Skip to main content
Log in

Intracontinental lithospheric delamination: Constraints from imaging the mantle transition zone beneath the southwestern part of the Sichuan Basin

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The southwestern part of the Sichuan Basin (SW-SCB) is adjacent to the eastern Himalayan syntaxis. Affected by the Indo-Eurasian collision and subsequent intrusion of the Indian plate into the Eurasian plate during the Cenozoic, this region is ideal for the study of the tectonic evolution of the intracontinental lithosphere and the dynamic processes of deep and shallow structures. In this study, we applied the receiver function technique to the data obtained from a recently deployed high-density broadband seismic array across the Sichuan Basin and Sichuan-Yunnan block (SCB-SYB). We conducted a multi-frequency and multi-model correction analysis to image the structure of the mantle transition zone beneath this region. The results showed the 660-km discontinuity gradually increasing in depth by 10–30 km beneath the western side of the Anninghe-Xiaojiang Fault, suggesting the presence of thermal anomalies caused by the subducted Indian plate from west to east. At the junction of the SCB-SYB, the 410-km discontinuity exhibited a slight uplift of 5–10 km, while the 660-km discontinuity showed a significant depression of ~30 km over a lateral range of ~150 km. Based on previous surface GPS observation and dynamic numerical simulation studies, we suggest that the sharp lateral small-scale topography of this 660-km discontinuity beneath the SW-SCB may have resulted from dripping delamination of the lithosphere within the strain localization area. Furthermore, the aggregation of delaminated lithospheric material at the base of the 660-km discontinuity determines the regional topography of mantle transition zone discontinuities. In this study, we provided seismological evidence for the challenging detection of small-scale intracontinental lithosphere dripping delamination. Moreover, it provides a new view for studying deep and shallow dynamic processes in intracontinental regions with stress concentration resulting from plate/continental subduction and collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai Y S, Zheng T Y, Xu W W, He Y M, Dong D. 2003. A complex 660 km discontinuity beneath northeast China. Earth Planet Sci Lett, 212: 63–71

    Google Scholar 

  • Anderson D L. 1989. Theory of the Earth, 366. Boston: Blackwell Scientific Publications

    Google Scholar 

  • Anderson D L. 2001. Top-down tectonics? Science, 293: 2016–2018

    Google Scholar 

  • Andrews J, Deuss A. 2008. Detailed nature of the 660 km region of the mantle from global receiver function data. J Geophys Res, 113: B06304

    Google Scholar 

  • Audet P, Bürgmann R. 2011. Dominant role of tectonic inheritance in supercontinent cycles. Nat Geosci, 4: 184–187

    Google Scholar 

  • Bai Y M, Ai Y S, Jiang M M, He Y M, Chen Q F. 2018. Structure of the mantle transition zone beneath the southeastern Tibetan Plateau revealed by P-wave receiver functions (in Chinese). Chin J Geophys, 61: 570–583

    Google Scholar 

  • Bai Y M, Yuan X H, He Y M, Hou G B, Thant M, Sein K, Ai Y S. 2020. Mantle transition zone structure beneath Myanmar and its geodynamic implications. Geochem Geophys Geosyst, 21: e2020GC009262

    Google Scholar 

  • Bai Z M, Tian X B, Tian Y. 2011. Upper mantle P-wave tomography across the Longmenshan fault belt from passive-source seismic observations along Aba-Longquanshan profile. J Asian Earth Sci, 40: 873–882

    Google Scholar 

  • Bao X W, Sun X, Xu M, Eaton D W, Song X, Wang L, Ding Z, Mi N, Li H, Yu D, Huang Z, Wang P. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth Planet Sci Lett, 415: 16–24

    Google Scholar 

  • Bird P. 1978. Initiation of intracontinental subduction in the Himalaya. J Geophys Res-Solid Earth, 83: 4975–4987

