Skip to main content

Advertisement

Log in

Plate tectonics in the Archean: Observations versus interpretations

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Plate tectonics theory, established in the 1960s, has been successful in explaining many geological phenomena, processes and events that occurred in the Phanerozoic. However, the theory has often struggled to provide a coherent framework in interpreting geological records in continental interior and Precambrian period. In dealing with the relationship between plate tectonics and continental geology, continental interior tectonics was often separated from continental margin tectonics in the inheritance and development of their structure and composition. This separation led to the illusion that the plate tectonics theory is not applicable to Precambrian geology, particularly in explaining the fundamental geological characteristics of Archean cratons. Although this illusion does not mean that the Archean continental crust did not originate from a regime of plate tectonics, it led to the development of alternative tectonic models, often involving vertical movements under a regime of stagnant lid tectonics, including not only endogenous processes such as gravitational sagduction, mantle plumes and heat pipes but also exogenous processes such as bolide impacts. These vertical processes were not unique to the Archean but persisted into the Phanerozoic. They result from mantle poloidal convection at different depths, not specific to any particular period. Upgrading the plate tectonics theory from the traditional kinematic model in the 20th century to a holistic kinematic-dynamic model in the 21st century and systematically examining the vertical transport of matter and energy at plate margins, it is evident that plate tectonics can explain the common geological characteristics of Archean cratons, such as lithological associations, structural patterns and metamorphic evolution. By deciphering the structure and composition of convergent plate margins as well as their dynamics, the formation and evolution of continental crust since the Archean can be divided into ancient plate tectonics in the Precambrian and modern plate tectonics in the Phanerozoic. In addition, there are the following three characteristic features in the Archean: (1) convective mantle temperatures were 200–300°C higher than in the Phanerozoic, (2) newly formed basaltic oceanic crust was as thick as 30–40 km, and (3) the asthenosphere had a composition similar to the primitive mantle rather than the depleted mantle at present. On this basis, the upgraded plate tectonics theory can successfully explain the major geological phenomena of Archean cratons. This approach provides a new perspective on and deep insights into the evolution of early Earth and the origin of continental crust. In detail, Archean tonalite-trondhjemite-granodiorite (TTG) rocks would result from partial melting of the over-thick basaltic oceanic crust at convergent plate margins. The structural patterns of gneissic domes and greenstone keels would result from the buoyancy-driven emplacement of TTG magmas and its interaction with the basaltic crust at convergent margins, and komatiites in greenstone belts would be the product of mantle plume activity in the regime of ancient plate tectonics. The widespread distribution of high-grade metamorphic rocks in a planar fashion, rather than in zones, is ascrible to separation of the gneissic domes from the greenstone belts. The shortage of calc-alkaline andesites in bimodal volcanic associations suggests the shortage of sediment accretionary wedges derived from weathering of granitic continental crust above oceanic subduction zones. The absence of Penrose-type ophiolites suggests that during the subduction initiation of microplates, only the upper volcanic rocks of the thick oceanic crust were offscrapped to form basalt accretionary wedges. The absence of blueschist and eclogite as well as classic paired metamorphic belts suggests that convergent plate margins were over-thickened through either warm subduction or hard collision of the thick oceanic crust at moderate geothermal gradients. Therefore, only by correctly recognizing and understanding the nature of Archean cartons can plate tectonics reasonably explain their fundamental geological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott D, Mooney W. 1995. The structural and geochemical evolution of the continental crust: Support for the oceanic plateau model of continental growth. Rev Geophys, 33: 231–242

    Article  Google Scholar 

  • Abbott D H. 1996. Plumes and hotspots as sources of greenstone belts. Lithos, 37: 113–127

    Article  Google Scholar 

  • Anderson D L. 1982. Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297: 391–393

    Article  Google Scholar 

  • Anderson D L. 1994. Superplumes or supercontinents? Geology, 22: 39

    Article  Google Scholar 

  • Arndt N. 2013. Formation and evolution of the continental crust. Geochem Persp, 2: 405–533

    Article  Google Scholar 

  • Arndt N. 2023. How did the continental crust form: No basalt, no water, no granite. Precambrian Res, 397: 107196

    Article  Google Scholar 

  • Aulbach S, Arndt N T. 2019. Eclogites as palaeodynamic archives: Evidence for warm (not hot) and depleted (but heterogeneous) Archaean ambient mantle. Earth Planet Sci Lett, 505: 162–172

    Article  Google Scholar 

  • Baes M, Stern R J, Whattam S, Gerya T V, Sobolev S V. 2021. Plume-induced subduction initiation: Revisiting models and observations. Front Earth Sci, 9: 766604

    Article  Google Scholar 

  • Bauer A B, Reimink J R, Chacko T, Foley B J, Shirey S B, Pearson D G. 2020. Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochem Persp Let, 14: 1–6

    Article  Google Scholar 

  • Beall A P, Moresi L, Cooper C M. 2018. Formation ofcratonic lithosphere during the initiation of plate tectonics. Geology, 46: 487–490

    Article  Google Scholar 

  • Bédard J H. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta, 70: 1188–1214

    Article  Google Scholar 

  • Bédard J H. 2018. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci Front, 9: 19–49

    Article  Google Scholar 

  • Belousova E A, Kostitsyn Y A, Griffin W L, Begg G C, O’Reilly S Y, Pearson N J. 2010. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119: 457–466

    Article  Google Scholar 

  • Bickle M J, Nisbet E G, Martin A. 1994. Archean greenstone belts are not oceanic crust. J Geol, 102: 121–137

    Article  Google Scholar 

  • Bleeker W. 2003. The late Archean record: A puzzle in ca. 35 pieces. Lithos, 71: 99–134

    Article  Google Scholar 

  • Bohlen S R. 1991. On the formation of granulites. J Metamorph Geol, 9: 223–229

    Article  Google Scholar 

  • Brown M. 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34: 961

    Article  Google Scholar 

  • Brown M. 2007. Metamorphic conditions in orogenic belts: A record of secular change. Int Geol Rev, 49: 193–234

