Skip to main content

An adaptive representation model for geoscience knowledge graphs considering complex spatiotemporal features and relationships

Abstract

Geoscience knowledge graph (GKG) can organize various geoscience knowledge into a machine understandable and computable semantic network and is an effective way to organize geoscience knowledge and provide knowledge-related services. As a result, it has gained significant attention and become a frontier in geoscience. Geoscience knowledge is derived from many disciplines and has complex spatiotemporal features and relationships of multiple scales, granularities, and dimensions. Therefore, establishing a GKG representation model conforming to the characteristics of geoscience knowledge is the basis and premise for the construction and application of GKG. However, existing knowledge graph representation models leverage fixed tuples that are limited in fully representing complex spatiotemporal features and relationships. To address this issue, this paper first systematically analyzes the categorization and spatiotemporal features and relationships of geoscience knowledge. On this basis, an adaptive representation model for GKG is proposed by considering the complex spatiotemporal features and relationships. Under the constraint of a unified spatiotemporal ontology, this model adopts different tuples to adaptively represent different types of geoscience knowledge according to their spatiotemporal correlation. This model can efficiently represent geoscience knowledge, thereby avoiding the isolation of the spatiotemporal feature representation and improving the accuracy and efficiency of geoscience knowledge retrieval. It can further enable the alignment, transformation, computation, and reasoning of spatiotemporal information through a spatiotemporal ontology.

This is a preview of subscription content, access via your institution.

Similar content being viewed by others

References

  • Bittner T, Donnelly M, Smith B. 2009. A spatio-temporal ontology for geographic information integration. Int J Geogr Inf Sci, 23: 765–798

    Article  Google Scholar 

  • Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. 2008. Freebase: A collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. 1247–1250

  • Brown T, Mann B, Ryder N, Subbiah M, Kaplan J D, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D. 2020. Language models are few-shot learners. Adv Neural Inf Process Syst, 33: 1877–1901

    Google Scholar 

  • Buccella A, Cechich A, Gendarmi D, Lanubile F, Semeraro G, Colagrossi A. 2011. Building a global normalized ontology for integrating geographic data sources. Comput Geosci, 37: 893–916

    Article  Google Scholar 

  • Cox S J D, Richard S M. 2015. A geologic timescale ontology and service. Earth Sci Inform, 8: 5–19

    Article  Google Scholar 

  • Feng M, Liu S, Euliss Jr. N H, Young C, Mushet D M. 2011. Prototyping an online wetland ecosystem services model using open model sharing standards. Environ Model Software, 26: 458–468

    Article  Google Scholar 

  • Galton A. 2009. Spatial and temporal knowledge representation. Earth Sci Inform, 2: 169–187

    Article  Google Scholar 

  • Gao J L, Qiu P Y, Yu L, Huang Z C, Lu F. 2020. An interpretable attraction recommendation method based on knowledge graph. Sci Sin-Inf, 50: 1055–1068

    Article  Google Scholar 

  • Gao S. 2020. A review of recent researches and reflections on geospatial artificial intelligence (in Chinese). Geomat Inform Sci Wuhan Univ, 45: 1865–1874

    Google Scholar 

  • Hoffart J, Suchanek F M, Berberich K, Weikum G. 2013. YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artif Intelligence, 194: 28–61

    Article  Google Scholar 

  • Hogan A, Blomqvist E, Cochez M, D’amato C, Melo G D, Gutierrez C, Kirrane S, Gayo J E L, Navigli R, Neumaier S, Ngomo A C N, Polleres A, Rashid S M, Rula A, Schmelzeisen L, Sequeda J, Staab S, Zimmermann A. 2022. Knowledge Graphs. ACM Comput Surv, 54: 1–37

    Article  Google Scholar 

  • Hou Z W, Zhu Y Q, Gao X, Pan P, Luo K, Wang D X. 2015. Time ontology and its application in geo-data retrieval (in Chinese). J Geo-Inform Sci, 17: 379–390

    Google Scholar 

  • Hui B, Zhang L Z, Zhou X, Wen X, Nian Y H. 2022. Personalized recommendation system based on knowledge embedding and historical behavior. Appl Intell, 52: 954–966

    Article  Google Scholar 

  • Ji S X, Pan S R, Cambria E, Marttinen P, Philip S Y. 2022. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans Neural Netw Learn Syst, 33: 494–514

    Article  Google Scholar 

  • Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes P N, Hellmann S, Morsey M, van Kleef P, Auer S, Bizer C. 2015. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web, 6: 167–195

    Article  Google Scholar 

  • Li X, Yuan L W, Pei T, Huang X, Liu G, Zheng D H. 2022a. Disciplinary structure and development strategy of information geography in China. J Geogr Sci, 32: 1670–1682