    Google Scholar 

  • Calignano E, Sokoutis D, Willingshofer E, Gueydan F, Cloetingh S. 2015. Strain localization at the margins of strong lithospheric domains: Insights from analog models. Tectonics, 34: 396–412

    Google Scholar 

  • Cammarano F, Goes S, Vacher P, Giardini D. 2003. Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet Inter, 138: 197–222

    Google Scholar 

  • Camp V E, Hanan B B. 2008. A plume-triggered delamination origin for the Columbia River Basalt Group. Geosphere, 4: 480

    Google Scholar 

  • Chen S, Zheng Q Y, Xu W M. 2015. Joint optimal inversion of gravity and seismic data to estimate crustal thickness of the southern section of the north-south seismic belt (in Chinese). Chin J Geophys, 58: 3941–3951

    Google Scholar 

  • China Seismic Array. 2006. China Seismic Array Data Management Center. Institute of Geophysics, China Earthquake Administration

  • Chowdhury P, Gerya T, Chakraborty S. 2017. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. Nat Geosci, 10: 698–703

    Google Scholar 

  • Chung S L, Chu M F, Zhang Y, Xie Y, Lo C H, Lee T Y, Lan C Y, Li X, Zhang Q, Wang Y. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev, 68: 173–196

    Google Scholar 

  • Clark M K, Bush JWM, Royden L H. 2005. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys J Int, 162: 575–590

    Google Scholar 

  • England P, Houseman G. 1985. Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions. Nature, 315: 297–301

    Google Scholar 

  • Fei Y W, van Orman J, Li J, van Westrenen W, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K. 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res-Solid Earth, 109: B02305

    Google Scholar 

  • Feng J K, Yao H J, Chen L, Wang W T. 2022. Massive lithospheric delamination in southeastern Tibet facilitating continental extrusion. Natl Sci Rev, 9: nwab174

    Google Scholar 

  • Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J Geophys Res Solid Earth, 118: 5920–5938

    Google Scholar 

  • Goes S, Agrusta R, van Hunen J, Garel F. 2017. Subduction-transition zone interaction: A review. Geosphere, 13: 644–664

    Google Scholar 

  • Göğüş O H, Pysklywec R N, Şengör AMC, Gün E. 2017. Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nat Commun, 8: 1538

    Google Scholar 

  • Gueydan F, Précigout J, Montési L G J. 2014. Strain weakening enables continental plate tectonics. Tectonophysics, 631: 189–196

    Google Scholar 

  • Han G J, Li J, Guo G R, Mooney W D, Karato S I, Yuen D A. 2021. Pervasive low-velocity layer atop the 410-km discontinuity beneath the northwest Pacific subduction zone: Implications for rheology and geodynamics. Earth Planet Sci Lett, 554: 116642

    Google Scholar 

  • Hou Z Q, Tian S H, Yuan Z X, Xie Y L, Yin S P, Yi L S, Fei H C, Yang Z M. 2006. The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication. Earth Planet Sci Lett, 244: 234–250

    Google Scholar 

  • Houseman G A, McKenzie D P, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geophys Res-Solid Earth, 86: 6115–6132

    Google Scholar 

  • Houseman G A, Molnar P. 1997. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys J Int, 128: 125–150

    Google Scholar 

  • Hu F, Wu F Y, Ducea M N, Chapman J B, Yang L. 2022. Does large-scale crustal flow shape the eastern margin of the Tibetan Plateau? Insights from episodic magmatism of Gongga-Zheduo granitic massif. Geophys Res Lett, 49: e98756

    Google Scholar 

  • Hu J F, Xu X, Yang H Y, Wen L, Li G. 2011. S receiver function analysis of the crustal and lithospheric structures beneath eastern Tibet. Earth Planet Sci Lett, 306: 77–85

    Google Scholar 

  • Hu J F, Yang H Y, Badal J, Peng H C, Miao S Q. 2022. Decoding the Emeishan Permian mantle plume in the southeastern margin of Tibet from the seismic signature of the local lithosphere. Geophys J Int, 232: 81–96

