Skip to main content
Log in

KREEP-rich breccia in Chang’E-5 regolith and its implications

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Lunar breccias provide crucial insights into the lithological diversity, shock processing and evolution of the lunar crust. Here, we report a unique regolith breccia (CE5C0000YJYX070GP, hereafter CE5C) returned from the Chang’E-5 (CE-5) mission. CE5C is one of the largest CE-5 breccias with a wide variety of lithologies, dominated by basaltic and mineral fragments as well as impact-melted clasts (including mid-Ti glasses, high-Al glasses, and crystal-bearing impact melt clasts). A comprehensive study of petrology and mineralogy on several representative clasts was conducted by integrating Scanning Electron Microscopy (SEM), Tescan Integrated Mineral Analysis (TIMA), Electron Probe Microanalysis (EPMA) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) techniques. Evidence is sufficient that CE5C is a mixed mare-highland regolith breccia, with a high percentage of KREEPy material (>20 vol.%), which has not been previously reported in other CE-5 samples. The mid-Ti impact glasses are characterized by high FeO (24.0 wt.%) and intermediate TiO2 (5.5 wt.%) contents, while the high-Al impact glasses have a chemical composition compatible with KREEP. Integrated with the regional geological context of the CE-5 landing site, we propose that CE5C is likely derived from a mixed region between the P58/Em4 mare unit and its contiguous eastern highlands. Despite the difficulty in assessing the representativeness of CE5C, the substantial presence of KREEPy material may provide valuable clues to the provenance of exotic ejecta, including the identification of unrecognized source craters situated in the eastern periphery of the sampling unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrat J A, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G. 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes. Geochim Cosmochim Acta, 83: 79–92

    Article  Google Scholar 

  • Che X C, Nemchin A, Liu D Y, Long T, Wang C, Norman M D, Joy K H, Tartese R, Head J, Jolliff B, Snape J F, Neal C R, Whitehouse M J, Crow C, Benedix G, Jourdan F, Yang Z Q, Yang C, Liu J H, Xie S W, Fan R L, Li D P, Li Z S, Webb S G. 2021. Age and composition of young basalts on the Moon, measured from samples returned by Chang’E-5. Science, 374: 887–890

    Article  Google Scholar 

  • Delano J W. 1986. Pristine lunar glasses: Criteria, data, and implications. J Geophys Res, 91: 201–213

    Article  Google Scholar 

  • Fu X H, Hou X T, Zhang J, Li B, Ling Z C, Jolliff B L, Xu L, Zou Y L. 2021. Possible non-mare lithologies in the regolith at the Chang’E-5 landing site: Evidence from remote sensing data. J Geophys Res-Planets, 126: e06797

    Article  Google Scholar 

  • Giguere T A, Taylor G J, Hawke B R, Lucey P G. 2000. The titanium contents of lunar mare basalts. Meteorit Planet Sci, 35: 193–200

    Article  Google Scholar 

  • Gnos E, Hofmann B A, Al-Kathiri A, Lorenzetti S, Eugster O, Whitehouse M J, Villa I M, Jull A J T, Eikenberg J, Spettel B, Krahenbuhl U, Franchi I A, Greenwood R C. 2004. Pinpointing the source of a lunar meteorite: Implications for the evolution of the Moon. Science, 305: 657–659

    Article  Google Scholar 

  • Gross J, Treiman A H, Mercer C N. 2014. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust. Earth Planet Sci Lett, 388: 318–328

    Article  Google Scholar 

  • He Q, Li Y H, Baziotis I, Qian Y Q, Xiao L, Wang Z C, Zhang W, Luo B J, Neal C R, Day J M D, Pan F B, She Z B, Wu X, Hu Z C, Zong K Q, Wang L. 2022. Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’E-5 mare basalts. Icarus, 383: 115082

