Skip to main content
Log in

Influence of sea-land breeze on the formation and dissipation of severe dense fog and its burst reinforcement in the Yellow Sea coastal area, China

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Based on the global reanalysis data of the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research, the surface meteorological observation data, sounding data and satellite observation data, this paper comprehensively analyzes the evolution process and formation mechanism of a persistent severe dense fog process occurred on February 15–17, 2015 in Yancheng, eastern China. Through the numerical simulation experiment of Weather Research and Forecast (WRF) model, we further analyze the impact of sea-land breeze on the formation and burst reinforcement of fog. Results show that the precipitation caused by the southwesterly airflow in front of the upper-level trough and the low-pressure inverted trough are conducive to the formation of early rain fog, while the nighttime clear radiance under the control of surface cold high and the infiltration of weak cold advection are conducive to the formation and development of later radiation-advection fog. The WRF model simulates the fog evolution process, which is basically consistent with the actual fog area, and the simulation results are credible to a certain extent. The simulation results show that the establishment of sea breeze has an advection cooling effect on the near surface layer, which is conducive to the formation and development of the inversion layer on the near surface, providing stable stratification conditions for the formation and burst reinforcement of fog. On one hand, the strengthening of sea breeze circulation can continuously transport water vapor to the study area. On the other, the occurrence of ultra-low level jet is favorable for the accumulation of low-level water vapor. At the same time, the inversion intensity further strengthens, which is in favor of the burst reinforcement and long-term maintenance of fog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andreas E L, Claffy K J, Makshtas A P. 2000. Low-level atmospheric jets and inversions over the western Weddell Sea. Bound-Layer Meteor, 97: 459–486

    ADS  Google Scholar 

  • Bendix J, Eugster W, Klemm O. 2011. Fog-boon or bane? Erdkunde, 65: 229–232

    Google Scholar 

  • Brenguier J L, Pawlowska H, Schüller L, Preusker R, Fischer J, Fouquart Y. 2000. Radiative properties of boundary layer clouds: droplet effective radius versus number concentration. J Atmos Sci, 57: 803–821

    ADS  Google Scholar 

  • Bushahab A, Suwaidi A A, Ghedira H, Mubarak K. 2009. Fog forecasting, detection and monitoring in the UAE using SEVIRI-MSG data. Geoscience and Remote Sensing Symposium, Geoscience and Remote Sensing Symposium, IEEE International, IGARSS

  • Chen S, Liu D, Kang Z, Shi Y, Liu M. 2021. Anomalous atmospheric circulation associated with the extremely persistent dense fog events over eastern China in the late autumn of 2018. Atmosphere, 12: 111

    ADS  Google Scholar 

  • Chen Y, Yang K, Zhou D, Qin J, Guo X. 2010. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J Hydrometeorol, 11: 995–1006

    ADS  Google Scholar 

  • Choi H, Speer M S. 2006. The influence of synoptic-mesoscale winds and sea surface temperature distribution on fog formation near the Korean western peninsula. Meteorol Appl, 13: 347–360

    Google Scholar 

  • Ding Q, Sun J, Huang X, Ding A, Zou J, Yang X, Fu C. 2019. Impacts of black carbon on the formation of advection-radiation fog during a haze pollution episode in eastern China. Atmos Chem Phys, 19: 7759–7774

    CAS  ADS  Google Scholar 

  • Ding Y H, Liu Y J. 2014. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Sci China Earth Sci, 57: 36–46

    ADS  Google Scholar 

  • Fu G, Guo J, Pendergrass A, Li P. 2008. An analysis and modeling study of a sea fog event over the Yellow and Bohai Seas. J Ocean Univ China, 7: 27–34

    Google Scholar 

  • Fuzzi S, Facchini M C, Orsi G, Lind J A, Wobrock W, Kessel M, Maser R, Jaeschke W, Enderle K H, Arends B G, Berner A, Solly I, Kruisz C, Reischl G, Pahl S, Kaminski U, Winkler P, Ogren J A, Noone K J, Hallberg A, Fierlinger-Oberlinninger H, Puxbaum H, Marzorati A, Hansson H C, Wiedensohler A, Svenningsson I B, Martinsson B G, Schell D, Georgii H W. 1992. The po valley fog experiment 1989: An overview. Tellus B-Chem Phys Meteor, 44: 448–468

