Skip to main content
Log in

A lunar time scale from the perspective of the Moon’s dynamic evolution

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A geologic time scale is a chronological system that separates the geological strata of a planetary body into different units in temporal sequence and shows its progressive evolution. The time scale of the Moon was established a half-century ago during the telescopic-early Apollo exploration era, using data with limited spatial coverage and resolution. The past decades have seen a wide array of studies, which have significantly extended our understanding of global lunar geologic evolution. Based on a comprehensive review of lunar evolution with respect to the dynamical changes, we propose two major updates to the current lunar time scale paradigm to include the evolution of both endogenic and exogenic dynamic forces now known to have influenced early lunar history. Firstly, based on the temporal interplay of exogenic and endogenic processes in altering the Moon, we defined three Eon/Eonothem-level units to represent three dynamical evolutionary phases. Secondly, the pre-Nectarian System is redefined and divided as the magma ocean-era Magma-oceanian System and the following Aitkenian System beginning with the South Pole-Aitken basin. The ejecta of this basin, Das Formation, was deposited on the primordial lunar crust as the oldest stratum produced from exogenic processes. The updated lunar time scale, facilitated by the post-Apollo exploration and research advances, provides an integrated framework to depict the evolution of the Moon and has important implications for the geologic study of other terrestrial planets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker D M H, Head J W, Phillips R J, Neumann G A, Bierson C J, Smith D E, Zuber M T. 2017. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation. Icarus, 292: 54–73

    Article  Google Scholar 

  • Barr A C. 2016. On the origin of Earth’s Moon. J Geophys Res-Planets, 121: 1573–1601

    Article  Google Scholar 

  • Boehnke P, Harrison T M. 2016. Illusory late heavy bombardments. Proc Natl Acad Sci USA, 113: 10802–10806

    Article  Google Scholar 

  • Borg L E, Gaffney A M, Shearer C K. 2015. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit Planet Sci, 50: 715–732

    Article  Google Scholar 

  • Borg L, Norman M, Nyquist L, Bogard D, Snyder G, Taylor L, Lindstrom M. 1999. Isotopic studies of ferroan anorthosite 62236: A young lunar crustal rock from a light rare-earth-element-depleted source. Geochim Cosmochim Acta, 63: 2679–2691

    Article  Google Scholar 

  • Bottke W F, Norman M D. 2017. The late heavy bombardment. Annu Rev Earth Planet Sci, 45: 619–647

    Article  Google Scholar 

  • Boyet M, Carlson R W, Borg L E, Horan M. 2015. Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust formation. Geochim Cosmochim Acta, 148: 203–218

    Article  Google Scholar 

  • Braden S E, Stopar J D, Robinson M S, Lawrence S J, van der Bogert C H, Hiesinger H. 2014. Evidence for basaltic volcanism on the Moon within the past 100 million years. Nat Geosci, 7: 787–791

    Article  Google Scholar 

  • Canup R M. 2012. Forming a moon with an Earth-like composition via a giant impact. Science, 338: 1052–1055

    Article  Google Scholar 

  • Che X, Nemchin A, Liu D, Long T, Wang C, Norman M D, Joy K H, Tartese R, Head J, Jolliff B, Snape J F, Neal C R, Whitehouse M J, Crow C, Benedix G, Jourdan F, Yang Z, Yang C, Liu J, Xie S, Bao Z, Fan R, Li D, Li Z, Webb S G. 2021. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science, 374: 887–890

    Article  Google Scholar 

  • Cloutis E A, Gaffey M J. 1991. Pyroxene spectroscopy revisited: Spectral-compositional correlations and relationship to geothermometry. J Geophys Res, 96: 22809–22826

    Article  Google Scholar 

  • Cohen K M, Finney S C, Gibbard P L, Fan J X. 2013. The ICS international chronostratigraphic chart. Episodes, 36: 199–204

    Article  Google Scholar 

  • Collins G S, Melosh H J, Osinski G R. 2012. The impact-cratering process. Elements, 8: 25–30

