Skip to main content
Log in

Factors contributing to the oxygen concentration over the Qinghai-Tibetan Plateau and its contribution rate calculation

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A decline in atmospheric oxygen concentration is projected in the 21st century given the background of global warming. The Qinghai-Tibetan Plateau is located at a high altitude, and thus, it faces a hypoxia challenge; however, knowledge of the factors contributing to its atmospheric oxygen concentration is still lacking. Here, we conducted joint observations of ecosystem oxygen production and carbon sinks and near-surface atmospheric oxygen concentrations on the Qinghai-Tibetan Plateau and meteorological elements at Beijing Fangshan Station. Using seasonal differences and statistical methods, we calculated the relative contribution rates of vegetation to changes in atmospheric oxygen concentration. Our results indicate that solar radiation, atmospheric humidity, and ecosystem oxygen consumption and production have a significant impact on the atmospheric oxygen concentration, and the impact shows temporal and spatial differences. Vegetation significantly impacts the oxygen concentration, with a contribution rate of 16.7%–24.5%, which is underestimated in existing research. Our findings provide important insights into the factors that influence atmospheric oxygen concentration and highlight the contribution of vegetation. To better understand the oxygen dynamics of the Qinghai-Tibetan Plateau, we recommend further field observations of soil respiration and vegetation photosynthesis to clarify the contributions of carbon storage, carbon sinks and other factors to the near-surface atmospheric oxygen concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Atkin O K, Edwards E J, Loveys B R. 2000. Response of root respiration to changes in temperature and its relevance to global warming. New Phytol, 147: 141–154

    CAS  Google Scholar 

  • Beall C M. 2007. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA, 104: 8655–8660

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen A P, Huang L, Liu Q, Piao S L. 2021. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Glob Change Biol, 27: 1942–1951

    ADS  CAS  Google Scholar 

  • Chen D L, Xu B Q, Yao T D, Guo Z, Cui P, Chen F, Zhang R, Zhang X, Zhang Y, Fan J, Hou Z. 2015. Assessment of past, present and future environmental changes on the Tibetan Plateau (in Chinese). Chin Sci Bull, 60: 3025–3035

    Google Scholar 

  • Chen Y Q, Zhang G F, Chen Z Y, Yang X M, Chen B, Ma Y G, Xie H C, Luo Q Y, Yang J, Ye T, Yu D Y, Wang J A, Tang H P, Chen Z, Shi P J. 2022. A warming climate may reduce health risks of hypoxia on the Qinghai-Tibet Plateau. Sci Bull, 67: 341–344

    Google Scholar 

  • Ding L, Huang G P, Li C Y, Han D L, Liu X Y, Li H Y, Bai Y, Huang J P. 2022. Variations in terrestrial oxygen sources under climate change. Sci China Earth Sci, 65: 1810–1823

    ADS  CAS  Google Scholar 

  • Ding Y. 2018. The decline of global atmospheric oxygen over 1990–2005 calls for attention. Sci Bull, 63: 1175–1176

    Google Scholar 

  • Ding Y P, Shi B, Su G J, Li Q Q, Meng J, Jiang Y J, Qin Y, Dai L W, Song S. 2021. Assessing suitability of human settlements in high-altitude area using a comprehensive index method: A case study of Tibet, China. Sustainability, 13: 1485

    Google Scholar 

  • Faassen K A P, Nguyen L N T, Broekema E R, Kers B A M, Mammarella I, Vesala T, Pickers P A, Manning A C, Vilà-Guerau de Arellano J, Meijer H A J, Peters W, Luijkx I T. 2023. Diurnal variability of atmospheric O2, CO2, and their exchange ratio above a boreal forest in southern Finland. Atmos Chem Phys, 23: 851–876

    ADS  CAS  Google Scholar 

  • Fu Z, Ciais P, Prentice I C, Gentine P, Makowski D, Bastos A, Luo X, Green J K, Stoy P C, Yang H, Hajima T. 2022. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat Commun, 13: 989

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin K, Caraco N, Cole J. 2008. Temporal dynamics of dissolved oxygen in a floating-leaved macrophyte bed. Freshwater Biol, 53: 1632–1641

    CAS  Google Scholar 

  • Grömping U. 2006. Relative importance for linear regression in R: The package relaimpo. J Stat Soft, 17, https://doi.org/10.18637/jss.v017.i01

  • Hou P, Liu Y E, Liu W M, Yang H S, Xie R Z, Wang K R, Ming B, Liu G Z, Xue J, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, Yuan L Z, Zhao H Y, Shi L, Zhang L L, Yu L, Gao J L, Yu X F, Wang Z G, Shen L G, Ji P, Yang S Z, Zhang Z D, Xue J Q, Ma X F, Wang X Q, Lu T Q, Dong B C, Li G, Ma B X, Li J Q, Deng X F, Liu Y H, Yang Q, Jia C L, Chen X P, Fu H, Li S K. 2021. Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resources Conservation Recycling, 174: 105811