    Google Scholar 

  • Fuzzi S, Laj P, Ricci L, Orsi G, Heintzenberg J, Wendisch M, Yuskiewicz B, Mertes S, Orsini D, Schwanz M, Wiedensohler A, Stratmann F, Berg O, Swietlicki E, Frank G, Martinsson B, Günther A, Dierssen J, Schell D, Jaeschke W, Berner A, Dusek U, Galambos Z, Kruisz C, Mesfin N, Wobrock W, Arends B, Brink H. 1988. Overview of the Po valley fog experiment 1994 (CHEMDROP). Contrib Atmosph Phys, 71: 3–19

    Google Scholar 

  • Goodman J. 1977. The microstructure of california coastal fog and stratus. J Appl Meteor, 16: 1056–1067

    Google Scholar 

  • Grell G A, Dévényi D. 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett, 29: 1693

    ADS  Google Scholar 

  • Gultepe I, Tardif R, Michaelides S C, Cermak J, Bott A, Bendix J, Müller M D, Pagowski M, Hansen B, Ellrod G, Jacobs W, Toth G, Cober S G. 2007. Fog research: A review of past achievements and future perspectives. Pure appl geophys, 164: 1121–1159

    ADS  Google Scholar 

  • Guo L J, Guo X L, Fang C G, Zhu S C. 2015. Observation analysis on characteristics of formation, evolution and transition of a long-lasting severe fog and haze episode in North China. Sci China Earth Sci, 58: 329–344

    CAS  ADS  Google Scholar 

  • Haeffelin M, Bergot T, Elias T, Tardif R, Carrer D, Chazette P, Colomb M, Drobinski P, Dupont E, Dupont J C, Gomes L, Musson-Genon L, Pietras C, Plana-Fattori A, Protat A, Rangognio J, Raut J C, Rémy S, Richard D, Sciare J, Zhang X. 2010. Parisfog. Bull Amer Meteor Soc, 91: 767–783

    ADS  Google Scholar 

  • Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev, 134: 2318–2341

    ADS  Google Scholar 

  • Jia X, Guo X. 2015. Impacts of secondary aerosols on a persistent fog event in Northern China. Atmosph Ocean Sci Lett, 5: 401–407

    Google Scholar 

  • Jiao S M, Zhu C Y, Zhu Y Y, Yuan C S, Zu F, Sun K Y. 2016. A discussion on the reason for arare persistent heavy fog event in Jiangsu Province (in Chinese). Acta Meteorol Sin, 74: 202–212

    Google Scholar 

  • Jin G, Gao S, Shi H, Lu X, Yang Y, Zheng Q. 2022. Impacts of sea-land breeze circulation on the formation and development of coastal sea fog along the Shandong Peninsula: A case study. Atmosphere, 13: 165

    ADS  Google Scholar 

  • Jin W M, Wang X Y, Hong Z X, Zhao D S. 1983. Intermittent characteristics of ultra-low level jets under nighttime inversion conditions (in Chinese). Atmos sci, 7: 296–302

    Google Scholar 

  • Korb G, Zdunkowski W. 1970. Distribution of radiative energy in ground fog. Tellus A-Dynam Meteor Oceanogr, 22: 298–320

    Google Scholar 

  • Kunkel B. 1984. Parameterization of droplet terminal velocity and extinction coefficient in fog models. J Appl Meteor, 23: 34–41

    Google Scholar 

  • Li Z H, Huang J P, Sun B Y, Peng H. 1999. Burst characteristics during the development of radiation fog (in Chinese). Atmos sci, 23: 623–631

    Google Scholar 

  • Li Z H, Liu D Y, Yang J. 2011. The microphysical processes and macroscopic conditions of the radiation fog droplet spectrum broadening (in Chinese). Atmos sci, 35: 41–54

    Google Scholar 

  • Li Z, Liu D, Yan W, Wang H, Zhu C, Zhu Y, Zu F. 2019. Dense fog burst reinforcement over Eastern China: A review. Atmos Res, 230: 104639

    Google Scholar 

  • Liang M, Yang J, Wang W W, Yan W L, Pu M J. 2019. The burst reinforcement process of the twice heavy fog after the rain (in Chinese). J Meteorol Sci, 39: 153–163

    Google Scholar 

  • Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteor, 22: 1065–1092

    ADS  Google Scholar 

  • Liu D Y, Pu M J, Yang J, Zhang G Z, Li Z H. 2010. Microphysical structure and evolution of a four-day persistent fog event in Nanjing in December 2006. Acta Meteorol Sin, 24: 104–115