    Article  Google Scholar 

  • Li X, Zheng D H, Feng M, Chen F H. 2022b. Information geography: The information revolution reshapes geography. Sci China Earth Sci, 65: 379–382

    Article  Google Scholar 

  • Liu Y. 2022. Core or edge? Revisiting GIScience from the geography-discipline perspective. Sci China Earth Sci, 65: 387–390

    Article  Google Scholar 

  • Liu Z Y, Han X, Sun M S. 2020. Knowledge Graph and Deep Learning (in Chinese). Beijing: Tsinghua University Press

    Google Scholar 

  • Lu F, Yu L, Qiu P Y. 2017. On geographic knowledge graph (in Chinese). J Geo-Inform Sci, 19: 723–734

    Google Scholar 

  • Lu G, Yuan L, Yu Z. 2022. Information Geography: A new fulcrum of geographic ternary world. Sci China Earth Sci, 65: 383–386

    Article  Google Scholar 

  • Ma X G. 2022. Knowledge graph construction and application in geosciences: A review. Comput Geosci, 161: 105082

    Article  Google Scholar 

  • Ma X G, Fox P. 2013. Recent progress on geologic time ontologies and considerations for future works. Earth Sci Inform, 6: 31–46

    Article  Google Scholar 

  • Pellissier T T, Weikum G, Suchanek F. 2020. Yago 4: A reason-able knowledge base. In: Harth A, et al. The Semantic Web: 17th International Conference, ESWC 2020. Heraklion, Crete, Greece. Springer International Publishing. 583–596

    Chapter  Google Scholar 

  • Qi H, Dong S C, Zhang L L, Hu H, Fan J X. 2020. Construction of Earth science knowledge graph and its future perspectives (in Chinese). Geol J China Univ, 26: 2–10

    Google Scholar 

  • Qi G L, Gao H, Wu T X. 2017. The research advances of knowledge graph (in Chinese). Technol Intel Eng, 3: 4–25

    Google Scholar 

  • Qi Y M, Du H S, Farjudian A, Zhu Y Q. 2022. Representing computational relations in knowledge graphs. In: 15th International Conference on Spatial Information Theory (COSIT 2022). 29: 1–29:7

    Google Scholar 

  • Raskin R G, Pan M J. 2005. Knowledge representation in the semantic web for Earth and environmental terminology (SWEET). Comput Geosci, 31: 1119–1125

    Article  Google Scholar 

  • Reinanda R, Meij E, de Rijke M. 2020. Knowledge graphs: An information retrieval perspective. FNT Inf Retrieval, 14: 289–444

    Article  Google Scholar 

  • Schulman J, Zoph B, Kim C, Hilton J, Menick J, Weng J, Ceron Uribe J F, Fedus L, Metz L, Pokorny M, Lopes R G, Zhao S, Vijayvergiya A, Sigler E, Perelman A, Voss C, Heaton M, Parish J, Cummings R, Ryder N. 2022. Chat GPT: Optimizing language models for dialogue. https://openai.com/blog/chatgpt

  • Shi S Z, Lv H R, Dong S C, Li Y, Tang X F, Zhou C H. 2020. An editing platform of geoscience knowledge system (in Chinese). Geol J China Univ, 26: 384–394

    Google Scholar 

  • Sun H L. 2017. Dictionary of Geoscience (in Chinese). Beijing: Science Press

    Google Scholar 

  • Sun K, Zhu Y Q, Pan P, Hou Z W, Wang D X, Li W R, Song J. 2019. Geospatial data ontology: The semantic foundation of geospatial data integration and sharing. Big Earth Data, 3: 269–296

    Article  Google Scholar 

  • Vrandečić D, Krötzsch M. 2014. Wikidata: A free collaborative knowledgebase. Commun ACM, 57: 78–85

    Article  Google Scholar 

  • Wang C S, Hazen R M, Cheng Q M, Stephenson M H, Zhou C H, Fox P, Shen S Z, Oberhansli R, Hou Z Q, Ma X G, Feng Z Q, Fan J X, Ma C, Hu X M, Luo B, Wang J L, Schiffries C M. 2021. The deep-time digital Earth program: Data-driven discovery in geosciences. Natl Sci Rev, 8: nwab027

    Article  Google Scholar 

  • Wang D X, Zhu Y Q, Pan P, Luo K, Hou Z W. 2016. Construction of geodata spatial ontology and its application in data retrieval (in Chinese). J Geo-Inform Sci, 18: 443–452