    Google Scholar 

  • Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res-Solid Earth, 111: B09305

    Google Scholar 

  • Huang Z C, Wang L S, Xu M J, Zhao D P, Mi N, Yu D Y. 2019. P and S wave tomography beneath the SE Tibetan Plateau: Evidence for lithospheric delamination. J Geophys Res-Solid Earth, 124: 10292–10308

    Google Scholar 

  • Huang Z C, Zhao D P, Wang L. 2015. P wave tomography and anisotropy beneath Southeast Asia: Insight into mantle dynamics. J Geophys Res-Solid Earth, 120: 5154–5174

    Google Scholar 

  • Ito E, Akaogi M, Topor L, Navrotsky A. 1990. Negative pressure-temperature slopes for reactions formign MgSiO3 perovskite from calorimetry. Science, 249: 1275–1278

    Google Scholar 

  • Jiang G Z, Gao P, Rao S, Zhang L Y, Tang X Y, Huang F, Zhao P, Pang Z H, He L J, Hu S B, Wang J Y. 2016. Compilation of heat flow data in the continental area of China (4th edition) (in Chinese). Chin J Geophys, 59: 2892–2910

    Google Scholar 

  • Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophys J Int, 105: 429–465

    Google Scholar 

  • Kind R, Yuan X H, Saul J, Nelson D, Sobolev S V, Mechie J, Zhao W, Kosarev G, Ni J, Achauer U, Jiang M. 2002. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian Plate subduction. Science, 298: 1219–1221

    Google Scholar 

  • Kreemer C, Blewitt G, Klein E C. 2014. A geodetic plate motion and Global Strain Rate Model. Geochem Geophys Geosyst, 15: 3849–3889

    Google Scholar 

  • Langston C A. 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res, 84: 4749–4762

    Google Scholar 

  • Lei J S, Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet. Geochem Geophys Geosyst, 17: 1861–1884

    Google Scholar 

  • Li C, van der Hilst R D, Meltzer A S, Engdahl E R. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet Sci Lett, 274: 157–168

    Google Scholar 

  • Li J, Chen Q F, Vanacore E, Niu F. 2008. Topography of the 660-km discontinuity beneath northeast China: Implications for a retrograde motion of the subducting Pacific slab. Geophys Res Lett, 35: L01302

    Google Scholar 

  • Li J, Tosi N, Maierova P, Yuen D A. 2016. Evidence from caustics waveform modelling for long slab thickening above the 660-km discontinuity under northeast Asia: Dynamical implication. AGU Geophys Monograph, 211: 5–18

    Google Scholar 

  • Li J, Wang X, Wang X J, Yuen D A. 2013. P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone. Earth Planet Sci Lett, 367: 71–81

    Google Scholar 

  • Li J, Yuen D A. 2014. Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity. Earth Planet Sci Lett, 385: 137–144

    Google Scholar 

  • Li Z H, Liu M, Gerya T. 2016. Lithosphere delamination in continental collisional orogens: A systematic numerical study. J Geophys Res-Solid Earth, 121: 5186–5211

    Google Scholar 

  • Liu M Q, Li Z H. 2018. Dynamics of thinning and destruction of the continental cratonic lithosphere: Numerical modeling. Sci China Earth Sci, 61: 823–852

    Google Scholar 

  • Liu Q Y, van der Hilst R D, Li Y, Yao H J, Chen J H, Guo B, Qi S H, Wang J, Huang H, Li S C. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat Geosci, 7: 361–365

    Google Scholar 

  • Liu X. 2020. Compositional characteristics of ringwoodite in the lower part of the mantle transition zone. Solid Earth Sci, 5: 223–225

    Google Scholar 

  • Liu Z, Niu F L, Chen Y J, Grand S, Kawakatsu H, Ning J, Tanaka S, Obayashi M, Ni J. 2015. Receiver function images of the mantle transition zone beneath NE China: New constraints on intraplate volcanism, deep subduction and their potential link. Earth Planet Sci Lett, 412: 101–111

