Skip to main content
Log in

Response of water-use efficiency to phenology in the natural forest and grassland of the Loess Plateau in China

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Ecosystem water use efficiency (WUE) is an integrated physiological metric for the coupling cycle between terrestrial carbon, water, and energy. How WUE responds to vegetation phenology (e.g., SOS, EOS-start, end of growing season, and GSL-growing season length) shifting in temperate semi-arid regions is a hot spot in relative research fields. Based on remote-sensing products and in-situ measured climate data, this study discussed how gross primary productivity (GPP), evapotranspiration (ET), and WUE (quantified by GPP/ET) would change with the altering vegetation phenology and climate in the untouched semi-arid forests and grasslands of the Chinese Loess Plateau during 2001–2020. Our results show that vegetation tended to green-up earlier and brown-down later from 2001 to 2020, causing an extended GSL. The forests had an earlier SOS, later EOS, and longer GSL than the grasslands, but the latter had a bigger variation amplitude. The WUE in the study area decreased significantly during spring and summer, while the grassland WUE increased in autumn; the annual mean reduction rate in grassland WUE was approximately twice that of woodland. Earlier SOS could increase forest WUE but reduce grassland WUE in spring, mainly because leaf unfolding has a more pronounced limitation on soil evaporation beneath the forest canopy. EOS had less impact on WUE, and no apparent difference existed between these two ecosystems. Climate change could affect WUE directly by changing GPP and ET and indirectly by regulating vegetation phenology. Warming can increase GPP and ET, causing an earlier SOS, further promoting GPP and ET (except forest ET). Precipitation significantly affected forest GPP and ET in spring, grassland GPP and ET in summer, and grassland ET in autumn; precipitation affects spring grassland WUE mainly via regulating SOS. Enhanced solar radiation could suppress grassland GPP in spring, promote forest ET in autumn, and regulate grassland WUE by affecting phenology. This study is meaningful for improving the process-based vegetation model and studying arid and semi-arid ecosystems’ responses to a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilos M, Stahl C, Burban B, Hérault B, Courtois E, Coste S, Wagner F, Ziegler C, Takagi K, Bonal D. 2019. Interannual and seasonal variations in ecosystem transpiration and water use efficiency in a tropical rainforest. Forests, 10: 14

    Google Scholar 

  • Barr A G, Black T A, Hogg E H, Griffis T J, Morgenstern K, Kljun N, Theede A, Nesic Z. 2007. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob Change Biol, 13: 561–576

    Google Scholar 

  • Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy H R, Norby R J, Francesca Cotrufo M. 2013. Elevated CO2 increases tree-level intrinsic water use efficiency: Insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol, 197: 544–554

    Google Scholar 

  • Bauerle W L, Oren R, Way D A, Qian S S, Stoy P C, Thornton P E, Bowden J D, Hoffman F M, Reynolds R F. 2012. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proc Natl Acad Sci USA, 109: 8612–8617

    Google Scholar 

  • Beer C, Ciais P, Reichstein M, Baldocchi D, Law B E, Papale D, Soussana J F, Ammann C, Buchmann N, Frank D, Gianelle D, Janssens I A, Knohl A, Kötner B, Moors E, Roupsard O, Verbeeck H, Vesala T, Williams C A, Wohlfahrt G. 2009. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob Biogeochem Cycle, 23: GB2018

    Google Scholar 

  • Brümmer C, Black T A, Jassal R S, Grant N J, Spittlehouse D L, Chen B, Nesic Z, Amiro B D, Arain M A, Barr A G, Bourque C P A, Coursolle C, Dunn A L, Flanagan L B, Humphreys E R, Lafleur P M, Margolis H A, McCaughey J H, Wofsy S C. 2012. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric For Meteorol, 153: 14–30

    Google Scholar 

  • Cernusak L A. 2020. Gas exchange and water-use efficiency in plant canopies. Plant Biol, 22(Suppl 1): 52–67

    Google Scholar 

  • Cheng M, Jin J, Jiang H. 2021. Strong impacts of autumn phenology on grassland ecosystem water use efficiency on the Tibetan Plateau. Ecol Indicators, 126: 107682