    Article  Google Scholar 

  • Collins G S, Patel N, Davison T M, Rae A S P, Morgan J V, Gulick S P S, Christeson G L, Chenot E, Claeys P, Cockell C S, Coolen M J L, Ferrière L, Gebhardt C, Goto K, Jones H, Kring D A, Lofi J, Lowery C M, Ocampo-Torres R, Perez-Cruz L, Pickersgill A E, Poelchau M H, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Smit J, Tikoo S M, Tomioka N, Urrutia-Fucugauchi J, Whalen M T, Wittmann A, Xiao L, Yamaguchi K E, Artemieva N, Bralower T J. 2020. A steeply-inclined trajectory for the Chicxulub impact. Nat Commun, 11: 1480

    Article  Google Scholar 

  • Conrad J W, Nimmo F, Fassett C I, Kamata S. 2018. Lunar impact history constrained by GRAIL-derived basin relaxation measurements. Icarus, 314: 50–63

    Article  Google Scholar 

  • Curran N M, Joy K H, Snape J F, Pernet-Fisher J F, Gilmour J D, Nemchin A A, Whitehouse M J, Burgess R. 2019. The early geological history of the Moon inferred from ancient lunar meteorite Miller Range 13317. Meteorit Planet Scien, 54: 1401–1430

    Article  Google Scholar 

  • Elkins-Tanton L T, Burgess S, Yin Q Z. 2011. The lunar magma ocean: Reconciling the solidification process with lunar petrology and geo-chronology. Earth Planet Sci Lett, 304: 326–336

    Article  Google Scholar 

  • Elkins-Tanton L T. 2012. Magma oceans in the inner solar system. Annu Rev Earth Planet Sci, 40: 113–139

    Article  Google Scholar 

  • Fischer-Gödde M, Becker H. 2011. What is the age of the Nectaris basin? New Re-Os constraints for a pre-4.0 Ga bombardment history of the Moon. Lunar and Planetary Sciecne Conference. 1414

  • Garrick-Bethell I, Miljković K, Hiesinger H, van der Bogert C H, Laneuville M, Shuster D L, Korycansky D G. 2020. Troctolite 76535: A sample of the Moon’s South Pole-Aitken basin? Icarus, 338: 113430

    Article  Google Scholar 

  • Garrick-Bethell I, Zuber M T. 2009. Elliptical structure of the lunar South Pole-Aitken basin. Icarus, 204: 399–408

    Article  Google Scholar 

  • Gomes R, Levison H F, Tsiganis K, Morbidelli A. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435: 466–469

    Article  Google Scholar 

  • Gradstein F M, Ogg J G, Schmitz M D, Ogg G M. 2020. Geologic Time Scale 2020. Amsterdam, Netherlands: Elsevier

    Google Scholar 

  • Gradstein F M, Ogg J G. 2020. Chapter 2—The Chronostratigraphic Scale. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. Geologic Time Scale 2020. Amsterdam: Elsevier. 21–32

    Chapter  Google Scholar 

  • Green R O, Pieters C, Mouroulis P, Eastwood M, Boardman J, Glavich T, Isaacson P, Annadurai M, Besse S, Barr D, Buratti B, Cate D, Chatterjee A, Clark R, Cheek L, Combe J, Dhingra D, Essandoh V, Geier S, Goswami J N, Green R, Haemmerle V, Head J, Hovland L, Hyman S, Klima R, Koch T, Kramer G, Kumar A S K, Lee K, Lundeen S, Malaret E, McCord T, McLaughlin S, Mustard J, Nettles J, Petro N, Plourde K, Racho C, Rodriquez J, Runyon C, Sellar G, Smith C, Sobel H, Staid M, Sunshine J, Taylor L, Thaisen K, Tompkins S, Tseng H, Vane G, Varanasi P, White M, Wilson D. 2011. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J Geophys Res, 116: e00G19

    Article  Google Scholar 

  • Gross J, Joy K H. 2016. Evolution, lunar: From magma ocean to crust formation. In: Cudnik B, ed. Encyclopedia of Lunar Science. Cham, Switzerland: Springer International Publishing

    Google Scholar 

  • Gustafson J O, Bell J F, Gaddis L R, Hawke B R, Giguere T A. 2012. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera data. J Geophys Res, 117: e00H25