    Article  Google Scholar 

  • Brown M, Johnson T E. 2018. Secular change in metamorphism and the onset of global plate tectonics. Am Mineral, 103: 181–196

    Article  Google Scholar 

  • Brown M, Johnson T. 2019. Metamorphism and the evolution of subduction on Earth. Am Mineral, 104: 1065–1082

    Article  Google Scholar 

  • Brown M, Johnson T, Gardiner N J. 2020a. Plate tectonics and the Archean Earth. Annu Rev Earth Planet Sci, 48: 291–320

    Article  Google Scholar 

  • Brown M, Kirkland C L, Johnson T E. 2020b. Evolution of geodynamics since the Archean: Significant change at the dawn of the Phanerozoic. Geology, 48: 488–492

    Article  Google Scholar 

  • Campbell I H, Griffiths R W, Hill R I. 1989. Melting in an Archaean mantle plume: Heads it’s basalts, tails it’s komatiites. Nature, 339: 697–699

    Article  Google Scholar 

  • Capitanio F A, Nebel O, Cawood P A, Weinberg R F, Chowdhury P. 2019a. Reconciling thermal regimes and tectonics of the early Earth. Geology, 47: 923–927

    Article  Google Scholar 

  • Capitanio F A, Nebel O, Cawood P A, Weinberg R F, Clos F. 2019b. Lithosphere differentiation in the early Earth controls Archean tectonics. Earth Planet Sci Lett, 525: 115755

    Article  Google Scholar 

  • Carlson R W, Pearson D G, James D E. 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 43: RG1001

    Article  Google Scholar 

  • Cawood P A, Hawkesworth C J, Dhuime B. 2013. The continental record and the generation of continental crust. GSA Bull, 125: 14–32

    Article  Google Scholar 

  • Cawood P A, Hawkesworth C J, Pisarevsky S A, Dhuime B, Capitanio F A, Nebel O. 2018. Geological archive of the onset of plate tectonics. Phil Trans R Soc A, 376: 20170405

    Article  Google Scholar 

  • Cawood P A. 2020a. Earth Matters: A tempo to our planet’s evolution. Geology, 48: 525–526

    Article  Google Scholar 

  • Cawood P A. 2020b. Metamorphic rocks and plate tectonics. Sci Bull, 65: 968–969

    Article  Google Scholar 

  • Cawood P A, Chowdhury P, Mulder J A, Hawkesworth C J, Capitanio F A, Gunawardana P M, Nebel O. 2022. Secular evolution of continents and the Earth system. Rev Geophys, 60: e2022RG000789

    Article  Google Scholar 

  • Chen L, Zhao Z F. 2017. Origin of continental arc andesites: The composition of source rocks is the key. J Asian Earth Sci, 145: 217–232

    Article  Google Scholar 

  • Chen L, Zheng Y F, Xu Z, Zhao Z F. 2021. Generation of andesite through partial melting of basaltic metasomatites in the mantle wedge: Insight from quantitative study of Andean andesites. Geosci Front, 12: 101124

    Article  Google Scholar 

  • Christensen U R. 1984. Heat transport by variable viscosity convection and implications for the Earth’s thermal evolution. Phys Earth Planet Inter, 35: 264–282

    Article  Google Scholar 

  • Chung S L, Liu D, Ji J, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021–1024

    Article  Google Scholar 

  • Condie K C. 2006. TTGs and adakites: Are they both slab melts? Lithos, 80: 33–44

    Article  Google Scholar 

  • Condie K C, Aster R C, van Hunen J. 2016. A great thermal divergence in the mantle beginning 2.5 Ga: Geochemical constraints from greenstone basalts and komatiites. Geosci Front, 7: 543–553

    Article  Google Scholar 

  • Condie K C, Shearer C K. 2017. Tracking the evolution of mantle sources with incompatible element ratios in stagnant-lid and plate-tectonic planets. Geochim Cosmochim Acta, 213: 47–62

    Article  Google Scholar 

  • Condie K C, Puetz S J, Davaille A. 2018. Episodic crustal production before 2.7 Ga. Precambrian Res, 312: 16–22

    Article  Google Scholar 

  • Condie K C, Stern R J. 2023. Ophiolites: Identification and tectonic significance in space and time. Geosci Front, 14: 101680

    Article  Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock J. 2003. Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett, 205: 295–308

    Article  Google Scholar 

  • Cox A, Hart R B. 1986. Plate Tectonics: How it Works. Oxford: Blackwell Scientific Publications. 392

    Google Scholar 

  • Davies G F. 2009. Effect of plate bending on the Urey ratio and the thermal evolution of the mantle. Earth Planet Sci Lett, 287: 513–518

    Article  Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Article  Google Scholar 

  • Dewey J F, Kiseeva E S, Pearce J A, Robb L J. 2021. Precambrian tectonic evolution of Earth: An outline. South African J Geol, 124: 141–162

    Article  Google Scholar 

  • Dhuime B, Hawkesworth C J, Cawood P A, Storey C D. 2012. A change in the geodynamics of continental growth 3 billion years ago. Science, 335: 1334–1336

    Article  Google Scholar 

  • Ernst W G. 1976. Petrologic Phase Equilibria. San Francisco: W H Freeman. 333

    Google Scholar 

  • Ernst W G. 2009. Archean plate tectonics, rise of Proterozoic super-continentality and onset of regional, episodic stagnant-lid behavior. Gondwana Res, 15: 243–253

    Article  Google Scholar 

  • Ernst W G, Sleep N H, Tsujimori T. 2016. Plate-tectonic evolution of the Earth: Bottom-up and top-down mantle circulation. Can J Earth Sci, 53: 1103–1120

    Article  Google Scholar 

  • Fisher C M, Vervoort J D. 2018. Using the magmatic record to constrain the growth of continental crust—The Eoarchean zircon Hf record of Greenland. Earth Planet Sci Lett, 488: 79–91