    Article  Google Scholar 

  • Hiesinger H, Head J, Wolf U, Jaumann R, Neukum G. 2011. Ages and stratigraphy of lunar mare basalts: A synthesis. In: Ambrose W A, Williams D A, eds. Recent Advances and Current Research Issues in Lunar Stratigraphy. Boulder: Geological Society of America. 1–51

    Google Scholar 

  • Hu S, He H C, Ji J L, Lin Y T, Hui H J, Anand M, Tartèse R, Yan Y H, Hao J L, Li R Y, Gu L X, Guo Q, He H Y, Ouyang Z Y. 2021. A dry lunar mantle reservoir for young mare basalts of Chang’E-5. Nature, 600: 49–53

    Article  Google Scholar 

  • Huang Y H, Minton D A, Hirabayashi M, Elliott J R, Richardson J E, Fassett C I, Zellner N E B. 2017. Heterogeneous impact transport on the Moon. J Geophys Res-Planets, 122: 1158–1180

    Article  Google Scholar 

  • Jiang Y, Kang J T, Liao S Y, Elardo S M, Zong K Q, Wang S J, Nie C, Li P Y, Yin Z J, Huang F, Hsu W B. 2023. Fe and Mg isotope compositions indicate a hybrid mantle source for young Chang’E 5 mare basalts. Astrophys J Lett, 945: L26

    Article  Google Scholar 

  • Jiang Y, Li Y, Liao S Y, Yin Z J, Hsu W B. 2022. Mineral chemistry and 3D tomography of a Chang’E 5 high-Ti basalt: implication for the lunar thermal evolution history. Sci Bull, 67: 755.761

    Article  Google Scholar 

  • Jolliff B L, Gillis J J, Haskin L A, Korotev R L, Wieczorek M A. 2000. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J Geophys Res, 105: 4197–4216

    Article  Google Scholar 

  • Joy K H, Crawford I A, Downes H, Russell S S, Kearsley A T. 2006. A petrological, mineralogical, and chemical analysis of the lunar mare basalt meteorite LaPaz Icefield 02205, 02224, and 02226. Meteorit Planet Sci, 41: 1003–1025

    Article  Google Scholar 

  • Korotev R L, Zeigler R A, Floss C. 2010. On the origin of impact glass in the Apollo 16 regolith. Geochim Cosmochim Acta, 74: 7362–7388

    Article  Google Scholar 

  • Korotev R L, Zeigler R A, Jolliff B L, Irvin A J, Bunch T E. 2009. Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron concentration. Meteorit Planet Sci, 44: 1287–1322

    Article  Google Scholar 

  • Lemelin M, Lucey P G, Miljkovi. K, Gaddis L R, Hare T, Ohtake M. 2019. The compositions of the lunar crust and upper mantle: Spectral analysis of the inner rings of lunar impact basins. Planet Space Sci, 165: 230–243

    Article  Google Scholar 

  • Lemelin M, Lucey P G, Song E, Taylor G J. 2015. Lunar central peak mineralogy and iron content using the Kaguya Multiband Imager: Reassessment of the compositional structure of the lunar crust. J Geophys Res-Planets, 120: 869–887

    Article  Google Scholar 

  • Li C L, Hu H, Yang M F, Pei Z Y, Zhou Q, Ren X, Liu B, Liu D W, Zeng X G, Zhang G L, Zhang H B, Liu J J, Wang Q, Deng X J, Xiao C J, Yao Y G, Xue D S, Zuo W, Su Y, Wen W B, Ouyang Z Y. 2022. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl Sci Rev, 9: Nwab188

    Article  Google Scholar 

  • Li Q L, Zhou Q, Liu Y, Xiao Z Y, Lin Y T, Li J H, Ma H X, Tang G Q, Guo S, Tang X, Yuan J Y, Li J, Wu F Y, Ouyang Z Y, Li C L, Li X H. 2021. Two-billion-year-old volcanism on the Moon from Chang’E-5 basalts. Nature, 600: 54–58