    Article  Google Scholar 

  • Hawke B R, Blewett D T, Lucey P G, Smith G A, Bell Iii J F, Campbell B A, Robinson M S. 2004. The origin of lunar crater rays. Icarus, 170: 1–16

    Article  Google Scholar 

  • Head J W, Fassett C I, Kadish S J, Smith D E, Zuber M T, Neumann G A, Mazarico E. 2010. Global distribution of large lunar Craters: Implications for resurfacing and impactor populations. Science, 329: 1504–1507

    Article  Google Scholar 

  • Head J W, Pieters C, McCord T, Adams J, Zisk S. 1978. Definition and detailed characterization of lunar surface units using remote observations. Icarus, 33: 145–172

    Article  Google Scholar 

  • Head J W, Wilson L. 1992. Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim Cosmochim Acta, 56: 2155–2175

    Article  Google Scholar 

  • Head J W, Wilson L. 2017. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations). Icarus, 283: 176–223

    Article  Google Scholar 

  • Head J W. 1974. Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland samples. Moon, 11: 327–356

    Article  Google Scholar 

  • Hess P C, Parmentier E M. 1995. A model for the thermal and chemical evolution of the Moon’s interior: Implications for the onset of mare volcanism. Earth Planet Sci Lett, 134: 501–514

    Article  Google Scholar 

  • Hiesinger H, Head III J W, WolfU, Jaumann R, Neukum G, Ambrose WA, Williams D A. 2011. Ages and stratigraphy of lunar mare basalts: A synthesis. In: Ambrose W A, Williams D A, eds. Recent Advances and Current Research Issues in Lunar Stratigraphy. Geological Society of America. 1–51

  • Hiesinger H, Head J W, Wolf U, Jaumann R, Neukum G. 2010. Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-frequency distribution measurements. J Geophys Res, 115: e03003

    Article  Google Scholar 

  • Hiesinger H, Tanaka K. 2020. Chapter 15—The Planetary Time Scale. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. Geologic Time Scale 2020. Amsterdam, Netherlands: Elsevier. 443–480

    Chapter  Google Scholar 

  • Hiesinger H, van der Bogert C, Pasckert J, Schmedemann N, Robinson M, Jolliff B, Petro N. 2012. New crater size-frequency distribution measurements of the South Pole-Aitken basin. In: 43rd Lunar and Planetary Science Conference. 43: 2863

  • Holsapple K A. 1993. The scaling of impact processes in planetary sciences. Annu Rev Earth Planet Sci, 21: 333–373

    Article  Google Scholar 

  • Horgan B H N, Cloutis E A, Mann P, Bell J F. 2014. Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra. Icarus, 234: 132–154

    Article  Google Scholar 

  • Hörz F, Brownlee D E, Fechtig H, Hartung J B, Morrison D A, Neukum G, Schneider E, Vedder J F, Gault D E. 1975. Lunar microcraters: Implications for the micrometeoroid complex. Planet Space Sci, 23: 151–172

    Article  Google Scholar 

  • Housen K R, Schmidt R M, Holsapple K A. 1983. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis. J Geophys Res, 88: 2485–2499

    Article  Google Scholar 

  • Huang Y H, Soderblom J M, Minton D A, Hirabayashi M, Melosh H J. 2022. Bombardment history of the Moon constrained by crustal porosity. Nat Geosci, 15: 531–535

    Article  Google Scholar 

  • Ivanov M A, Hiesinger H, van der Bogert C H, Orgel C, Pasckert J H, Head J W. 2018. Geologic history of the northern portion of the South Pole-Aitken basin on the Moon. J Geophys Res-Planets, 123: 2585–2612

    Article  Google Scholar 

  • Ji J, Guo D, Liu J, Chen S, Ling Z, Ding X, Han K, Chen J, Cheng W, Zhu K, Liu J, Wang J, Chen J, Ouyang Z. 2022. The 1:2,500,000-scale geologic map of the global Moon. Sci Bull, 67: 1544–1548