    Article  Google Scholar 

  • Foley S F, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837–840

    Article  Google Scholar 

  • Foley S F, Buhre S, Jacob D E. 2003. Evolution of the Archaean crust by delamination and shallow subduction. Nature, 421: 249–252

    Article  Google Scholar 

  • Foley S F. 2008. Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci, 1: 503–510

    Article  Google Scholar 

  • Foulger G R. 2010. Plates vs. Plumes: A Geological Controversy. Chichester: Wiley-Blackwell. 328

    Book  Google Scholar 

  • Frisch W, Meschede M, Blakey R C. 2011. Plate Tectonics: Continental Drift and Mountain Building. Berlin Herdelburg: Springer-Verlag. 212

    Book  Google Scholar 

  • Furnes H, Dilek Y. 2022. Archean versus Phanerozoic oceanic crust formation and tectonics: Ophiolites through time. Geosyst Geoenviron, 1: 100004

    Article  Google Scholar 

  • Ganne J, Feng X. 2017. Primary magmas and mantle temperatures through time. Geochem Geophys Geosyst, 18: 872–888

    Article  Google Scholar 

  • Garçon M. 2021. Episodic growth of felsic continents in the past 3.7 Ga. Sci Adv, 7: eabj1807

    Article  Google Scholar 

  • Ge R F, Zhu W G, Wilde S A, Wu H L. 2018. Remnants of Eoarchean continental crust derived from a subducted proto-arc. Sci Adv, 4: eaao3159

    Article  Google Scholar 

  • Ge R F, Wilde S A, Zhu W B, Wang X L. 2023. Earth’s early continental crust formed from wet and oxidizing arc magmas. Nature, 623: 334–339

    Article  Google Scholar 

  • Gerya T V, Stern R J, Baes M, Sobolev S V, Whattam S A. 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527: 221–225

    Article  Google Scholar 

  • Glassley W E, Korstgard J A, Sorensen K, Platou S W. 2014. A new UHP metamorphic complex in the ~1.8 Ga Nagssugtoqidian Orogen of West Greenland. Am Mineral, 99: 1315–1334

    Article  Google Scholar 

  • Gorman B E, Pearce T H, Birkett T C. 1978. On the structure of Archean greenstone belts. Precambrian Res, 6: 23–41

    Article  Google Scholar 

  • Halla J. 2018. Highlights on geochemical changes in Archaean granitoids and their Implications for early Earth geodynamics. Geosciences, 8: 353 Halpin J A, Reid A J. 2016. Earliest Paleoproterozoic high-grade meta-morphism and orogenesis in the Gawler Craton, South Australia: The southern cousin in the Rae family? Precambrian Res, 276: 123–144

    Google Scholar 

  • Hamilton W B. 1998. Archean magmatism and deformation were not products of plate tectonics. Precambrian Res, 91: 143–179

    Article  Google Scholar 

  • Hamilton W B. 2011. Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos, 123: 1–20

    Article  Google Scholar 

  • Hamilton W B. 2020. Toward a myth-free geodynamic history of Earth and its neighbors. Earth-Sci Rev, 198: 102905

    Article  Google Scholar 

  • Hansen V L. 2018. Global tectonic evolution of Venus, from exogenic to endogenic over time, and implications for early Earth processes. Phil Trans R Soc A, 376: 20170412

    Article  Google Scholar 

  • Hastie A R, Law S, Bromiley G D, Fitton J G, Harley S L, Muir D D. 2023. Deep formation of Earth’s earliest continental crust consistent with subduction. Nat Geosci, 16: 816–821

    Article  Google Scholar 

  • Hawkesworth C J, Cawood P A, Dhuime B, Kemp T I S. 2017. Earth’s continental lithosphere through time. Annu Rev Earth Planet Sci, 45: 169–198

    Article  Google Scholar 

  • Hawkesworth C J, Brown M. 2018. Earth dynamics and the development of plate tectonics. Phil Trans R Soc A, 376: 20180228

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett, 292: 79–88

    Article  Google Scholar 

  • Herzberg C, Rudnick R. 2012. Formation of cratonic lithosphere: An integrated thermal and petrological model. Lithos, 149: 4–15

    Article  Google Scholar 

  • Hill R I, Campbell I H, Griffiths R W. 1991. Plume tectonics and the development of stable continental crust. Explor Geophys, 22: 185–188

    Article  Google Scholar 

  • Hill R I. 1993. Mantle plumes and continental tectonics. Science, 256: 186–193

    Article  Google Scholar 

  • Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett, 57: 421–436

    Article  Google Scholar 

  • Holder R M, Viete D R, Brown M, Johnson T E. 2019. Metamorphism and the evolution of plate tectonics. Nature, 572: 378–381

    Article  Google Scholar 

  • Huang B, Kusky T M, Johnson T E, Wilde S A, Wang L, Polat A, Fu D. 2020. Paired metamorphism in the Neoarchean: A record of accretionary-to-collisional orogenesis in the North China Craton. Earth Planet Sci Lett, 543: 116355

    Article  Google Scholar 

  • Huang B, Johnson T E, Wilde S A, Polat A, Fu D, Kusky T. 2022. Coexisting divergent and convergent plate boundary assemblages indicate plate tectonics in the Neoarchean. Nat Commun, 13: 6450

    Article  Google Scholar 

  • Jackson M G, Macdonald F A. 2022. Hemispheric geochemical dichotomy of the mantle is a legacy ofaustral supercontinent assembly and onset of deep continental crust subduction. AGU Adv, 3: e2022AV000664

    Article  Google Scholar 

  • Jayananda M, Moyen J F, Martin H, Peucat J J, Auvray B, Mahabaleswar B. 2000. Late Archaean (2550−2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Res, 99: 225–254

    Article  Google Scholar 

  • Ji M, Gao X Y, Xia Q X, Zheng Y F. 2024. Secular change of metamorphic features in the Himalayan orogen during the Cenozoic and its tectonic implications. Earth Sci Rev, 248: 104640