    Google Scholar 

  • Chuine I, Morin X, Bugmann H. 2010. Warming, photoperiods, and tree phenology. Science, 329: 277–278

    Google Scholar 

  • Deng L Q. 2021. Changes in vegetation phenology and productivity and their responses to climate factors on the Loess Plateau during 2001–2016 (in Chinese). Dissertation for Master’s Degree. Northwest A&F University

  • Deng X P, Shan L, Zhang H, Turner N C. 2006. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric Water Manage, 80: 23–40

    Google Scholar 

  • Dong G, Guo J, Chen J, Sun G, Gao S, Hu L, Wang Y. 2011. Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the songnen meadow steppe in northeast China. Ecohydrology, 4: 211–224

    Google Scholar 

  • Flanagan L B, Syed K H. 2011. Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Glob Change Biol, 17: 2271–2287

    Google Scholar 

  • Fu B, Wang S, Liu Y, Liu J, Liang W, Miao C. 2017. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu Rev Earth Planet Sci, 45: 223–243

    Google Scholar 

  • Fu Y H, Piao S, Op de Beeck M, Cong N, Zhao H, Zhang Y, Menzel A, Janssens I A. 2014. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob Ecol Biogeogr, 23: 1255–1263

    Google Scholar 

  • Ge Q, Wang H, Rutishauser T, Dai J. 2015. Phenological response to climate change in China: A meta-analysis. Glob Change Biol, 21: 265–274

    Google Scholar 

  • Gitelson A A, Peng Y, Arkebauer T J, Suyker A E. 2015. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: Implications for remote sensing of crop primary production. J Plant Physiol, 177: 100–109

    Google Scholar 

  • Grace J B. 2006. Structural Equation Modeling and Natural Systems. Cambridge: Cambridge University Press

    Google Scholar 

  • Guo F, Jin J, Yong B, Wang Y, Jiang H. 2020. Responses of water use efficiency to phenology in typical subtropical forest ecosystems—A case study in Zhejiang Province. Sci China Earth Sci, 63: 145–156

    Google Scholar 

  • Guo L, Cheng J, Luedeling E, Koerner S E, He J S, Xu J, Gang C, Li W, Luo R, Peng C. 2017. Critical climate periods for grassland productivity on China’s Loess Plateau. Agric For Meteorol, 233: 101–109

    Google Scholar 

  • Guo L, Shan N, Zhang Y, Sun F, Liu W, Shi Z, Zhang Q. 2019. Separating the effects of climate change and human activity on water use efficiency over the Beijing-Tianjin Sand Source Region of China. Sci Total Environ, 690: 584–595

    Google Scholar 

  • Haldimann P, Feller U. 2004. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell Environ, 27: 1169–1183

    Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R. 2016. Accelerated dryland expansion under climate change. Nat Clim Change, 6: 166–171

    Google Scholar 

  • Huang L, Shao M A. 2019. Advances and perspectives on soil water research in China’s Loess Plateau. Earth-Sci Rev, 199: 102962

    Google Scholar 

  • Huang M, Piao S, Sun Y, Ciais P, Cheng L, Mao J, Poulter B, Shi X, Zeng Z, Wang Y. 2015. Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob Change Biol, 21: 2366–2378

    Google Scholar 

  • Huang M, Piao S, Zeng Z, Peng S, Ciais P, Cheng L, Mao J, Poulter B, Shi X, Yao Y, Yang H, Wang Y. 2016. Seasonal responses of terrestrial ecosystem water-use efficiency to climate change. Glob Change Biol, 22: 2165–2177

    Google Scholar 

  • Hufkens K, Keenan T F, Flanagan L B, Scott R L, Bernacchi C J, Joo E, Brunsell N A, Verfaillie J, Richardson A D. 2016. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat Clim Change, 6: 710–714

    Google Scholar 

  • Hutchinson M F. 2007. ANUSPLIN Version 4.37 User Guide. Canberra: Australian National University

    Google Scholar 

  • IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B, eds. Cambridge: Cambridge University

    Google Scholar 

  • Ji Z X, Hou Q Q, Pei T T, Chen Y, Xie B P, Wu H. W. 2021. Sensitive response of vegetation phenology to seasonal drought in the Loess Plateau. Arid Land Geography, 13, doi: https://doi.org/10.5846/stxb202006301704