    Article  Google Scholar 

  • Liu T T, Michael G, Zhu M H, Wunnemann K. 2021. Predicted sources of samples returned from Chang’E-5 landing region. Geophys Res Lett, 48: e92434

    Google Scholar 

  • Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 51: 537–571

    Article  Google Scholar 

  • Liu Y S, Hu Z C, Gao S, Gunther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LAICP- MS without applying an internal standard. Chem Geol, 257: 34–43

    Article  Google Scholar 

  • Long T, Qian Y Q, NormanM D, Miljkovic K, Crow C, Head J W, Che X C, Tartese R, Zellner N, Yu X F, Xie S W, Whitehouse M, Joy K H, Neal C R, Snape J F, Zhou G S, Liu S J, Yang C, Yang Z Q, Wang C, Xiao L, Liu D Y, Nemchin A. 2022. Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang’E-5 glass beads. Sci Adv, 8: Eabq2542

    Article  Google Scholar 

  • Lucy P, Korotev R L, Gillis J J, Taylor L A, Lawrence D, Campbell B A, Elphic R, Feldman B, Hood L L, Hunten D, Mendillo M, Noble S, Papike J J, Reedy R C, Lawson S, Prettyman T, Gasnault O, Maurice S. 2006. Understanding the lunar suface and space-Moon interractions. Rev Mineral Geochem, 60: 83–219

    Article  Google Scholar 

  • Morbidelli A, Nesvorny D, Laurenz V, Marchi S, Rubie D C, Elkins-Tanton L, Wieczorek M, Jacobson S. 2018. The timeline of the lunar bombardment: Revisited. Icarus, 305: 262–276

    Article  Google Scholar 

  • Naney M T, Crowl D M, Papike J J. 1976. The Apollo 16 drill core: Statistical analysis of glass chemistry and the characterization of a high alumina-silica poor (HASP) glass. Houston: Proceedings of the 7th Lunar and Planetary Science Conference. 155–184

    Google Scholar 

  • Neal C R, Kramer G Y. 2003. The composition of KREEP: A detailed study of KREEP basalt 15386. Houston: Proceedings of the 34th Lunar and Planetary Science Conference. 2023

    Google Scholar 

  • Nemchin A A, Norman M D, Grange M L, Zeigler R A, Whitehouse M J, Muhling J R, Merle R. 2022. U-Pb isotope systematics and impact ages recorded by a chemically diverse population of glasses from an Apollo 14 lunar soil. Geochim Cosmochim Acta, 321: 206–243

    Article  Google Scholar 

  • Otake H, Ohtake M, Hirata N. 2012. Lunar iron and titanium abundance algorithms based on SELENE (Kaguya) Multiband Imager data. Woodlands: Proceedings of the 43rd Lunar and Planetary Science Conference. 1905

    Google Scholar 

  • Papike J J, Spilde M N, Adcock C T, Fowler G W, Shearer C K. 1977. Trace-element fractionation by impact-induced volatilization: SIMS study of lunar HASP samples. Am Mineral, 82: 630–634

    Article  Google Scholar 

  • Prettyman T H, Hagerty J J, Elphic R C, Feldman W C, Lawrence D J, McKinney G W, Vaniman D T. 2006. Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. J Geophys Res, 111: E12007

    Google Scholar 

  • Qian Y Q, Xiao L, Wang Q, Head J W, Yang R H, Kang Y, van B C H, Hiesinger H, Lai X M, Wang G X, Pang Y, Zhang N, Yuan Y F, He Q, Huang J, Zhao J N, Wang J, Zhao S Y. 2021. China’s Chang’E-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet Sci Lett, 561: 116855

    Article  Google Scholar 

  • Qian Y Q, Xiao L, Zhao S Y, Zhao J N, Huang J, Flahaut J, Martinot M, Head J W, Hiesinger H, Wang G X. 2018. Geology and scientific significance of the Rumker region in northern Oceanus Procellarum: China’s Chang’E-5 landing region. J Geophys Res-Planets, 123: 1407–1430