    Google Scholar 

  • Liu D, Yang J, Niu S, Li Z. 2011. On the evolution and structure of a radiation fog event in Nanjing. Adv Atmos Sci, 28: 223–237

    Google Scholar 

  • Liu D Y, Niu S J, Yang J, Zhao L J, Lv J J, Lu C S. 2012. Summary of a 4-year fog field study in northern Nanjing, Part I: Fog boundary layer. Pure App Geophys, 169: 809–819

    ADS  Google Scholar 

  • Liu D Y, Yan W L, Yang J, Pu M J, Niu S J, Li Z H. 2016. A study of the physical processes of an advection fog boundary layer. Bound-Layer Meteorol, 158: 125–138

    ADS  Google Scholar 

  • Liu D, Li Z, Yan W, Li Y. 2017. Advances in fog microphysics research in China. Asia-Pac J Atmos Sci, 53: 131–148

    Google Scholar 

  • Liu D Y, Yan W L, Qian J L, Liu M, Wang Z D, Cheng M N, Peng H Q. 2021. A movable fog-haze boundary layer conceptual model Over Jianghuai area, China. Front Environm Sci, 9: 823616

    Google Scholar 

  • Liu M, Yan W L, Zhang B, Yu J W, Jin X X. 2014. Analysis on persistence and intensification mechanism of fog and haze in Jiangsu in January 2013 (in Chinese). Meteorol Month, 40: 835–843

    Google Scholar 

  • Lu C S, Niu S J, Yang J, Liu X, Zhao L J. 2010. Jump features and causes of macro and microphysical structures of a winter fog in Nanjing (in Chinese). Chin J Atmosph Sci, 34: 681–690

    Google Scholar 

  • Lu X, Gao S H, Rao L J, Wang Y M. 2014. Sensitivity study of WRF parameterization schemes for the spring sea fog in the yellow sea (in Chinese). J Meteorol Sci, 25: 312–320

    Google Scholar 

  • Ma N, Zhao C S, Chen J, Xu W Y, Yan P, Zhou X J. 2014. A novel method for distinguishing fog and haze based on PM2.5, visibility, and relative humidity. Sci China Earth Sci, 57: 2156–2164

    CAS  ADS  Google Scholar 

  • Matsui T, Zhang S Q, Lang S E, Tao W K, Ichoku C, Peters-Lidard C D. 2020. Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African Monsoon simulations. Clim Dyn, 55: 193–213

    Google Scholar 

  • Mlawer E J, Taubman S J, Brown P D, Iacono M J, Clough S A. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res, 102: 16663–16682

    CAS  ADS  Google Scholar 

  • Meyer M B, Jiusto J E, Lala G G. 1980. Measurements of visual range and radiation-fog (haze) microphysics. J Atmos Sci, 37: 622–629

    ADS  Google Scholar 

  • Mu M, Zhang R H. 2014. Addressing the issue of fog and haze: A promising perspective from meteorological science and technology. Sci China Earth Sci, 57: 1–2

    ADS  Google Scholar 

  • National Meteorological Centre. 2012. The Grade of fog forecast (GB/T 27964–2011) of the Compilation of Chinese National Standards. Beijing: Standards Press of China, 519

    Google Scholar 

  • Niu S, Lu C, Liu Y, Zhao L, Lü J, Yang J. 2010. Analysis of the microphysical structure of heavy fog using a droplet spectrometer: A case study. Adv Atmos Sci, 27: 1259–1275

    Google Scholar 

  • Niu S J, Liu D Y, Zhao L J, Lu C S, Lü J J, Yang J. 2012. Summary of a 4-year fog field study in northern Nanjing, Part 2: Fog microphysics. Pure Appl Geophys, 169: 1137–1155

    ADS  Google Scholar 

  • Taylor G I. 2007. The formation of fog and mist. Quart J Royal Meteorol Soc, 43: 241–268

    ADS  Google Scholar 

  • Okita T. 1962. Observations of the vertical structure of a stratus cloud and radiation fogs in relation to the mechanism of drizzle formation. Tellus, 14: 310–322

    ADS  Google Scholar 

  • Papanastasiou D K, Melas D, Bartzanas T, Kittas C. 2010. Temperature, comfort and pollution levels during heat waves and the role of sea breeze. Int J Biometeorol, 54: 307–317