    Google Scholar 

  • Huang J P, Huang J P, Liu X Y, Li C Y, Ding L, Yu H P. 2018. The global oxygen budget and its future projection. Sci Bull, 63: 1180–1186

    CAS  Google Scholar 

  • Huang J, Liu X, He Y, Shen S, Hou Z, Li S, Li C, Yao L, Huang J. 2021. The oxygen cycle and a habitable Earth. Sci China Earth Sci, 64: 511–528

    ADS  CAS  Google Scholar 

  • Huang W J, Zeng T Y, Huang X D. 2019. Spatiotemporal dynamics of alpine grassland phenology on the Tibetan Plateau (in Chinese). Pratacult Sci, 36: 1032–1043

    Google Scholar 

  • Lenton T M, Watson A J. 2000. Redfield revisited: 2. What regulates the oxygen content of the atmosphere? Glob Biogeochem Cycle, 14: 249–268

    CAS  Google Scholar 

  • Lenton T M. 2013. Fire feedbacks on atmospheric oxygen. Fire Phenom Earth Syst, 20: 289–308

    Google Scholar 

  • Li C J, Fu B J, Wang S S L C, Wang Y P, Li Z D, Liu Y X, Zhou W X. 2021. Drivers and impacts of changes in China’s drylands. Nat Rev Earth Environ, 2: 858–873

    ADS  Google Scholar 

  • Li S Z. 2011. High altitude hypoxia-associated diseases and discussion of new typology of altitude sickness (in Chinese). Med J Nat Defending Forces Southwest China, 21: 336–338

    Google Scholar 

  • Li Y L, Tenhunen J, Owen K, Schmitt M, Bahn M, Droesler M, Otieno D, Schmidt M, Gruenwald T, Hussain M Z, Mirzae H, Bernhofer C. 2008. Patterns in CO2 gas exchange capacity of grassland ecosystems in the Alps. Agric For Meteorol, 148: 51–68

    ADS  Google Scholar 

  • Lindner S, Otieno D, Lee B, Xue W, Arnhold S, Kwon H, Huwe B, Tenhunen J. 2015. Carbon dioxide exchange and its regulation in the main agro-ecosystems of Haean catchment in South Korea. Agric Ecosyst Environ, 199: 132–145

    CAS  Google Scholar 

  • Liu D, Tang H P. 2022. Environmental factors affecting near-surface oxygen content vary in typical regions of the Qinghai-Tibet Plateau. Front Environ Sci, 10: 902006

    Google Scholar 

  • Liu R Y, Shi P J, Tang H P, Wang J A, Zhao C L, Zhu W Q. 2023. Vegetation oxygen production and its contribution rate to near-surface atmospheric oxygen concentration on the Qinghai-Tibet Plateau (in Chinese). Acta Geogr Sin, 78: 1136–1152

    Google Scholar 

  • Liu X Y, Huang J P, Wang L, Lian X B, Li C Y, Ding L, Wei Y, Chen S Y, Wang Y Q, Li S X, Shi J S. 2023b. “Urban Respiration” revealed by atmospheric O2 measurements in an industrial metropolis. Environ Sci Technol, 57: 2286–2296

    ADS  CAS  PubMed  Google Scholar 

  • Liu X Y, Wang L, Huang J P, Wang Y Q, Li C Y, Ding L, Lian X B, Shi J S. 2023a. Revealing the covariation of atmospheric O2 and pollutants in an industrial metropolis by explainable machine learning. Environ Sci Technol Lett, 10: 851–858

    CAS  Google Scholar 

  • Liu X, Zhou T, Shi P J, Zhang Y J, Luo H, Yu P X, Xu Y X, Zhou P F, Zhang J Z. 2022. Uncertainties of soil organic carbon stock estimation caused by paleoclimate and human footprint on the Qinghai Plateau. Carbon Balance Manage, 17: 1–17

    Google Scholar 

  • Liu Y, Zhang J H, Gao X B, Wu X J, Yu J, Chen J F, Bian S Z, Ding X H, Huang L. 2014. Correlation between blood pressure changes and AMS, sleeping quality and exercise upon high-altitude exposure in young Chinese men. Military Med Res, 1: 1–9

    Google Scholar 

  • Miranda L E, Hodges K B. 2000. Role of aquatic vegetation coverage on hypoxia and sunfish abundance in bays of a eutrophic reservoir. Hydrobiologia, 427: 51–57

    Google Scholar 

  • Shi P J, Chen Y Q, Zhang A Y, He Y, Gao M N, Yang J, Mao R, Wu J D, Ye T, Xiao C D, Xu B Q. 2019. Factors contribution to oxygen concentration in Qinghai-Tibetan Plateau (in Chinese). Chin Sci Bull, 64: 715–724

