob Change Biol, 29: 1–4

    Article  CAS  Google Scholar 

  • Wang J, Wang X, Liu T, Yuan X, Chen H, He Y, Wu S, Yuan Z, Li H, Que Z, Yu L, Zhang Y. 2021. pCO2 and CO2 evasion from two small suburban rivers: Implications of the watershed urbanization process. Sci Total Environ, 788: 147787

    Article  CAS  Google Scholar 

  • Wang S, Gao Y, Jia J, Lu Y, Wang J, Ha X, Li Z, Sun K. 2022. Determining whether hydrological processes drive carbon source and sink conversion shifts in a large floodplain-lake system in China. Water Res, 224: 119105

    Article  CAS  Google Scholar 

  • Wang X F, Yuan X Z, Chen H, He Y X, Luo Z, Liu L, He Z Y. 2017a. Research progress on CO2 and CH4 emissions from rivers (in Chinese). Environ Sci, 38: 5352–5366

    Google Scholar 

  • Wang X F, He Y X, Yuan X Z, Chen H, Peng C H, Zhu Q, Yue J S, Ren H Q, Deng W, Liu H. 2017b. pCO2 and CO2 fluxes of the metropolitan river network in relation to the urbanization of Chongqing, China. J Geophys Res-Biogeoscis, 122: 470–486

    Article  CAS  Google Scholar 

  • Wang X F, He Y X, Yuan X Z, Chen H, Peng C H, Yue J S, Zhang Q Y, Diao Y B, Liu S S. 2017c. Greenhouse gases concentrations and fluxes from subtropical small reservoirs in relation with watershed urbanization. Atmos Environ, 154: 225–235

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Wang K, Chevallier F, Zhu D, Lian J, He Y, Tian H, Li J, Zhu J, Jeong S, Canadell J G. 2022. The size of the land carbon sink in China. Nature, 603: E7–E9

    Article  CAS  Google Scholar 

  • Wanninkhof R, Park G H, Takahashi T, Sweeney C, Feely R, Nojiri Y, Gruber N, Doney S C, McKinley G A, Lenton A, Le Quéré C, Heinze C, Schwinger J, Graven H, Khatiwala S. 2013. Global ocean carbon uptake: Magnitude, variability and trends. Biogeosciences, 10: 1983–2000

    Article  CAS  Google Scholar 

  • Webb J R, Leavitt P R, Simpson G L, Baulch H M, Haig H A, Hodder K R, Finlay K. 2019. Regulation of carbon dioxide and methane in small agricultural reservoirs: Optimizing potential for greenhouse gas uptake. Biogeosciences, 16: 4211–4227

    Article  CAS  Google Scholar 

  • Wen Z D, Song K S, Zhao Y, Shao T T, Li S J. 2016. Characteristics of summer and fall emissions of greenhouse gases from urban water bodies in Changchun (in Chinese). Environ Sci, 37: 102–111

    CAS  Google Scholar 

  • Wen Z D, Song K S, Shang Y X, Fang C, Li L, Lv L, Lv X, Chen L J. 2017. Carbon dioxide emissions from lakes and reservoirs of China: A regional estimate based on the calculated pCO2. Atmos Environ, 170: 71–81

    Article  CAS  Google Scholar 

  • Weyhenmeyer G A, Kosten S, Wallin M B, Tranvik L J, Jeppesen E, Roland F. 2015. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nat Geosci, 8: 933–936

    Article  CAS  Google Scholar 

  • Wohl E, Hall R O, Lininger K B, Sutfin N A, Walters D M. 2017. Carbon dynamics of river corridors and the effects of human alterations. Ecol Monogr, 87: 379–409

    Article  Google Scholar 

  • Xiao Q T, Duan H T, Qi T C, Hu Z H, Liu S D, Zhang M, Lee X. 2020. Environmental investments decreased partial pressure of CO2 in a small eutrophic urban lake: Evidence from long-term measurements. Environ Pollut, 263: 114433

    Article  CAS  Google Scholar 

  • Xiao Q T, Duan H T, Qin B Q, Hu Z H, Zhang M, Qi T C, Lee X H. 2022. Eutrophication and temperature drive large variability in carbon dioxide from China’s Lake Taihu. Limnol Oceanogr, 67: 379–391

    Article  CAS  Google Scholar 

  • Xiao W, Liu S D, Li H C, Xiao Q T, Wang W, Hu Z H, Hu C, Gao Y Q, Shen J, Zhao X Y, Zhang M, Lee X H. 2014. A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2 O fluxes at a lakeair interface. Environ Sci Technol, 48: 14490–14498