    Google Scholar 

  • Magni V, Faccenna C, van Hunen J, Funiciello F. 2013. Delamination vs. break-off: The fate of continental collision. Geophys Res Lett, 40: 285–289

    Google Scholar 

  • Magni V, Király Á. 2020. Delamination. In: Reference Module in Earth Systems and Environmental Sciences. Elsevier

  • Mao W, Zhong S. 2021. Constraints on mantle viscosity from intermediate-wavelength geoid anomalies in mantle convection models with plate motion history. J Geophys Res-Solid Earth, 126: e2020JB021561

    Google Scholar 

  • Miller M S, Becker T W. 2014. Reactivated lithospheric-scale discontinuities localize dynamic uplift of the Moroccan Atlas Mountains. Geology, 42: 35–38

    Google Scholar 

  • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42–43

    Google Scholar 

  • Ni J F, Guzman-Speziale M, Bevis M, Holt W E, Wallace T C, Seager W R. 1989. Accretionary tectonics of Burma and the three-dimensional geometry of the Burma subduction zone. Geology, 17: 68

    Google Scholar 

  • Pesicek J D, Thurber C H, Widiyantoro S, Zhang H, DeShon H R, Engdahl E R. 2010. Sharpening the tomographic image of the subducting slab below Sumatra, the Andaman Islands and Burma. Geophys J Int, 182: 433–453

    Google Scholar 

  • Ranalli G. 1997. Rheology of the lithosphere in space and time. Geol Soc London Spec Publ, 121: 19–37

    Google Scholar 

  • Royden L H, Burchfiel B C, King R W, Wang E, Chen Z, Shen F, Liu Y. 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276: 788–790

    Google Scholar 

  • Ryberg T, Weber M. 2000. Receiver function arrays: A reflection seismic approach. Geophys J Int, 141: 1–11

    Google Scholar 

  • Singh A, Kumar M R. 2009. Seismic signatures of detached lithospheric fragments in the mantle beneath eastern Himalaya and southern Tibet. Earth Planet Sci Lett, 288: 279–290

    Google Scholar 

  • Stern R J. 2007. When and how did plate tectonics begin? Theoretical and empirical considerations. Chin Sci Bull, 52: 578–591

    Google Scholar 

  • Tao K, Grand S P, Niu F. 2018. Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography. Geo-chem Geophys Geosyst, 19: 2732–2763

    Google Scholar 

  • Tesauro M, Audet P, Kaban M K, Bürgmann R, Cloetingh S. 2012. The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches. Geochem Geophys Geosyst, 13: Q09001

    Google Scholar 

  • Tian X, Zhao D, Zhang H, Tian Y, Zhang Z. 2010. Mantle transition zone topography and structure beneath the central Tien Shan orogenic belt. J Geophys Res, 115: B10308

    Google Scholar 

  • Tselentis G A. 1990. Interstation surface wave attenuation by autoregressive deconvolution. Pure Appl Geophys, 133: 429–446

    Google Scholar 

  • Vacher P, Mocquet A, Sotin C. 1998. Computation ofseismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity. Phys Earth Planet Inter, 106: 275–298

    Google Scholar 

  • van der Meijde M, Marone F, Giardini D, van der Lee S. 2003. Seismic evidence for water deep in Earth’s Upper Mantle. Science, 300: 1556–1558

    Google Scholar 

  • Vinnik L P. 1977. Detection of waves converted from P to SV in the mantle. Phys Earth Planet Inter, 15: 39–45

    Google Scholar 

  • Wang E, Kirby E, Furlong K P, van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nat Geosci, 5: 640–645

    Google Scholar 

  • Wang M, Shen Z K. 2020. Present-day crustal deformation of continental china derived from GPS and its tectonic implications. J Geophys Res Solid Earth, 125: e2019JB018774