    PubMed  Google Scholar 

  • Pilié R J, Mack E J, Rogers C W, Katz U, Kocmond W C. 1923. The Formation of marine fog and the development of fog-stratus systems along the California Coast. J Appl Meteor, 18: 1275–1286

    Google Scholar 

  • Price J. 2011. Radiation fog. Part I: Observations of stability and drop size distributions. Bound-Layer Meteorol, 139: 167–191

    ADS  Google Scholar 

  • Pu M J, Yan W L, Shang Z T, Yang Jun, Li Z H. 2008a. Study on the physical characteristics of burst reinforcement during the winter fog of Nanjing (in Chinese). Plateau Meteorol, 27: 1111–1118

    Google Scholar 

  • Pu M J, Zhang G Z, Yan W L, Li Z H. 2008b. Characteristics of a rare advection radiation fog process (in Chinese). Sci Sinica Terrae, 38: 776–783

    Google Scholar 

  • Roach W T, Brown R, Caughey S J, Garland J A, Readings C J. 1976. The physics of radiation fog: I. A field study. Q J R Meteorol Soc, 102: 313–333

    ADS  Google Scholar 

  • Shen P F, Liu D Y, Gultep I, Lin H J, Cai N H, Wang Z D. 2022. Boundary Layer Features of One Winter Fog in the Yangtze River Delta, China. Pure and Applied Geophysics

  • Stull R B. 1988. An Introduction to Boundary Layer Meteorology. The Netherlands: Springer Dordrecht

    Google Scholar 

  • van der Velde I R, Steeneveld G J, Wichers Schreur B G J, Holtslag A A M. 2010. Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon Weather Rev, 138: 4237–4253

    ADS  Google Scholar 

  • Wang B H. 1980. The Continuation and dissipation of sea fog along China coast and its vicinity. J Ocean Univ Qingdao, 10: 20–30

    Google Scholar 

  • Wang B N, Zhang X R, Sun M, Tian L, Pu M J. 2020. Characteristics and formation mechanism of precipitation fog events in Jiangsu province (in Chinese). J Meteorol Environ, 36: 58–66

    CAS  Google Scholar 

  • Wang H B, Zhang Z W, Liu D Y, Yuan C S, Zhou L Y, Qian W. 2018. Detection of fog at night by using the new geostationary satellite Himawari-8 (in Chinese). Plateau Meteorol, 37: 1749–1764

    Google Scholar 

  • Wang H B, Wu H, Li Y, Xu J P, Zu F, Zhang Z W. 2020. Validation of rotorcraft UAV boundary layer meteorological observation data and its application in a heavy fog event in Yancheng (in Chinese). Meteor Mon, 46: 89–97

    Google Scholar 

  • Wang H B, Zhang Z W, Liu D Y, Zhu Y Y, Zhang X R, Yuan C S. 2020. Study on a large-scale persistent strong dense fog event in central and eastern China. Adv Meteorol, 2020: 8872334

    Google Scholar 

  • Wang H B, Zhang Z W, Liu D Y, Zu F, Zhu Y Y, Wu H. 2021. Characteristics of the macro-and micro-structures of the different grades fog in Jiangsu Province (in Chinese). Plat Meteorol, 40: 1177–1188

    Google Scholar 

  • Wang S, Fu D, Chen D L, Li P Y, Fu G. 2012. An observation and numerical simulation of a sea fog event over the Yellow Sea in the spring of 2009. Trans Atmos Sci, 35: 282–294

    Google Scholar 

  • Wang S Z, Song X L. 1989. The sea/land breeze in the northern coastal area of Shandong Peninsula. Acta Oceanol Sin, 8: 367–378

    Google Scholar 

  • Wang Y, Niu S, Lu C, Lv J, Zhang J, Zhang H, Zhang S, Shao N, Sun W, Jin Y, Song Q. 2021. Observational study of the physical and chemical characteristics of the winter radiation fog in the tropical rainforest in Xishuangbanna, China. Sci China Earth Sci, 64: 1982–1995

    ADS  Google Scholar 

  • Wei J S, Zhu W J, Yan W L, Sun Y, Wu J, Liu J W. 2010. Climatic charaacteristics of fog and its relevant influencing factors over the coastal areas of Jiangsu (in Chinese). Trans Atmos Sci, 33: 680–687