    Article  Google Scholar 

  • Johnson T E, Brown M, Kaus B J P, VanTongeren J A. 2014. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat Geosci, 7: 47–52

    Article  Google Scholar 

  • Johnson T E, Brown M, Gardiner N J, Kirkland C L, Smithies R H. 2017. Earth’s first stable continents did not form by subduction. Nature, 543: 239–242

    Article  Google Scholar 

  • Kamber B S. 2015. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res, 258: 48–82

    Article  Google Scholar 

  • Keller B, Schoene B. 2018. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth Planet Sci Lett, 481: 290–304

    Article  Google Scholar 

  • Kemp A I S, Wilde S A, Hawkesworth C J, Coath C D, Nemchin A, Pidgeon R T, Vervoort J D, DuFrane S A. 2010. Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett, 296: 45–56

    Article  Google Scholar 

  • Kent R W, Hardarson B S, Saunders A D, Storey M. 1996. Plateaux ancient and modern: Geochemical and sedimentological perspectives on Archaean oceanic magmatism. Lithos, 37: 129–142

    Article  Google Scholar 

  • Kerrich R, Polat A. 2006. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? Tectonophysics, 415: 141–165

    Article  Google Scholar 

  • Koppers AAP, Becker T W, Jackson M G, Konrad K, Müller R D, Romanowicz B, Steinberger B, Whittaker J M. 2021. Mantle plumes and their role in Earth processes. Nat Rev Earth Environ, 2: 382–401

    Article  Google Scholar 

  • Korenaga J. 2006. Archean geodynamics and the thermal evolution of Earth. Geophys Monogr, 164: 7–32

    Google Scholar 

  • Korenaga J. 2008a. Plate tectonics, flood basalts and the evolution of Earth’s oceans. Terra Nova, 20: 419–439

    Article  Google Scholar 

  • Korenaga J. 2008b. Urey ratio and the structure and evolution of Earth’s mantle. Rev Geophys, 46: 2007RG000241

    Article  Google Scholar 

  • Korenaga J. 2013. Initiation and evolution of plate tectonics on Earth: Theories and observations. Annu Rev Earth Planet Sci, 41: 117–151

    Article  Google Scholar 

  • Korenaga J. 2018. Estimating the formation age distribution of continental crust by unmixing zircon ages. Earth Planet Sci Lett, 482: 388–395

    Article  Google Scholar 

  • Korenaga J. 2021. Hadean geodynamics and the nature of early continental crust. Precambrian Res, 359: 106178

    Article  Google Scholar 

  • Kramers J D, Kreissig K, Jones M Q W. 2001. Crustal heat production and style ofmetamorphism: A comparison between two Archean high grade provinces in the Limpopo Belt, southern Africa. Precambrian Res, 112: 149–163

    Article  Google Scholar 

  • Kröner A. 1985. Evolution of the Archean continental crust. Annu Rev Earth Planet Sci, 13: 49–74

    Article  Google Scholar 

  • Kuang J, Morra G, Yuen D A, Kusky T, Jiang S, Yao H, Qi S H. 2023. Metamorphic constraints on Archean tectonics. Precambrian Res, 397: 107195

    Article  Google Scholar 

  • Kusky T M. 1998. Tectonic setting and terrane accretion of the Archean Zimbabwe craton. Geology, 26: 163–166

    Article  Google Scholar 

  • Kusky T. 2020. Plate tectonics in relation to mantle temperatures and metamorphic properties. Sci China Earth Sci, 63: 634–642

    Article  Google Scholar 

  • Kusky T M, Polat A. 1999. Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons. Tectonophysics, 305: 43–73

    Article  Google Scholar 

  • Kusky T M, Wang L. 2022. Growth of continental crust in intra-oceanic and continental margin arc systems: Analogs for Archean systems. Sci China Earth Sci, 65: 1615–1645

    Article  Google Scholar 

  • Kusky T M, Windley B F, Polat A. 2018. Geological evidence for the operation of plate tectonics throughout the Archean: Records from Archean paleo-plate boundaries. J Earth Sci, 29: 1291–1303

    Article  Google Scholar 

  • Kusky T, Windley B F, Polat A, Wang L, Ning W, Zhong Y. 2021. Archean dome-and-basin style structures form during growth and death of intraoceanic and continental margin arcs in accretionary orogens. Earth-Sci Rev, 220: 103725

    Article  Google Scholar 

  • Kusky T M, Şengör AMC. 2023. Comparative orotomy of the Archean Superior and Phanerozoic Altaid orogenic systems. Natl Sci Rev, 10: nwac235

    Article  Google Scholar 

  • Larson R L. 1991. Geological consequences of superplumes. Geology, 19: 963–966

    Article  Google Scholar 

  • Lenardic A. 2018. The diversity of tectonic modes and thoughts about transitions between them. Phil Trans R Soc A, 376: 20170416

    Article  Google Scholar 

  • Le Pichon X, Francheteau J, Bonnin J. 1973. Plate Tectonics. Amsterdam: Elsevier. 300

    Google Scholar 

  • Li S Z, Suo Y H, Li X Y, Liu B, Dai L M, Wang G Z, Wang G, Zhou J, Li Y, Liu Y M, Cao X Z, Somerville I, Mu D L, Zhao S J, Liu J P, Zhen L B, Zhao L T, Zhu J J, Yu S Y, Liu Y J, Zhang G W. 2018. Microplate tectonics: New insights from micro-blocks in the global oceans, continental margins and deep mantle. Earth-Sci Rev, 185: 1029–1064

    Article  Google Scholar 

  • Li Z X, Zhang S B, Zheng Y F, Hanchar J M, Gao P, Lu Y M, Su K, Sun F Y, Liang T. 2021. Crustal thickening and continental formation in the Neoarchean: Geochemical records by granitoids from the Taihua Complex in the North China Craton. Precambrian Res, 367: 106446

    Article  Google Scholar 

  • Li X L, Zhang L F, Wei C J, Bader T, Guo J H. 2023. Cold subduction recorded by the 1.9 Ga Salma eclogite in Belomorian Province (Russia). Earth Planet Sci Lett, 602: 117930