  • Jin J, Guo F, Sippel S, Zhu Q, Wang W, Gu B, Wang Y. 2020. Concurrent and lagged effects of spring greening on seasonal carbon gain and water loss across the Northern Hemisphere. Int J Biometeorol, 64: 1343–1354

    Google Scholar 

  • Jin J, Wang Y, Zhang Z, Magliulo V, Jiang H, Cheng M. 2017a. Phenology plays an important role in the regulation of terrestrial ecosystem water-use efficiency in the northern hemisphere. Remote Sens, 9: 664

    Google Scholar 

  • Jin J, Zhan W, Wang Y, Gu B, Wang W, Jiang H, Lu X, Zhang X. 2017b. Water use efficiency in response to interannual variations in flux-based photosynthetic onset in temperate deciduous broadleaf forests. Ecol Indicators, 79: 122–127

    Google Scholar 

  • Jönsson P, Eklundh L. 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens, 40: 1824–1832

    Google Scholar 

  • Jönsson P, Eklundh L. 2004. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput Geoscis, 30: 833–845

    Google Scholar 

  • Kang W, Wang T, Liu S. 2018. The response of vegetation phenology and productivity to drought in semi-arid regions of northern China. Remote Sens, 10: 727

    Google Scholar 

  • Keenan T F, Gray J, Friedl M A, Toomey M, Bohrer G, Hollinger D Y, Munger J W, O’Keefe J, Schmid H P, Wing I S, Yang B, Richardson A D. 2014. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Change, 4: 598–604

    Google Scholar 

  • Keenan T F, Hollinger D Y, Bohrer G, Dragoni D, Munger J W, Schmid H P, Richardson A D. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499: 324–327

    Google Scholar 

  • Kendall M G. 1975. Rank correlation methods. In: Public Program Analysis. Boston: Springer

    Google Scholar 

  • Lal R. 2019. Carbon cycling in global drylands. Curr Clim Change Rep, 5: 221–232

    Google Scholar 

  • Law B E, Falge E, Gu L, Baldocchi D D, Bakwin P, Berbigier P, Davis K, Dolman A J, Falk M, Fuentes J D, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens I A, Jarvis P, Jensen N O, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw U K T, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol, 113: 97–120

    Google Scholar 

  • Li S, Wang Y, Ciais P, Sitch S, Sato H, Shen M, Chen X, Ito A, Wu C, Kucharik C J, Yuan W. 2022. Deficiencies of phenology models in simulating spatial and temporal variations in temperate spring leaf phenology. J Geophys Res-Bio Geoscis, 127: e2021JG006421

    Google Scholar 

  • Liu Z H, Li L T, McVicar T R, Van Niel T G, Yang Q K, Li R. 2008. Introduction of the professional interpolation software for meteorology data: Anusplin (in Chinese). Meteorol Month, 34: 92–100

    Google Scholar 

  • Lu X, Chen M, Liu Y, Miralles D G, Wang F. 2017. Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings. Agric For Meteorol, 237–23 8: 39–49

    Google Scholar 

  • Luyssaert S, Janssens I A, Sulkava M, Papale D, Dolman A J, Reichstein M, Hollmén J, Martin J G, Suni T, Vesala T, Loustau D, Law B E, Moors E J. 2007. Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. Glob Change Biol, 13: 2110–2127

    Google Scholar 

  • Mann H B. 1945. Nonparametric tests against trend. Econometrica, 13: 245

    Google Scholar 

  • McPherson R A. 2016. A review of vegetation—Atmosphere interactions and their influences on mesoscale phenomena. Prog Phys Geography-Earth Environ, 31: 261–285

    Google Scholar 

  • Mitchell S R, Emanuel R E, McGlynn B L. 2015. Land-atmosphere carbon and water flux relationships to vapor pressure deficit, soil moisture, and stream flow. Agric For Meteorol, 208: 108–117

    Google Scholar 

  • Morisette J T, Richardson A D, Knapp A K, Fisher J I, Graham E A, Abatzoglou J, Wilson B E, Breshears D D, Henebry G M, Hanes J M, Liang L. 2009. Tracking the rhythm of the seasons in the face of global change: Phenological research in the 21st century. Front Ecol Environ, 7: 253–260