    Article  Google Scholar 

  • Qiao L, Chen J, Xu L Y, Wan S, Cao H J, Li B, Ling Z C. 2021. Geology of the Chang’E-5 landing site: Constraints on the sources of samples returned from a young nearside mare. Icarus, 364: 114480

    Article  Google Scholar 

  • Rhodes J M, Blanchard D, Dungan M, Brannon J, Rodgers K. 1977. Chemistry of Apollo 12 mare basalts: Magma types and fractionation processes. Houston: Proceedings of the 8th Lunar and Planetary Science Conference. 1305–1338

    Google Scholar 

  • Rhodes J M, Hubbard N J. 1973. Chemistry, classification, and petrogenesis of Apollo 15 mare basalts. Houston: Proceedings of the 4th Lunar and Planetary Science Conference. 1467–1489

    Google Scholar 

  • Sato H, Robinson M S, Lawrence S J, Denevi B W, Hapke B, Jolliff B L, Hiesinger H. 2017. Lunar mare TiO2 abundances estimated from UV/Vis reflectance. Icarus, 296: 216.238

    Article  Google Scholar 

  • Sheng S Z, Chen Y, Zhang B, Hao J H, Wang S J. 2022. First location and characterization of lunar highland clasts in Chang’E 5 breccias using TIMA-SEM-EPMA. At Spectrosc, 43: 351–362

    Article  Google Scholar 

  • Spray J G. 2016. Lithification mechanisms for planetary regoliths: The glue that binds. Annu Rev Earth Planet Sci, 44: 139–174

    Article  Google Scholar 

  • Stöffler D, Grieve R. 1994. Classification and nomenclature of impact metamorphic rocks: A proposal to the IUGS subcommission on the systematics of metamorphic rocks. Houston: Proceedings of the 25th Lunar and Planetary Science Conference. 1347

    Google Scholar 

  • Stöffler D, Hamann C, Metzler K. 2018. Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteorit Planet Sci, 53: 5–49

    Article  Google Scholar 

  • Stöffler D, Knoll H D, Marvin U B, Simonds C H, Warren P H. 1980. Recommended classification and nomenclature of lunar highland rocksa committee report. Houston: Proceedings of Conference on the Lunar Highlands Crust. 51–70

    Google Scholar 

  • Su B, Yuan J Y, Chen Y, Yang W, Mitchell R N, Hui H J, Wang H, Tian H C, Li X H, Wu F Y. 2022. Fusible mantle cumulates trigger young mare volcanism on the cooling Moon. Sci Adv, 8: Eabn2103

    Article  Google Scholar 

  • Sun L, Lucey P. 2021. Mineralogy and Mg# of the Chang’E 5 landing region. Woodlands: Proceedings of the 52nd Lunar and Planetary Science Conference. 2548

    Google Scholar 

  • Taylor G J, Warren P, Ryder G, Delano J, Pieters C, Lofgren G. 1991. Lunar rocks. In: Heiken G H, Vaniman D T, French B M, eds. Lunar Sourcebook: A User’s Guide to the Moon. Cambridge: Cambridge University Press. 183–284

    Google Scholar 

  • Tian H C, Wang H, Chen Y, Yang W, Zhou Q, Zhang C, Lin H L, Huang C, Wu S T, Jia L H, Xu L, Zhang D, Li X G, Chang R, Yang Y H, Xie L W, Zhang D P, Zhang G L, Yang S H, Wu F Y. 2021. Non-KREEP origin for Chang’E-5 basalts in the Procellarum KREEP Terrane. Nature, 600: 59–63