    Article  CAS  Google Scholar 

  • Xing Y, Xie P, Yang H, Ni L, Wang Y, Rong K. 2005. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmos Environ, 39: 5532–5540

    Article  CAS  Google Scholar 

  • Xuan Y X, Cao Y J, Tang C Y, Li M. 2020. Changes in dissolved inorganic carbon in river water due to urbanization revealed by hydrochemistry and carbon isotope in the Pearl River Delta, China. Environ Sci Pollut Res, 27: 24542–24557

    Article  CAS  Google Scholar 

  • Yan F P, Sillanpää M, Kang S, Aho K S, Qu B, Wei D, Li X, Li C, Raymond P A. 2018. Lakes on the Tibetan Plateau as conduits of greenhouse gases to the atmosphere. J Geophys Res-Biogeoscis, 123: 2091–2103

    Article  CAS  Google Scholar 

  • Yan X C, Ma J, Li Z C, Ji M, Xu J, Xu X G, Wang G X, Li Y M. 2021. CO2 dynamic of Lake Donghu highlights the need for long-term monitoring. Environ Sci Pollut Res, 28: 10967–10976

    Article  CAS  Google Scholar 

  • Yang H, Xie P, Ni L, Flower R J. 2011. Underestimation of CH4 emission from freshwater lakes in China. Environ Sci Technol, 45: 4203–4204

    Article  CAS  Google Scholar 

  • Yu Z J, Wang D Q, Li Y J, Deng H G, Hu B B, Ye M W, Zhou X H, Da L J, Chen Z L, Xu S Y. 2017. Carbon dioxide and methane dynamics in a human-dominated lowland coastal river network (Shanghai, China). J Geophys Res-Biogeosci, 122: 1738–1758

    Article  CAS  Google Scholar 

  • Zhang L, He K, Wang T, Liu C, An Y, Zhong J. 2022. Frequent algal blooms dramatically increase methane while decrease carbon dioxide in a shallow lake bay. Environ Pollut, 312: 120061

    Article  CAS  Google Scholar 

  • Zhang P, Wang X, Yuan X. 2020. Basic characteristics and research progress of methane emission from freshwater ecosystems in China (in Chinese). China Environ Sci, 40: 3567–3579

    CAS  Google Scholar 

  • Zhang T, Li J H, Pu J B, Martin J B, Khadka M B, Wu F H, Li L, Jiang F, Huang S Y, Yuan D X. 2017. River sequesters atmospheric carbon and limits the CO2 degassing in karst area, southwest China. Sci Total Environ, 609: 92–101

    Article  CAS  Google Scholar 

  • Zhang T, Li J, Pu J, Martin J B, Wang S, Yuan D. 2020. Rainfall possibly disturbs the diurnal pattern of CO2 degassing in the Lijiang River, SW China. J Hydrol, 590: 125540

    Article  CAS  Google Scholar 

  • Zhang W S, Li H P, Xiao Q T, Li X Y. 2021. Urban rivers are hotspots of riverine greenhouse gas (N2O, CH4, CO2) emissions in the mixed-landscape chaohu lake basin. Water Res, 189: 116624

    Article  CAS  Google Scholar 

  • Zhao Y, Wu B F, Zeng Y. 2013. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences, 10: 1219–1230

    Article  Google Scholar 

  • Zhong J, Li S L, Liu J, Ding H, Sun X L, Xu S, Wang T J, Ellam R M, Liu C Q. 2018. Climate variability controls on CO2 consumption fluxes and carbon dynamics for monsoonal rivers: Evidence from Xijiang River, Southwest China. J Geophys Res-Biogeoscis, 123: 2553–2567

    Article  CAS  Google Scholar 

  • Zhou J J, Zhao Y R, Huang P, Zhao X, Feng W, Li Q Q, Xue D X, Dou J, Shi W, Wei W, Zhu G F, Liu C F. 2020. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China. Ecol Indic, 118: 106803

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 32371680, 41807321), the Natural Science Foundation of Chongqing (Grant No. 2022NSCQ-MSX2598), and the Science and Technology Project of Chongqing Education Commission (Grant Nos. KJQN202200536, KJZD-K202000502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Wang, X., Xiao, Z. et al. Characteristics and influencing factors of CO2 emission from inland waters in China. Sci. China Earth Sci. (2024). https://doi.org/10.1007/s11430-023-1286-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11430-023-1286-5

Keywords

Navigation