    Article  Google Scholar 

  • Johnson B C, Blair D M, Collins G S, Melosh H J, Freed A M, Taylor G J, Head J W, Wieczorek M A, Andrews-Hanna J C, Nimmo F, Keane J T, Miljkovi K, Soderblom J M, Zuber M T. 2016. Formation of the Orientale lunar multiring basin. Science, 354: 441–444

    Article  Google Scholar 

  • Jolliff B L, Gillis J J, Haskin L A, Korotev R L, Wieczorek M A. 2000. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J Geophys Res, 105: 4197–4216

    Article  Google Scholar 

  • Jolliff B L, Wieczorek M A, Shearer C K, Neal C R. 2006. New views of the Moon. Chantilly, Virginia: Mineralogical Society of America

    Book  Google Scholar 

  • Jones M J, Evans A J, Johnson B C, Weller M B, Andrews-Hanna J C, Tikoo S M, Keane J T. 2022. A South Pole-Aitken impact origin of the lunar compositional asymmetry. Sci Adv, 8: eabm8475

    Article  Google Scholar 

  • Klima R L, Pieters C M, Boardman J W, Green R O, Head Iii J W, Isaacson P J, Mustard J F, Nettles J W, Petro N E, Staid M I, Sunshine J M, Taylor L A, Tompkins S. 2011. New insights into lunar petrology: Distribution and composition ofprominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3). J Geophys Res, 116: e00G06

    Article  Google Scholar 

  • Laneuville M, Taylor J, Wieczorek M A. 2018. Distribution of radioactive heat sources and thermal history of the Moon. J Geophys Res-Planets, 123: 3144–3166

    Article  Google Scholar 

  • Laneuville M, Wieczorek M A, Breuer D, Tosi N. 2013. Asymmetric thermal evolution of the Moon. J Geophys Res-Planets, 118: 1435–1452

    Article  Google Scholar 

  • Le Feuvre M, Wieczorek M A. 2008. Nonuniform cratering of the terrestrial planets. Icarus, 197: 291–306

    Article  Google Scholar 

  • Lee D C, Halliday A N, Snyder G A, Taylor L A. 1997. Age and origin of the Moon. Science, 278: 1098–1103

    Article  Google Scholar 

  • Li C, Hu H, Yang M F, Pei Z Y, Zhou Q, Ren X, Liu B, Liu D, Zeng X, Zhang G, Zhang H, Liu J, Wang Q, Deng X, Xiao C, Yao Y, Xue D, Zuo W, Su Y, Wen W, Ouyang Z. 2022. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl Sci Rev, 9: Nwab188

    Article  Google Scholar 

  • Li Q L, Zhou Q, Liu Y, Xiao Z, Lin Y, Li J H, Ma H X, Tang G Q, Guo S, Tang X, Yuan J Y, Li J, Wu F Y, Ouyang Z, Li C, Li X H. 2021. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature, 600: 54–58

    Article  Google Scholar 

  • Liu J, Liu J, Yue Z, Zhang L, Wang J, Zhu K. 2022. Characterization and interpretation of the global lunar impact basins based on remote sensing. Icarus, 378: 114952

    Article  Google Scholar 

  • Lock S J, Stewart S T, Petaev M I, Leinhardt Z, Mace M T, Jacobsen S B, Cuk M. 2018. The origin of the Moon within a terrestrial synestia. J Geophys Res-Planets, 123: 910–951

    Article  Google Scholar 

  • Marks N E, Borg L E, Shearer C K, Cassata W S. 2019. Geochronology of an Apollo 16 clast provides evidence for a basin-forming impact 4.3 billion years ago. J Geophys Res-Planets, 124: 2465–2481

    Article  Google Scholar 

  • Maurice M, Tosi N, Schwinger S, Breuer D, Kleine T. 2020. A long-lived magma ocean on a young Moon. Sci Adv, 6: eaba8949

    Article  Google Scholar 

  • Mazrouei S, Ghent R R, Bottke W F, Parker A H, Gernon T M. 2019. Earth and Moon impact flux increased at the end of the Paleozoic. Science, 363: 253–257