    Article  Google Scholar 

  • Lin S F. 2005. Synchronous vertical and horizontal tectonism in the Neoarchean: Kinematic evidence from a synclinal keel in the north-western Superior craton, Canada. Precambrian Res, 139: 181–194

    Article  Google Scholar 

  • Lin S, Beakhouse G P. 2013. Synchronous vertical and horizontal tectonism at late stages of Archean cratonization and genesis of Hemlo gold deposit, Superior craton, Ontario, Canada. Geology, 41: 359–362

    Article  Google Scholar 

  • Lourenco D L, Rozel A B, Ballmer M D, Tackley P J. 2020. Plutonic-squishy lid: A new global tectonic regime generated by intrusive magmatism on Earth-like planets. Geochem Geophys Geosyst, 21: e2019GC008756

    Article  Google Scholar 

  • Macgregor A M. 1951. Some milestones in the Precambrian of Southern Rhodesia. Proc Geol Soc South Africa, 54: 27–71

    Google Scholar 

  • Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411–429

    Article  Google Scholar 

  • Martin H, Moyen J F. 2002. Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology, 30: 319–322

    Article  Google Scholar 

  • Martin H, Moyen J F, Guitreau M, Blichert-Toft J, Le Pennec J L. 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198–199: 1–13

    Article  Google Scholar 

  • McNamara A K. 2019. A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics, 760: 199–220

    Article  Google Scholar 

  • Miyashiro A. 1973. Paired and unpaired metamorphic belts. Tectonophysics, 17: 241–254

    Article  Google Scholar 

  • Moore W B, Webb A A G. 2013. Heat-pipe Earth. Nature, 501: 501–505

    Article  Google Scholar 

  • Moore W B, Simon J I, Webb A A G. 2017. Heat-pipe planets. Earth Planet Sci Lett, 474: 13–19

    Article  Google Scholar 

  • Moreira H, Storey C, Fowler M, Seixas L, Dunlop J. 2020. Petrogenetic processes at the tipping point of plate tectonics: Hf-O isotope ternary modelling of Earth’s last TTG to sanukitoid transition. Earth Planet Sci Lett, 551: 116558

    Article  Google Scholar 

  • Moresi L, Solomatov V. 1998. Mantle convection with a brittle lithosphere: Thoughts on the global tectonic styles of the Earth and Venus. Geophys J Int, 133: 669–682

    Article  Google Scholar 

  • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42–43

    Article  Google Scholar 

  • Moyen J F. 2011. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123: 21–36

    Article  Google Scholar 

  • Moyen J F, Martin H. 2012. Forty years of TTG research. Lithos, 148: 312–336

    Article  Google Scholar 

  • Moyen J F, Laurent O. 2018. Archaean tectonic systems: A view from igneous rocks. Lithos, 302–303: 99–125

    Article  Google Scholar 

  • Moyen J F, Janoušek V, Laurent O, Bachmann O, Jacob J B, Farina F, Fiannacca P, Villaros A. 2021. Crustal melting vs. fractionation of basaltic magmas: Part 1, granites and paradigms. Lithos, 402–403: 106291

    Article  Google Scholar 

  • Mvondo H, Lentz D, Bardoux M. 2017. Metamorphism in Neoarchean granite-greenstone belts: Insights from the link between Elu and Hope Bay Belts (~2.7 Ga), Northeastern Slave Craton. J Geol, 125: 203–221

    Article  Google Scholar 

  • Nataf H C, Richter F M. 1982. Convection experiments in fluids with highly temperature-dependent viscosity and the thermal evolution of the planets. Phys Earth Planet Inter, 29: 320–329

    Article  Google Scholar 

  • Nebel O, Capitanio F A, Moyen J F, Weinberg R F, Clos F, Nebel-Jacobsen Y J, Cawood P A. 2018. When crust comes of age: On the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics. Phil Trans R Soc A, 376: 20180103

    Article  Google Scholar 

  • Ning W B, Kusky M T, Wang L, Huang B. 2022. Archean eclogite-facies oceanic crust indicates modern-style plate tectonics. Proc Natl Acad Sci USA, 119: e2117529119

    Article  Google Scholar 

  • Nisbet E G, Fowler C M R. 1983. Model for Archean plate tectonics. Geology, 11: 376–379

    Article  Google Scholar 

  • Nutman A P, Bennett V C, Friend C R L, Polat A, Hoffmann E, Van Kranendonk M J. 2021. Fifty years of the Eoarchean and the case for evolving uniformitarianism. Precambrian Res, 367: 106442

    Article  Google Scholar 

  • Nutman A P, Friend C R L, Bennett V C, Yi K, Van Kranendonk M. 2022. Review of the Isua supracrustal belt area (Greenland) Eoarchean geology from integrated 1:20,000 scale maps, field observations and laboratory data: Constraints on early geodynamics. Precambrian Res, 379: 106785

    Article  Google Scholar 

  • O’Reilly T C, Davies G F. 1981. Magma transport of heat on Io: A mechanism allowing a thick lithosphere. Geophys Res Lett, 8: 313–316

    Article  Google Scholar 

  • O’Reilly S Y, Griffin W L, Djomani Y H P, Morgan P. 2001. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle throughtime. GSA Today, 11: 4–10

    Article  Google Scholar 

  • Oreskes N. 2003. Plate Tectonics, An Insider’s History of the Modern Theory of the Earth. Boulder: Westview Press. 424

    Google Scholar 

  • Palin R M, White R W, Green E C R. 2016. Partial melting of metabasic rocks and the generation of tonalitic-trondhjemitic-granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling. Precambrian Res, 287: 73–90

    Article  Google Scholar 

  • Palin R M, Santosh M, Cao W, Li S S, Hernández-Uribe D, Parsons A. 2020. Secular change and the onset of plate tectonics on Earth. Earth-Sci Rev, 207: 103172