    Google Scholar 

  • Wang X, Chen L, Ai Y S, Xu T, Jiang M M, Ling Y, Gao Y F. 2018. Crustal structure and deformation beneath eastern and northeastern Tibet revealed by P-wave receiver functions. Earth Planet Sci Lett, 497: 69–79

    Google Scholar 

  • Wang X, Chen Q F, Niu F L, Wei S J, Ning J Y, Li J, Wang W J, Buchen J, Liu L J. 2020. Distinct slab interfaces imaged within the mantle transition zone. Nat Geosci, 13: 822–827

    Google Scholar 

  • Wang X, Li J, Chen Q F. 2017. Topography of the 410 km and 660 km discontinuities beneath the Japan Sea and adjacent regions by analysis of multiple-ScS waves. J Geophys Res-Solid Earth, 122: 1264–1283

    Google Scholar 

  • Waszek L, Tauzin B, Schmerr N C, Ballmer M D, Afonso J C. 2021. A poorly mixed mantle transition zone and its thermal state inferred from seismic waves. Nat Geosci, 14: 949–955

    Google Scholar 

  • Wessel P, Smith W H F, Scharroo R, Luis J, Wobbe F. 2013. Generic mapping tools: Improved version released. Eos Trans AGU, 94: 409–410

    Google Scholar 

  • Wilson J T. 1963. Evidence from islands on the spreading of ocean floors. Nature, 197: 536–538

    Google Scholar 

  • Wu F Y, Xu Y G, Zhu R X, Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci China Earth Sci, 57: 2878–2890

    Google Scholar 

  • Wu Q J, Li Y H, Zhang R Q, Zeng R S. 2007. Receiver functions from autoregressive deconvolution. Pure Appl Geophys, 164: 2175–2192

    Google Scholar 

  • Wu Y Q, Zheng Z J, Nie J L, Chang L, Su G L, Yin H Q, Liang H B, Pang Y J, Chen C Y, Jiang Z S. 2022. High-precision vertical movement and three-dimensional deformation pattern of the Tibetan Plateau. J Geophys Res-Solid Earth, 127: e2021JB023202

    Google Scholar 

  • Xu B, Hou Z Q, Griffin W L, Zheng Y C, Wang T, Guo Z, Hou J, Santosh M, O’Reilly S Y. 2021. Cenozoic lithospheric architecture and metallogenesis in Southeastern Tibet. Earth-Sci Rev, 214: 103472

    Google Scholar 

  • Xu M J, Huang H, Huang Z C, Wang P, Wang L S, Xu M J, Mi N, Li H, Yu D Y, Yuan X H. 2018. Insight into the subducted Indian slab and origin of the Tengchong volcano in SE Tibet from receiver function analysis. Earth Planet Sci Lett, 482: 567–579

    Google Scholar 

  • Xu X, Su L, Liu J, Zhou W, Gong A, Qu X. 2020. The relationship between crust-lithosphere structures and seismicity on the southeastern edge of the Tibetan Plateau. Tectonophysics, 776: 228300

    Google Scholar 

  • Xue M, Wang S, Xu X Y, Hu J F. 2017. Structure of the mantle transition zone under the Yunnan region and its geodynamic implications. Chin Sci Bull, 62: 1752–1765

    Google Scholar 

  • Yang F, Zhang H, Li J, Wang X, Chen Q F. 2021. Topography of mantle transition zone discontinuities beneath Northeast China imaged by receiver function with Ps scattering kernel (in Chinese). Chin J Geophys, 64: 4406–4424

    Google Scholar 

  • Yang H Y, Peng H C, Hu J F. 2017. The lithospheric structure beneath southeast Tibet revealed by P and S receiver functions. J Asian Earth Sci, 138: 62–71

    Google Scholar 

  • Yu Y Q, Gao S S, Liu K H, Zhao D P. 2020. Foundered lithospheric segments dropped into the mantle transition zone beneath southern California, USA. Geology, 48: 200–204