    Article  Google Scholar 

  • McCauley J F. 1966. The nature of the lunar surface as determined by systematic geologic mapping. Mant Earth Terrestr Planet, 1: 431–460

    Google Scholar 

  • Melosh H J, Kendall J, Horgan B, Johnson B C, Bowling T, Lucey P G, Taylor G J. 2017. South Pole-Aitken basin ejecta reveal the Moon’s upper mantle. Geology, 45: 1063–1066

    Article  Google Scholar 

  • Mighani S, Wang H, Shuster D L, Borlina C S, Nichols C I O, Weiss B P. 2020. The end of the lunar dynamo. Sci Adv, 6: eaax0883

    Article  Google Scholar 

  • Miljković K, Wieczorek M A, Collins G S, Laneuville M, Neumann G A, Melosh H J, Solomon S C, Phillips R J, Smith D E, Zuber M T. 2013. Asymmetric distribution of lunar impact basins caused by variations in target properties. Science, 342: 724–726

    Article  Google Scholar 

  • Miljković K, Wieczorek M A, Laneuville M, Nemchin A, Bland P A, Zuber M T. 2021. Large impact cratering during lunar magma ocean solidification. Nat Commun, 12: 5433

    Article  Google Scholar 

  • Morbidelli A, Nesvorny D, Laurenz V, Marchi S, Rubie D C, Elkins-Tanton L, Wieczorek M, Jacobson S. 2018. The timeline of the lunar bombardment: Revisited. Icarus, 305: 262–276

    Article  Google Scholar 

  • Moriarty D P, Pieters C M. 2018. The character of South Pole-Aitken basin: Patterns of surface and sub-surface composition. J Geophys Res-Planets, 123: 729–747

    Article  Google Scholar 

  • Morota T, Haruyama J, Ohtake M, Matsunaga T, Honda C, Yokota Y, Kimura J, Ogawa Y, Hirata N, Demura H, Iwasaki A, Sugihara T, Saiki K, Nakamura R, Kobayashi S, Ishihara Y, Takeda H, Hiesinger H. 2011. Timing and characteristics of the latest mare eruption on the Moon. Earth Planet Sci Lett, 302: 255–266

    Article  Google Scholar 

  • Neal C R, Taylor L A. 1992. Petrogenesis of mare basalts: A record of lunar volcanism. Geochim Cosmochim Acta, 56: 2177–2211

    Article  Google Scholar 

  • Nemchin A A, Long T, Jolliff B L, Wan Y, Snape J F, Zeigler R, Grange M L, Liu D, Whitehouse M J, Timms N E, Jourdan F. 2021. Ages of lunar impact breccias: Limits for timing of the Imbrium impact. Geochemistry, 81: 125683

    Article  Google Scholar 

  • Nesvorný D, Roig F. 2018. Dynamical origin and terrestrial impact flux of large near-Earth asteroids. Astron J, 155: 42

    Article  Google Scholar 

  • Neukum G, Ivanov B A, Hartmann W K. 2001. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci Rev, 96: 55–86

    Article  Google Scholar 

  • Neukum G, Ivanov B A. 1994. Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data. In: Gehrels T G, ed. Hazards due to Comets and Asteroids. Tucson: University of Arizona Press. 359–416

    Google Scholar 

  • Neumann G A, Zuber M T, Wieczorek M A, Head J W, Baker D M H, Solomon S C, Smith D E, Lemoine F G, Mazarico E, Sabaka T J, Goossens S J, Melosh H J, Phillips R J, Asmar S W, Konopliv A S, Williams J G, Sori M M, Soderblom J M, Miljkovic K, Andrews-Hanna J C, Nimmo F, Kiefer W S. 2015. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Sci Adv, 1: e1500852

    Article  Google Scholar 

  • Norman M D, Duncan R A, Huard J J. 2010. Imbrium provenance for the Apollo 16 Descartes terrain: Argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim Cosmochim Acta, 74: 763–783

    Article  Google Scholar 

  • Norman M D, Nemchin A A. 2014. A 4.2 billion year old impact basin on the Moon: U-Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet Sci Lett, 388: 387–398