    Google Scholar 

  • Willett H C. 1928. Fog and haze, their causes, distribution, and forecasting. Mon Wea Rev, 56: 435–468

    ADS  Google Scholar 

  • Wu B G, Zhang H S, Zhang C C, Wang Z Y, Yu L L, Liu B X, Xie Y Y. 2008. Analysis of the micro-meteorologic element during the advection fog period in the south of Tianjin city (in Chinese). Acta Scientiar Natural Universitat Pekinens, 44: 744–750

    Google Scholar 

  • Wu B G, Ma C P, Cai Z Y, Yu L, Zhao N, Qu X L. 2014. Mechanisms of local explosive development of a radiation fog event (in Chinese). Plateau Meteorol, 33: 1393–1402

    Google Scholar 

  • Wu D. 2008. Discussion on the distinction between haze and fog and analysis and processing of data (in Chinese). Environ Chem, 27: 327–330

    CAS  Google Scholar 

  • Xu H G, Deng B S, Zhou X G, Wang Q. 2002. Effect of fog on urban boundary layer and environment (in Chinese). Chin J Atmosph Sci, 13: 170–176

    Google Scholar 

  • Yan S Q, Zhu B, Huang Y, Zhu J, Kang H Q, Lu C S, Zhu T. 2020. To what extents do urbanization and air pollution affect fog? Atmosph Chem Phys, 20: 5559–5572

    CAS  ADS  Google Scholar 

  • Yan S, Zhu B, Zhu T, Shi C, Liu D, Kang H, Lu W, Lu C. 2021. The effect of aerosols on fog lifetime: Observational evidence and model simulations. Geophys Res Lett, 48: e2020GL61803

    ADS  Google Scholar 

  • Yan W L, Liu D Y, Pu M J, Li Z H. 2010. Formation and structure characteristics of precipitation fog in Nanjing (in Chinese). Meteorol Mont 36: 29–36

    Google Scholar 

  • Yan W L, Zhu C Y, Zhu Y Y, Liu D Y, Pu M J. 2018. Study on a wide range of explosive heavy fog in Jiangsu (in Chinese). Meteorol Mont, 44: 892–901

    Google Scholar 

  • Yang J, Gao Y, Wu B G, Dong Q R, Wang Z Y, Hu H F. 2021. Advection fog process and its microphysical properties: A case study in Tianjin (in Chinese). Trans Atmos Sci, 44: 945–953

    CAS  Google Scholar 

  • Yin Z C, Wang H J, Guo W L. 2015. Climatic change features of fog and haze in winter over North China and Huang-Huai Area. Sci China Earth Sci, 58: 1370–1376

    ADS  Google Scholar 

  • Zhang G Z, Bian L G, Wang J Z, Yang Y Q, Yao W Q, Xu X D. 2005. Characteristics of boundary layer formed by fog in Beijing and its surrounding areas. Sci China Ser D Earth Sci, 35(Suppl): 73–83

    Google Scholar 

  • Zhang R, Li Q, Zhang R N. 2014. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci China Earth Sci, 57: 26–35

    ADS  Google Scholar 

  • Zhou B B. 1994. On the relationship between fog and air pollution (in Chinese). Meteorol Mont, 20: 19–24

    Google Scholar 

  • Zhu C Y, Zhu Y Y, Zu F, Yan W L, Wang H B. 2018. Some Characteristics of the development of heavy fog in Autumn and Winter in Jiangsu Province (in Chinese). Meteorol Mont, 44: 1208–1219

    Google Scholar 

Download references

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 42075063 & 42075066), the Open Project of State Key Laboratory of Severe Weather (Grant No. 2021LASW-A07), the Jiangsu Meteorological Youth Fund Project (Grant No. KQ202215), the Special Fund for Basic Scientific Research Business of China Academy of Meteorological Sciences (Grant No. 2022Y025), the Bei Ji Ge Open Research Fund (Grant No. BJG202307), and the Science and Technology Project of Yancheng Meteorological Administration (Grant No. YQK2021016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duanyang Liu.

Ethics declarations

Conflict of interest The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Liu, D., Yan, S. et al. Influence of sea-land breeze on the formation and dissipation of severe dense fog and its burst reinforcement in the Yellow Sea coastal area, China. Sci. China Earth Sci. 67, 432–449 (2024). https://doi.org/10.1007/s11430-022-1243-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1243-8

Keywords

Navigation