    Article  Google Scholar 

  • Wang J, Zhang Y, Di K C, Chen M, Duan J F, Kong J, Xie J F, Liu Z Q, Wan W H, Rong Z F, Liu B, Peng M, Wang Y X. 2021. Localization of the Chang’E-5 lander using radio-tracking and image-based methods. Remote Sens, 13: 590

    Article  Google Scholar 

  • Warren P H. 1989. KREEP: Major-element diversity, trace-element uniformity (almost). In: Taylor G J, Warren P H, eds. Moon in Transition: Apollo 14, KREEP, and Evolved Lunar Rocks. 149–153

    Google Scholar 

  • Xie M G, Xiao Z Y, Zhang X Y, Xu A A. 2020. The provenance of regolith at the Chang’E-5 candidate landing region. J Geophys Res-Planets, 125: e06112

    Article  Google Scholar 

  • Yakovlev O I, Gerasimov M V, Dikov Y P. 2011. Estimation of temperature conditions for the formation of HASP and GASP glasses from the lunar regolith. Geochem Int, 49: 213–223

    Article  Google Scholar 

  • Yan P, Xiao Z Y, Wu Y H, Yang W, Li J H, Gu L X, Liao S Y, Yin Z J, Wang H, Tian H C, Zhang C, Wu S P, Ma H X, Tang X, Wu S T, Hui H J, Xu Y C, Hsu W B, Li Q L, Luo F L, Liu Y, Li X H. 2022. Intricate regolith reworking processes revealed by microstructures on lunar impact glasses. J Geophys Res-Planets, 127: e2022JE007260

    Article  Google Scholar 

  • Yang W, Chen Y, Wang H, Tian H C, Hui H J, Xiao Z Y, Wu S T, Zhang D, Zhou Q, Ma H X, Zhang C, Hu S, Li Q L, Lin Y T, Li X H, Wu F Y. 2022. Geochemistry of impact glasses in the Chang’E-5 regolith: Constraints on impact melting and the petrogenesis of local basalt. Geochim Cosmochim Acta, 335: 183–196

    Article  Google Scholar 

  • Yao Y G, Xiao C J, Wang P S, Li C L, Zhou Q. 2022. Instrumental neutron activation analysis of Chang’E-5 lunar regolith samples. J Am Chem Soc, 144: 5478–5484

    Article  Google Scholar 

  • Zeigler R A, Korotev R L, Haskin L A, Jollif B L, Gillis J J. 2006. Petrography and geochemistry of five new Apollo 16 mare basalts and evidence for post-basin deposition of basaltic material at the site. Meteorit Planet Sci, 41: 263–284

    Article  Google Scholar 

  • Zeng X J, Li X Y, Liu J Z. 2022. Exotic clasts in Chang’E-5 regolith indicative of unexplored terrane on the Moon. Nat Astron, 7: 152–159

    Google Scholar 

  • Zong K Q, Wang Z C, Li J W, He Q, Li Y H, Becker H, Zhang W, Hu Z C, He T, Cao K N, She Z B, Wu X, Xiao L, Liu Y S. 2022. Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts. Geochim Cosmochim Acta, 335: 284–296

    Article  Google Scholar 

Download references

Acknowledgements

The CE-5 lunar sample (CE5C0000YJYX070GP) was provided by China National Space Administration. Three anonymous reviewers have provided thoughtful comments which helped improve the manuscript. This work was funded by the National Key Research and Development Program of China (Grant No. 2021YFA0716100), the National Natural Science Foundation of China (Grant Nos. 41973060, 42173044, 42241146 and 42273007), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 41000000), the preresearch Project on Civil Aerospace Technologies (Grant Nos. D020202 and D020302) and the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDBS-SSW-JSC007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Huang or Weibiao Hsu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, A., Jiang, Y., Liao, S. et al. KREEP-rich breccia in Chang’E-5 regolith and its implications. Sci. China Earth Sci. 66, 2473–2486 (2023). https://doi.org/10.1007/s11430-022-1134-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1134-0

Keywords

Navigation