    Article  Google Scholar 

  • Nyquist L E, Shih C Y. 1992. The isotopic record of lunar volcanism. Geochim Cosmochim Acta, 56: 2213–2234

    Article  Google Scholar 

  • Ohtake M, Matsunaga T, Haruyama J, Yokota Y, Morota T, Honda C, Ogawa Y, Torii M, Miyamoto H, Arai T, Hirata N, Iwasaki A, Nakamura R, Hiroi T, Sugihara T, Takeda H, Otake H, Pieters C M, Saiki K, Kitazato K, Abe M, Asada N, Demura H, Yamaguchi Y, Sasaki S, Kodama S, Terazono J, Shirao M, Yamaji A, Minami S, Akiyama H, Josset J L. 2009. The global distribution of pure anorthosite on the Moon. Nature, 461: 236–240

    Article  Google Scholar 

  • Orgel C, Michael G, Fassett C I, van der Bogert C H, Riedel C, Kneissl T, Hiesinger H. 2018. Ancient bombardment of the inner solar system: Reinvestigation of the “fingerprints” of different impactor populations on the lunar surface. J Geophys Res-Planets, 123: 748–762

    Article  Google Scholar 

  • Perera V, Jackson Alan P, Elkins-Tanton Linda T, Asphaug E. 2018. Effect of reimpacting debris on the solidification of the lunar Magma Ocean. J Geophys Res-Planets, 123: 1168–1191

    Article  Google Scholar 

  • Petro N E, Pieters C M. 2006. Modeling the provenance of the Apollo 16 regolith. J Geophys Res, 111: e09005

    Article  Google Scholar 

  • Petro N E, Pieters C M. 2008. The lunar-wide effects of basin ejecta distribution on the early megaregolith. Meteorit Planet Sci, 43: 1517–1529

    Article  Google Scholar 

  • Pike R J. 1974. Ejecta from large craters on the Moon: Comments on the geometric model of McGetchin et al.. Earth Planet Sci Lett, 23: 265–271

    Article  Google Scholar 

  • Povilaitis R Z, Robinson M S, van der Bogert C H, Hiesinger H, Meyer H M, Ostrach L R. 2018. Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the moon. Planet Space Sci, 162: 41–51

    Article  Google Scholar 

  • Qiao L, Head J, Wilson L, Xiao L, Kreslavsky M, Dufek J. 2017. Ina pit crater on the Moon: Extrusion of waning-stage lava lake magmatic foam results in extremely young crater retention ages. Geology, 45: 455–458

    Article  Google Scholar 

  • Remane J, Bassett M G, Cowie J W, Gohrbandt K H, Lane H R, Michelsen O, Naiwen W. 1996. Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS). Episodes, 19: 77–81

    Article  Google Scholar 

  • Richardson J E, Abramov O. 2020. Modeling the Formation of the lunar upper megaregolith layer. Planet Sci J, 1: 2

    Article  Google Scholar 

  • Robbins S J. 2019. A new global database of lunar impact craters >1–2 km: 1. crater locations and sizes, comparisons with published databases, and global analysis. J Geophys Res-Planets, 124: 871–892

    Article  Google Scholar 

  • Sahijpal S, Goyal V. 2018. Thermal evolution ofthe early Moon. Meteorit Planet Scien, 53: 2193–2211

    Article  Google Scholar 

  • Salmon J, Canup R M. 2014. Accretion of the Moon from non-canonical discs. Phil Trans R Soc A, 372: 20130256

    Article  Google Scholar 

  • Salvador A. 2013. International Stratigraphic Guide. Boulder, Colorado: Geological Society of America

    Book  Google Scholar 

  • Schmitt H H, Trask N J, Shoemaker E M. 1967. Geologic map of the Copernicus quadrangle of the Moon, Miscellaneous Geologic Investigations. Flagstaff, Arizona: U.S. Geological Survey. Map I–515

    Google Scholar 

  • Schultz P H, Crawford D A, Ambrose W A, Williams D A. 2011. Origin of nearside structural and geochemical anomalies on the Moon. In: Ambrose W A, Williams D A, eds. Recent Advances and Current Research Issues in Lunar Stratigraphy. McLean, Virginia: Geological Society of America. 141–159