    Article  Google Scholar 

  • Parmenter A C, Lin S, Corkery M T. 2006. Structural evolution of the Cross Lake greenstone belt in the northwestern Superior Province, Manitoba: Implications for relationship between vertical and horizontal tectonism. Can J Earth Sci, 43: 767–787

    Article  Google Scholar 

  • Pattison D R M, Goldsmith S A. 2022. Metamorphism of the Buchan type-area, NE Scotland and its relation to the adjacent Barrovian domain. J Geol Soc, 179: jgs2021–040

    Article  Google Scholar 

  • Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14–48

    Article  Google Scholar 

  • Pearson D G, Scott J M, Liu J, Schaeffer A, Wang L H, van Hunen J, Szilas K, Chacko T, Kelemen P B. 2021. Deep continental roots and cratons. Nature, 596: 199–210

    Article  Google Scholar 

  • Perchuk A L, Gerya T V, Zakharov V S, Griffin W L. 2020. Building cratonic keels in Precambrian plate tectonics. Nature, 586: 395–401

    Article  Google Scholar 

  • Perchuk A L, Zakharov V S, Gerya T V, Griffin W L. 2023. Flat subduction in the Early Earth: The key role of discrete eclogitization kinetics. Gondwana Res, 119: 186–203

    Article  Google Scholar 

  • Platt J P, Behr W M, Cooper F J. 2015. Metamorphic core complexes: Windows into the mechanics and rheology of the crust. J Geol Soc, 172: 9–27

    Article  Google Scholar 

  • Rapp R P, Watson E B, Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Pre-cambrian Res, 51: 1–25

    Article  Google Scholar 

  • Rapp R P, Shimizu N, Norman M D. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425: 605–609

    Article  Google Scholar 

  • Roberts N M W. 2013. The boring billion?—Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geosci Front, 4: 681–691

    Article  Google Scholar 

  • Rozel A B, Golabek G J, Jain C, Tackley P J, Gerya T. 2017. Continental crust formation on early Earth controlled by intrusive magmatism. Nature, 545: 332–335

    Article  Google Scholar 

  • Şengör AMC, Lom N, Polat A. 2022. The nature and origin of cratons constrained by their surface geology. GSA Bull, 134: 1485–1505

    Article  Google Scholar 

  • Sizova E, Gerya T, Brown M, Perchuk L L. 2010. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116: 209–229

    Article  Google Scholar 

  • Sizova E, Gerya T, Stüwe K, Brown M. 2015. Generation of felsic crust in the Archean: A geodynamic modeling perspective. Precambrian Res, 271: 198–224

    Article  Google Scholar 

  • Sizova E, Gerya T, Brown M, Stüwe K. 2018. What drives metamorphism in early Archean greenstone belts? Insights from numerical modeling. Tectonophysics, 746: 587–601

    Article  Google Scholar 

  • Sleep N H, Windley B F. 1982. Archean plate tectonics: Constraints and inferences. J Geol, 90: 363–379

    Article  Google Scholar 

  • Smithies R H, Champion D C, Van Kranendonk M J, Howard H M, Hickman A H. 2005a. Modern-style subduction processes in the Mesoarchaean: Geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth Planet Sci Lett, 231: 221–237

    Article  Google Scholar 

  • Smithies R H, Van Kranendonk M J, Champion D C. 2005b. It started with a plume—Early Archaean basaltic proto-continental crust. Earth Planet Sci Lett, 238: 284–297

    Article  Google Scholar 

  • Smithies R H, Van Kranendonk M J, Champion D C. 2007. The Mesoarchean emergence of modern-style subduction. Gondwana Res, 11: 50–68

    Article  Google Scholar 

  • Smithies R H, Lu Y J, Kirkland C L, Johnson T E, Mole D R, Champion D C, Martin L, Jeon H, Wingate M T D, Johnson S P. 2021. Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature, 592: 70–75

    Article  Google Scholar 

  • Solomatov V S. 1995. Scaling of temperature- and stress-dependent viscosity convection. Phys Fluids, 7: 266–274

    Article  Google Scholar 

  • Sotiriou P, Polat A, Windley B F, Kusky T. 2022. Temporal variations in the incompatible trace element systematics of Archean volcanic rocks: Implications for tectonic processes in the early Earth. Precambrian Res, 368: 106487

    Article  Google Scholar 

  • Sotiriou P, Polat A, Windley B, Kusky T. 2023. Temporal variations in the incompatible trace element systematics of Archean TTGs: Implications for crustal growth and tectonic processes in the early Earth. Earth-Sci Rev, 236: 104274

    Article  Google Scholar 

  • Stein C, Schmalzl J, Hansen U. 2004. The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection. Phys Earth Planet Inter, 142: 225–255

    Article  Google Scholar 

  • Stern R J. 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33: 557

    Article  Google Scholar 

  • Stern R J. 2008. Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth’s tectonic history. Geol Soc Am Spec Papers, 440: 265–280

    Google Scholar 

  • Stern R J. 2018. The evolution ofplate tectonics. Phil Trans R Soc A, 376: 20170406

    Article  Google Scholar 

  • Stern R J, Gerya T, Tackley P J. 2018. Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geosci Front, 9: 103–119

    Article  Google Scholar 

  • Stern R. 2020. The Mesoproterozoic single-lid tectonic episode: Prelude to modern plate tectonics. GSA Today, 30: 4–10

    Article  Google Scholar 

  • Tackley P J. 2000. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations, Part 1: Pseudoplastic yielding. Geochem Geophys Geosyst, 1: 1021

    Google Scholar 

  • Tackley P J. 2023. Tectono-convective modes on Earth and other terrestrial bodies. In: Duarte J C, ed. Dynamics of Plate Tectonics and Mantle Convection. Amsterdam: Elsevier. 159–180

    Chapter  Google Scholar 

  • Tang M, Chen K, Rudnick R L. 2016. Archean upper crust transition from mafic to felsic marks the onset ofplate tectonics. Science, 351: 372–375