    Google Scholar 

  • Wang S, Zhang X Y, Ye P, Du M, Lu Y X, Xue H N. 2019. Geographic knowledge graph (GeoKG): A formalized geographic knowledge representation. Isprs Int J Geo-Inf, 8: 184

    Article  Google Scholar 

  • Wang S, Zhu Y Q, Qi Y M, Hou Z W, Sun K, Li W R, Hu L, Yang J, Lv H R. 2022. A unified framework of temporal information expression in geosciences knowledge system. Geosci Front, 14: 101465

    Article  Google Scholar 

  • Wang Z H, Yang X M, Zhou C H. 2021. Geographic knowledge graph for remote sensing big data (in Chinese). J Geo-Inform Sci, 23: 16–28

    Google Scholar 

  • Wu M, Zhang X, Zhang C, Lv G. 2020. Spatiotemporal features based geographical knowledge graph construction. Sci Sin-Inf, 50: 1019–1032

    Article  Google Scholar 

  • Xiong J H, Wang J, Zhang Q, Geng H P, Guan D J, Shi Y F, Li F, Zhang X L, Wang T F. 2021. The construction and connotation of the discipline system of geography (in Chinese). Chin Sci Bull, 66: 153–161

    Google Scholar 

  • Yao Y, Guo Z. 2021. Implementing the strategic plan of earth sciences and optimizing funding structure of disciplines. Chin Sci Bull, 66: 143–144

    Article  Google Scholar 

  • Yu Z Y, Yuan L W, Wu M G, Zhou L C, Luo W, Zhang X Y, Lv G N. 2022. Classification and description of geographic information from the perspective of geography (in Chinese). J Geo-Inform Sci, 24: 17–24

    Google Scholar 

  • Zhang X, Huang Y, Zhang C, Ye P. 2022. Geoscience knowledge graph (GeoKG): Development, construction and challenges. Trans GIS, 26: 2480–2494

    Article  Google Scholar 

  • Zhang X Y, Zhang C J, Wu M G, Lv G N. 2020. Spatio-temporal features based geographical knowledge graph construction (in Chinese). Sci Sin Inform, 50: 1019–1032

    Article  Google Scholar 

  • Zhao F, Li Y G, Hou J, Bai L. 2022. Improving question answering over incomplete knowledge graphs with relation prediction. Neural Comput Applic, 34: 6331–6348

    Article  Google Scholar 

  • Zheng K, Xie M H, Zhang J B, Xie J, Xia S H. 2022. A knowledge representation model based on the geographic spatiotemporal process. Int J Geogr Inf Sci, 36: 674–691

    Article  Google Scholar 

  • Zhou C, Wang H, Wang C, Hou Z, Zheng Z, Shen S, Cheng Q, Feng Z, Wang X, Lv H, Fan J, Hu X, Hou M, Zhu Y. 2021. Geoscience knowledge graph in the big data era. Sci China Earth Sci, 64: 1105–1114

    Article  Google Scholar 

  • Zhou J, Pei K E, QIU X P, Huang M L, Zhang J P. 2023. ChatGPT: Potential, prospects, and limitations. Front Inform Technol Electron Eng, https://doi.org/10.1631/FITEE.2300089

  • Zhou Y, Qiao Z, Du Y, Wang W, Xiao M. 2020. A survey on the construction methods and applications of sci-tech big data knowledge graph. Sci Sin-Inf, 50: 957–987

    Article  Google Scholar 

  • Zhu Y Q, Pan P. 2019. Concept, Method and Application of Geospatial Data Ontology (in Chinese). Beijing: Science Press

    Google Scholar 

  • Zhu Y Q, Sun K, Hu X M, Lv H R, Wang X B, Yang J, Wang S, Li W R, Song J, Su N, Mou X L. 2023. Research and practice on constructing and sharing application framework of large-scale Earth science knowledge graph (in Chinese). J Geo-Inform Sci, 25: 1215–1227

    Google Scholar 

Download references

Acknowledgements

We would like to extend our thanks to the principal investigators of DDE, Academician Chengshan Wang and Academician Qiuming Cheng, for their guidance and valuable comments. This work was supported by the National Natural Science Foundation of China (Grant No. 42050101) and the National Key Research and Development Program of China (Grant Nos. 2022YFB3904200 & 2021YFB00903). This work was also supported by the International Big Science Program of Deep-time Digital Earth (DDE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunqiang Zhu or Kai Sun.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Sun, K., Wang, S. et al. An adaptive representation model for geoscience knowledge graphs considering complex spatiotemporal features and relationships. Sci. China Earth Sci. 66, 2563–2578 (2023). https://doi.org/10.1007/s11430-022-1169-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1169-9

Keywords