    Google Scholar 

  • Schultz P H, Crawford D A. 2016. Origin and implications of non-radial Imbrium Sculpture on the Moon. Nature, 535: 391–394

    Article  Google Scholar 

  • Scott D H, McCauley J F. 1977. Geologic map of the west side of the Moon, Geologic Atlas ofthe Moon. Flagstaff, Arizona: U.S. Geological Survey. I–1034

    Google Scholar 

  • Shearer C K, Hess P C, Wieczorek M A, Pritchard M E, Parmentier E M, Borg L E, Longhi J, Elkins-Tanton L T, Neal C R, Antonenko I, Canup R M, Halliday A N, Grove T L, Hager B H, Lee D C, Wiechert U. 2006. Thermal and magmatic evolution of the moon. In: Jolliff B L, Wieczorek M A, Shearer C K, Neal C R, eds. New Views of the Moon. Chantilly, Virginia: The Mineralogical Society of America. 365–518

    Chapter  Google Scholar 

  • Shoemaker E M, Hackman R J. 1962. Stratigraphic basis for a lunar time scale. Symp-Int Astron Union, 14: 289–300

    Article  Google Scholar 

  • Shoemaker E M. 1964. The geology of the moon. Sci Am, 211: 38–47

    Article  Google Scholar 

  • Snape J F, Nemchin A A, Whitehouse M J, Merle R E, Hopkinson T, Anand M. 2019. The timing ofbasaltic volcanism at the Apollo landing sites. Geochim Cosmochim Acta, 266: 29–53

    Article  Google Scholar 

  • Snyder G A, Taylor L A, Halliday A N. 1995. Chronology and petrogenesis of the lunar highlands alkali suite: Cumulates from KREEP basalt crystallization. Geochim Cosmochim Acta, 59: 1185–1203

    Article  Google Scholar 

  • Stegman D R, Jellinek A M, Zatman S A, Baumgardner J R, Richards M A. 2003. An early lunar core dynamo driven by thermochemical mantle convection. Nature, 421: 143–146

    Article  Google Scholar 

  • Stoffler D, Ryder G, Ivanov B A, Artemieva N A, Cintala M J, Grieve R A F. 2006. Cratering history and lunar chronology. In: Jolliff B L, Wieczorek M A, Shearer C K, Neal C R, eds. New Views of the Moon. Chantilly, Virginia: Mineralogical Society of America. 519–596

    Chapter  Google Scholar 

  • Stöfler D, Ryder G. 2001. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Space Sci Rev, 96: 9–54

    Article  Google Scholar 

  • Stuart-Alexander D E, Wilhelms D E. 1975. The Nectarian system, a new lunar time-stratigraphic unit. J Res U. S. Geol Surv, 3: 53–58

    Google Scholar 

  • Taylor S R. 1989. Growth of planetary crusts. Tectonophysics, 161: 147–156

    Article  Google Scholar 

  • Terada K, Anand M, Sokol A K, Bischoff A, Sano Y. 2007. Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature, 450: 849–852

    Article  Google Scholar 

  • Wang Y, Wu B, Xue H, Li X, Ma J. 2021. An improved global catalog of lunar impact craters (≽1 km) with 3D morphometric information and updates on global crater analysis. J Geophys Res-Planets, 126: e2020JE006728

    Article  Google Scholar 

  • Warren P H. 1985. The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci, 13: 201–240

    Article  Google Scholar 

  • Weiss B P, Tikoo S M. 2014. The lunar dynamo. Science, 346: 1246753

    Article  Google Scholar 

  • Whitaker E A. 1981. The lunar Procellarum basin. Proc Lunar Planet Sci, 12: 105–111

    Google Scholar 

  • White L F, Černok A, Darling J R, Whitehouse M J, Joy K H, Cayron C, Dunlop J, Tait K T, Anand M. 2020. Evidence of extensive lunar crust formation in impact melt sheets 4,330 Myr ago. Nat Astron, 4: 974–978

    Article  Google Scholar 

  • Whitten J L, Head J W. 2015. Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism. Icarus, 247: 150–171