    Article  Google Scholar 

  • Tang C A, Webb A A G, Moore W B, Wang Y Y, Ma T H, Chen T T. 2020. Breaking Earth’s shell into a global plate network. Nat Commun, 11: 3621

    Article  Google Scholar 

  • Timmerman S, Reimink J R, Vezinet A, Nestola F, Kublik K, Banas A, Stachel T, Stern R A, Luo Y, Sarkar C, Ielpi A, Currie C A, Mircea C, Jackson V, Pearson D G. 2022. Mesoarchean diamonds formed in thickened lithosphere, caused by slab-stacking. Earth Planet Sci Lett, 592: 117633

    Article  Google Scholar 

  • Turcotte D L. 1989. A heat pipe mechanism for volcanism and tectonics on Venus. J Geophys Res, 94: 2779–2785

    Article  Google Scholar 

  • Turner S, Wilde S, Wörner G, Schaefer B, Lai Y J. 2020. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nat Commun, 11: 1241

    Article  Google Scholar 

  • Valley J W, Lackey J S, Cavosie A J, Clechenko C C, Spicuzza M J, Basei M A S, Bindeman I N, Ferreira V P, Sial A N, King E M, Peck W H, Sinha A K, Wei C S. 2005. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol, 150: 561–580

    Article  Google Scholar 

  • van Hunen J, Moyen J F. 2012. Archean subduction: Fact or fiction? Annu Rev Earth Planet Sci, 40: 195–219

    Article  Google Scholar 

  • Van Kranendonk M J, Collins W J, Hickman A, Pawley M J. 2004. Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Res, 131: 173–211

    Article  Google Scholar 

  • Van Kranendonk M J, Hickman A, Smithies R H. 2007. The East Pilbara Terrane of the Pilbara craton, western Australia: Formation of a continental nucleus through repeated mantle plume magmatism. In: Van Kranendonk M J, Smithies R H, Bennet V, eds. Developments in Pre-cambrian Geology, Earth’s Oldest Rocks. Amsterdam: Elsevier. 15: 307–337

    Chapter  Google Scholar 

  • Van Kranendonk M J. 2010. Two types of Archean continental crust: Plume and plate tectonics on early Earth. Am J Sci, 310: 1187–1209

    Article  Google Scholar 

  • Van Kranendonk M J. 2011. Cool greenstone drips and the role of partial convective overturn in Barberton greenstone belt evolution. J African Earth Sci, 60: 346–352

    Article  Google Scholar 

  • Van Kranendonk M J, Smithies R H, Griffin W L, Huston D L, Hickman A H, Champion D C, Anhaeusser C R, Pirajno F. 2015. Making itthick: A volcanic plateau origin of Palaeoarchean continental lithosphere of the Pilbara and Kaapvaal cratons. Geol Soc Lond Spec Publ, 389: 83–111

    Article  Google Scholar 

  • van Thienen P, van den Berg A P, Vlaar N J. 2004. Production and recycling of oceanic crust in the early Earth. Tectonophysics, 386: 41–65

    Article  Google Scholar 

  • Veevers J J. 1989. Middle/Late Triassic (230±5 Ma) singularity in the stratigraphic and magmatic history of the Pangean heat anomaly. Geology, 17: 784

    Article  Google Scholar 

  • Wang Q, Wyman A, Xu J F, Jian P, Zhao Z H, Li C F, Xu W, Ma J L, He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 71: 2609–2636

    Article  Google Scholar 

  • Wang X L, Liu F L, Li J Y, Wang D. 2020. The progressive onset and evolution of Precambrian subduction and plate tectonics. Sci China Earth Sci, 63: 2068–2086

    Article  Google Scholar 

  • Wang X, Zhu W B, Zheng Y F. 2022a. Geochemical constraints on the nature of Late Archean basaltic-andesitic magmatism in the North China Craton. Earth-Sci Rev, 230: 104065

    Article  Google Scholar 

  • Wang X L, Tang M, Moyen J F, Wang D, Kröner A, Hawkesworth C, Xia X P, Xie H Q, Anhaeusser C, Hofmann A, Li J Y, Li L S. 2022b. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary. Natl Sci Rev, 9: nwab136

    Article  Google Scholar 

  • Wang X, Zhu W B, Zheng Y F, Ge R F. 2022c. Tectonic switch from a lithospheric rift to an active continental margin in the Paleoproterozoic: Evidence from low δ18O granites from the Trans-North China Orogen in the North China Craton. Precambrian Res, 377: 106672

    Article  Google Scholar 

  • Wang X. 2023. Crustal growth and reworking at Archean plate margins. Sci China Earth Sci, 66: 2977–2982

    Article  Google Scholar 

  • Webb A A G, Müller T, Zuo J, Haproff P J, Ramirez-Salazar A. 2020. A non-plate tectonic model for the Eoarchean Isua supracrustal belt. Lithosphere, 12: 166–179

    Article  Google Scholar 

  • Weller O M, St-Onge M R. 2017. Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. Nat Geosci, 10: 305–311

    Article  Google Scholar 

  • Whattam S A, Stern R J. 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Res, 27: 38–63

    Article  Google Scholar 

  • White W M. 2022. Did the Neoproterozoic revolution extend to the deep mantle? AGU Adv, 3: e2022AV000862

    Article  Google Scholar 

  • Whitney D L, Teyssier C, Rey P, Buck W R. 2013. Continental and oceanic core complexes. GSA Bull, 125: 273–298

    Article  Google Scholar 

  • Wilson J T. 1963. A possible origin of the Hawaiian Islands. Can J Phys, 41: 863–870

    Article  Google Scholar 

  • Windley B F, Kusky T, Polat A. 2021. Onset of plate tectonics by the Eoarchean. Precambrian Res, 352: 105980

    Article  Google Scholar 

  • Wu Z Z, Wang C, Song S G, Allen M B, Kusky T, Su L. 2022. Ultrahigh-pressure peridotites record Neoarchean collisional tectonics. Earth Planet Sci Lett, 596: 117787