    Google Scholar 

  • Shi P J, Chen Y Q, Ma H, Ye T, Tang H P, Wang J A. 2021. Further research on the factors contributing to oxygen concentration over the Qinghai-Tibetan Plateau (in Chinese). Chine Sci Bull, 66: 1–8

    Google Scholar 

  • Shi P J, Chen Y Q, Zhang G F, Tang H P, Chen Z, Yu D Y, Yang J, Ye T, Wang J A, Liang S L, Ma Y G, Wu J D, Gong P. 2021. Factors contributing to spatial-temporal variations of observed oxygen concentration over the Qinghai-Tibetan Plateau. Sci Rep, 11: 17338

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukhodolova T, Weber A, Zhang J, Wolter C. 2017. Effects of macrophyte development on the oxygen metabolism of an urban river rehabilitation structure. Sci Total Environ, 574: 1125–1130

    ADS  CAS  PubMed  Google Scholar 

  • Tang W, Zhou T C, Sun J, Li Y R, Li W P. 2017. Accelerated urban expansion in Lhasa city and the implications for sustainable development in a Plateau City. Sustainability, 9: 1499

    Google Scholar 

  • Wang J, Zhao Y Y, Li C C, Yu L, Liu D S, Gong P. 2015. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution. ISPRS J Photogrammetry Remote Sens, 103: 38–47

    ADS  Google Scholar 

  • Wang L, Liu X Y, Huang J P. 2023. High-precision observation of atmospheric oxygen in a typical industrial city of Lanzhou (in Chinese). Adv Earth Sci, 38: 715–728

    Google Scholar 

  • Wu G X, Duan A M, Liu Y M, Mao J Y, Ren R C, Bao Q, Bian H, Liu B Q, Hu W T. 2015. Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl Sci Rev, 2: 100–116

    Google Scholar 

  • Xue W, Lindner S, Nay-Htoon B, Dubbert M, Otieno D, Ko J, Muraoka H, Werner C, Tenhunen J, Harley P. 2016. Nutritional and developmental influences on components of rice crop light use efficiency. Agric For Meteorol, 223: 1–16

    ADS  Google Scholar 

  • Yao T D, Thompson L, Mosbrugger V, Zhang F, Ma Y M, Luo T X, Xu B Q, Yang X X, Joswiak D R, Wang W C, Joswiak M E, Devkota L P, Tayal S, Jilani R, Fayziev R. 2012. Third pole environment (TPE). Environ Dev, 3: 52–64

    Google Scholar 

  • Yao T D, Xue Y K, Chen D L, Chen F H, Thompson L, Cui P, Koike T, Lau W, Lettenmaier D, Mosbrugger V, Zhang R H, Xu B Q, Dozier J, Gillespie T, Gu Y, Kang S C, Piao S L, Sugimoto S, Ueno K, Wang L, Wang W C, Zhang F, Sheng Y W, Guo W D, Yang X X, Ma Y M, Shen S, Su Z B, Chen F, Liang S L, Liu Y M, Singh V, Yang K, Yang D Q, Zhao X Q, Qian Y, Zhang Y, Qian L. 2019. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observation, modelling, and analysis. Bull Am Meteorol Soc, 100: 423–444

    ADS  Google Scholar 

  • Zhang A Y, Wang J A, Jiang Y, Chen Y Q, Shi P J. 2018. Spatiotemporal changes of hazard intensity-adjusted population exposure to multiple hazards in Tibet during 1982–2015. Int J Disaster Risk Sci, 9: 541–554

    Google Scholar 

  • Zhang H, Zhao C L, Zhu W Q. 2021. A new vegetation map for Qinghai-Tibet Plateau by integrated classification from multi-source data products (in Chinese). J Beijing Norm Univ Nat Sci, 57: 816–824

    Google Scholar 

  • Zhao L, Chen D D, Zhao N, Li Q, Cheng Q, Luo C Y, Xu S X, Wang S P, Zhao X Q. 2015. Responses of carbon transfer, partitioning, and residence time to land use in the plant-soil system of an alpine meadow on the Qinghai-Tibetan Plateau. Biol Fertil Soils, 51: 781–790

    CAS  Google Scholar 

  • Zhu W Q, He B K, Xie Z Y, Zhao C L, Zhuang H M, Li P X. 2022. Reconstruction of vegetation index time series based on self-weighting function fitting from curve features. Remote Sens, 14: 2247

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the teachers and students of Beijing Normal University and Qinghai Normal University (Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province&Beijing Normal University) who participated in the field observation measurements. We thank also the three anonymous reviewers for the thoughtful and useful comments on the previous version of our manuscript. This study was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (Grant Nos. 2019QZKK0606 & 2019QZKK0906).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peijun Shi or Lu Jiang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, P., Zhang, Y., Chen, Y. et al. Factors contributing to the oxygen concentration over the Qinghai-Tibetan Plateau and its contribution rate calculation. Sci. China Earth Sci. 67, 497–509 (2024). https://doi.org/10.1007/s11430-023-1238-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1238-7

Keywords

Navigation