    Google Scholar 

  • Zhang P Z, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P, Wang Q, Niu Z, Sun J, Wu J, Hanrong S, Xinzhao Y. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32: 809

    Google Scholar 

  • Zhang Q, Jin W J, Wang Y L, Li C D, Wang Y, Jia X Q. 2006. Ocean lithosphere delamination and the lower crust delamination: the different mechanism and geological implication: Comment on the delamination model of lower crust and lithosphere mantle (in Chinese). Acta Petrol Sin, 22: 2631–2638

    Google Scholar 

  • Zhang R Q, Wu Y, Gao Z Y, Fu V Y Y, Sun L, Wu Q J, Ding Z F. 2017. Upper mantle discontinuity structure beneath eastern and southeastern Tibet: New constraints on the Tengchong intraplate volcano and signatures of detached lithosphere under the western Yangtze Craton. J Geophys Res-Solid Earth, 122: 1367–1380

    Google Scholar 

  • Zhang Z, Deng Y F. 2022. A generalized strategy from S-wave receiver functions reveals distinct lateral variations of lithospheric thickness in southeastern Tibet. Geochem Geophys Geosyst, 23: e2022GC010619

    Google Scholar 

  • Zhang Z J, Yuan X H, Chen Y, Tian X B, Kind R, Li X Q, Teng J W. 2010. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth Planet Sci Lett, 292: 254–264

    Google Scholar 

  • Zhang Z Q, Yao H J, Yang Y. 2020. Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications. Sci China Earth Sci, 63: 1278–1293

    Google Scholar 

  • Zheng T Y, He Y M, Ding L, Jiang M M, Ai Y S, Mon C T, Hou G B, Sein K, Thant M. 2020. Direct structural evidence of Indian continental subduction beneath Myanmar. Nat Commun, 11: 1944

    Google Scholar 

  • Zhou C Y, Jin Z M, Zhang J F. 2010. Mantle transition zone: An important field in the studies of Earth’s deep interior. Earth Sci Front, 17: 90–113

    Google Scholar 

  • Zhu L P. 2000. Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves. Earth Planet Sci Lett, 179: 183–190

    Google Scholar 

  • Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587

    Google Scholar 

  • Ziegler P A, van Wees J D, Cloetingh S. 1998. Mechanical controls on collision-related compressional intraplate deformation. Tectonophysics, 300: 103–129

    Google Scholar 

Download references

Acknowledgements

Thanks to Dr. HOU Guangbing, Dr. LING Yuan, and all the staff who participated in the Middle Chuan-Dian (MCD) seismic array instrument layout and data collection. Thanks to the Institute of Geophysics, China Earthquake Administration China Seismic Scientific Exploration Array Data Center (https://doi.org/10.11998/SeisDmc/SN), and the Seismic Array Laboratory of the Institute of Geology and Geophysics, Chinese Academy of Sciences (https://doi.org/10.12129/IGGSL.Data.Observation), for providing the seismic waveform data in this article. Thanks to the responsible editor and two anonymous reviewers for their comments and suggestions on this article. Thanks to Professor HUANG Zhouchuan for providing the Huang19 velocity model and to Dr. WANG Xin, Dr. ZHANG Han, and Dr. HU Fangyang for the discussion and constructive comments. Data processing and plotting were performed using the Seismic Analysis Code (SAC) and GMT program packages. This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFC1500302), the National Natural Science Foundation of China (Grant No. 42074063), and the Key Research Program of the Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant No. IG-GCAS-201904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Li.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Li, J., Chen, S. et al. Intracontinental lithospheric delamination: Constraints from imaging the mantle transition zone beneath the southwestern part of the Sichuan Basin. Sci. China Earth Sci. 66, 2340–2352 (2023). https://doi.org/10.1007/s11430-022-1129-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1129-9

Keywords

Navigation