    Article  Google Scholar 

  • Xu C, Kynicky J, Song W, Tao R B, Lü Z, Li Y, Yang Y, Pohanka M, Galiova M V, Zhang L F, Fei Y W. 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nat Commun, 9: 2790

    Article  Google Scholar 

  • Yu C Y, Yang T, Zhang J, Zhao G C, Cawood P A, Yin C Q, Qian J H, Gao P, Zhao C. 2022. Coexisting diverse P-T-t paths during Neoarchean Sagduction: Insights from numerical modeling and applications to the eastern North China Craton. Earth Planet Sci Lett, 586: 117529

    Article  Google Scholar 

  • Zhai M G, Peng P. 2020. Origin of early continents and beginning of plate tectonics. Sci Bull, 65: 970–973

    Article  Google Scholar 

  • Zhang J, Lin S, Linnen R, Martin R. 2014. Structural setting of the Young-Davidson syenite-hosted gold deposit in the Western Cadillac-Larder Lake deformation zone, abitibi greenstone belt, Superior Province, Ontario. Precambrian Res, 248: 39–59

    Article  Google Scholar 

  • Zhang Q Q, Gao X Y, Chen R X, Zheng Y F. 2023. Metamorphic evolution of the East Tethys tectonic domain and its tectonic implications. Sci China Earth Sci, 66: 2686–2711

    Article  Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A, Lu L Z. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev, 40: 706–721

    Article  Google Scholar 

  • Zhao G C, Cawood P A, Wilde S A, Lu L Z. 2001a. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and Tectonic implications. J Petrol, 42: 1141–1170

    Article  Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A, Sun M. 2001b. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73

    Article  Google Scholar 

  • Zhao G C, Sun M, Wilde S A, Li S Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177–202

    Article  Google Scholar 

  • Zhao G C, Zhang G W. 2021. The origin of continents (in Chinese with English abstract). Acta Geol Sin, 95: 1–19

    Google Scholar 

  • Zhao C, Zhang J, Zhao G, Yin C, Chen G, Liu J, Liu X, Chen W. 2022. Kinematics and structural evolution of the Anziling dome-and-keel architecture in east China: Evidence of Neoarchean vertical tectonism in the North China Craton. GSA Bull, 134: 2115–2129

    Google Scholar 

  • Zhao G C, Zhang J, Yin C Q, Wang C, Zhang G W. 2023. Pre-plate tectonics and continental origins (in Chinese with English abstract). Chin Sci Bull, 68: 2312–2323

    Article  Google Scholar 

  • Zheng Y F, Wu Y B, Chen F K, Gong B, Li L, Zhao Z F. 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta, 68: 4145–4165

    Article  Google Scholar 

  • Zheng Y F, Ye K, Zhang L F. 2009. Developing the plate tectonics from oceanic subduction to continental collision. Sci Bull, 54: 2549–2555

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

  • Zheng Y F, Chen R X. 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J Asian Earth Sci, 145: 46–73

    Article  Google Scholar 

  • Zheng Y F. 2019. Subduction zone geochemistry. Geosci Front, 10: 1223–1254

    Article  Google Scholar 

  • Zheng Y F, Zhao G C. 2020. Two styles ofplate tectonics in Earth’s history. Sci Bull, 65: 329–334

    Article  Google Scholar 

  • Zheng Y F, Xu Z, Chen L, Dai L Q, Zhao Z F. 2020. Chemical geodynamics of mafic magmatism above subduction zones. J Asian Earth Sci, 194: 104185

    Article  Google Scholar 

  • Zheng Y F, Chen R X. 2021. Extreme metamorphism and metamorphic facies series at convergent plate boundaries: Implications for supercontinent dynamics. Geosphere, 17: 1647–1685

    Article  Google Scholar 

  • Zheng Y F, Gao P. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos, 402–403: 106232

    Article  Google Scholar 

  • Zheng Y F, Miller C F, Xu X, Moyen J F, Wang X L. 2021. Introduction to the origin of granites and related rocks. Lithos, 402–403: 106380

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Chen R X, Dai L Q. 2022. Tectonic evolution of convergent plate margins and its geological effects. Sci China Earth Sci, 65: 1247–1276

    Article  Google Scholar 

  • Zheng Y F. 2023. Plate tectonics in the twenty-first century. Sci China Earth Sci, 66: 1–40

    Article  Google Scholar 

  • Zhong Y T, Kusky T M, Wang L, Polat A, Peng Y Y, Luan Z K, Liu X Y, Wang C H, Wang J P. 2021. Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nat Commun, 12: 6172

    Article  Google Scholar 

  • Zhong Y T, Kusky T M, Wang L. 2022. Giant Archean sheath folded nappe stack demonstrates large subhorizontal shear strains, North China. Geology, 50: 577–582

    Article  Google Scholar 

  • Zhong Y T, Kusky T M, Wang L, Wang C H, Peng Y Y, Wang T T, Yan C. 2023. Alpine-style tectonic nappe stacking in an Archean suture zone: Quantitative structural profile places constraints on orogenic architecture. Gondwana Res, 117: 86–116

    Article  Google Scholar 

  • Zhu R X, Zhao G C, Xiao W J, Chen L, Tang Y J. 2021. Origin, accretion, and reworking of continents. Rev Geophys, 59: e2019RG000689

    Article  Google Scholar 

  • Zulbati F, Harley S L. 2007. Late Archaean granulite facies metamorphism in the Vestfold Hills, East Antarctica. Lithos, 93: 39–67

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Peter CAWOOD, Tim KUSKY, Mingguo ZHAI, Guochun ZHAO, Yusheng WAN, Sanzhong LI, Xiaolei WANG, Bo WAN, Peng PENG, Shaobing ZHANG and Xi WANG for their comments on various versions of this article. This study was supported by the National Natural Science Foundation of China (Grant No. 92155306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongFei Zheng.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y. Plate tectonics in the Archean: Observations versus interpretations. Sci. China Earth Sci. 67, 1–30 (2024). https://doi.org/10.1007/s11430-023-1210-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1210-5

Keywords

Navigation