    Article  Google Scholar 

  • Wilhelms D E, McCauley J F, Trask N J. 1987. The Geologic History of the Moon. Washington DC: U.S. Government Printing Office

    Book  Google Scholar 

  • Wilhelms D E. 1970. Summary of lunar stratigraphy: Telescopic observations, Geological survey professional paper 599-F. Washington D.C.: U. S. Government Printing Office

    Google Scholar 

  • Wood J A. 1975. Lunar petrogenesis in a well-stirred magma ocean. In: 6th Lunar and Planetary Science Conference. 6: 881–883

  • Yamamoto S, Nakamura R, Matsunaga T, Ogawa Y, Ishihara Y, Morota T, Hirata N, Ohtake M, Hiroi T, Yokota Y, Haruyama J. 2012. Massive layer of pure anorthosite on the Moon. Geophys Res Lett, 39: L13201

    Article  Google Scholar 

  • Yue Z, Michael G G, Di K, Liu J. 2017. Global survey of lunar wrinkle ridge formation times. Earth Planet Sci Lett, 477: 14–20

    Article  Google Scholar 

  • Yue Z, Yang M, Jia M, Michael G, Di K, Gou S, Liu J. 2020. Refined model age for Orientale Basin derived from zonal crater dating of its ejecta. Icarus, 346: 113804

    Article  Google Scholar 

  • Zhang B, Lin Y, Moser D E, Hao J, Shieh S R, Bouvier A. 2019. Imbrium age for zircons in Apollo 17 South Massif impact melt breccia 73155. J Geophys Res-Planets, 124: 3205–3218

    Article  Google Scholar 

  • Zhang F, Li C L, Zou Y L, Liu J Z, Liu J J, Zheng Y C, Miao L C, Wang S J, Lin Y T, Liu D Y, Ouyang Z Y. 2010. Lunar tectonic evolution: A conceptual basis for interpreting the lunar photographic images achieved by Chang’e 1 orbiter. Geochimica, 39: 110–122

    Google Scholar 

  • Zhang N, Ding M, Zhu M H, Li H, Li H, Yue Z. 2022. Lunar compositional asymmetry explained by mantle overturn following the South Pole-Aitken impact. Nat Geosci, 15: 37–41

    Article  Google Scholar 

  • Zhu M H, Artemieva N, Morbidelli A, Yin Q Z, Becker H, Wünnemann K. 2019a. Reconstructing the late-accretion history of the Moon. Nature, 571: 226–229

    Article  Google Scholar 

  • Zhu M H, Wünnemann K, Artemieva N. 2017. Effects of Moon’s thermal state on the impact basin ejecta distribution. Geophys Res Lett, 44: 11,292–11,300

    Article  Google Scholar 

  • Zhu M H, Wünnemann K, Potter R W K, Kleine T, Morbidelli A. 2019b. Are the Moon’s nearside-farside asymmetries the result of a giant impact? J Geophys Res-Planets, 124: 2117–2140

    Article  Google Scholar 

Download references

Acknowledgements

We thank Briony H.N. HORGAN for the discussion on M3 data processing. We are grateful for the teams working for LROC, LOLA and M3 data, which can be obtained at NASA’s Planetary Data System (http://pds.nasa.gov/), the Chinese Lunar Exploration Program and the exploration data are available at Lunar and Deep Space Exploration Scientific Data and Sample Release System (http://202.106.152.98:8081/moondata/). The data used for calculation and figure plotting can be downloaded at https://doi.org/10.12176/03.99.02174. This work was supported partly by the National Key Research and Development Program of China (Grant No. 2022YFF0503100), the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000), the National Natural Science Foundation of China (Grant Nos. 41902317, 41941002, 41773065), and the National Science and Technology Infrastructure Work Projects (Grant No. 2015FY210500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Liu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Liu, J., Head, J.W. et al. A lunar time scale from the perspective of the Moon’s dynamic evolution. Sci. China Earth Sci. 67, 234–251 (2024). https://doi.org/10.1007/s11430-022-1183-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1183-4

Keywords

Navigation