    Google Scholar 

  • Nandy S, Saranya M, Srinet R. 2022. Spatio-temporal variability of water use efficiency and its drivers in major forest formations in India. Remote Sens Environ, 269: 112791

    Google Scholar 

  • Niu S, Xing X, Zhang Z, Xia J, Zhou X, Song B, Li L, Wan S. 2011. Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Glob Change Biol, 17: 1073–1082

    Google Scholar 

  • Peng J, Wu C, Zhang X, Ju W, Wang X, Lu L, Liu Y. 2021. Incorporating water availability into autumn phenological model improved China’s terrestrial gross primary productivity (GPP) simulation. Environ Res Lett, 16: 094012

    Google Scholar 

  • Peng J, Wu C, Zhang X, Wang X, Gonsamo A. 2019. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Glob Change Biol, 25: 2174–2188

    Google Scholar 

  • Peñuelas J, Canadell J G, Ogaya R. 2011. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeogr, 20: 597–608

    Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J. 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biogeochem Cycle, 21: GB3018

    Google Scholar 

  • Piao S, Liu Q, Chen A, Janssens I A, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X. 2019. Plant phenology and global climate change: Current progresses and challenges. Glob Change Biol, 25: 1922–1940

    Google Scholar 

  • Ponton S, Flanagan L B, Alstad K P, Johnson B G, Morgenstern K, Kljun N, Black T A, Barr A G. 2006. Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Glob Change Biol, 12: 294–310

    Google Scholar 

  • Qian Y L, Lv H Q, Zhang Y H. 2010. Application and assessment of spatial interpolation method on daily meteorological elements based on Anusplin software. J Meteorol Environ, 26: 7–15

    Google Scholar 

  • Reichstein M, Ciais P, Papale D, Valentini R, Running S, Viovy N, Cramer W, Granier A, Ogée J, Allard V, Aubinet M, Bernhofer C, Buchmann N, Carrara A, Grünwald T, Heimann M, Heinesch B, Knohl A, Kutsch W, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J M, Pilegaard K, Pumpanen J, Rambal S, Schaphoff S, Seufert G, Soussana J F, Sanz M J, Vesala T, Zhao M. 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Glob Change Biol, 13: 634–651

    Google Scholar 

  • Richardson A D, Andy Black T, Ciais P, Delbart N, Friedl M A, Gobron N, Hollinger D Y, Kutsch W L, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, William Munger J, Moors E, Piao S, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A. 2010. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Phil Trans R Soc B, 365: 3227–3246

    Google Scholar 

  • Romero-Rodríguez J M, Aznar-Diaz I, Hinojo-Lucena F, García G. 2020. Mobile learning in higher education: Structural equation model for good teaching practices. IEEE Access, 8: 91761–91769

    Google Scholar 

  • Rotenberg E, Yakir D. 2010. Contribution of semi-arid forests to the climate system. Science, 327: 451–454

    Google Scholar 

  • Schwartz M D, Karl T R. 1990. Spring phenology: Nature’s experiment to detect the effect of green-up on surface maximum temperatures. Mon Weather Rev, 118: 883–890

    Google Scholar 

  • Sen P K. 1968. Estimates of the regression coefficient based on Kendall’s tau. J Am Statistical Assoc, 63: 1379–1389

    Google Scholar 

  • Shen M, Piao S, Jeong S J, Zhou L, Zeng Z, Ciais P, Chen D, Huang M, Jin C S, Li L Z X, Li Y, Myneni R B, Yang K, Zhang G, Zhang Y, Yao T. 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc Natl Acad Sci USA, 112: 9299–9304

    Google Scholar 

  • Shi H, Shao M. 2000. Soil and water loss from the Loess Plateau in China. J Arid Environ, 45: 9–20

    Google Scholar 

  • Singh N, Patel N R, Bhattacharya B K, Soni P, Parida B R, Parihar J S. 2014. Analyzing the dynamics and inter-linkages of carbon and water fluxes in subtropical pine (Pinus roxburghii) ecosystem. Agric For Meteorol, 197: 206–218

    Google Scholar 

  • Sun S, Song Z, Wu X, Wang T, Wu Y, Du W, Che T, Huang C, Zhang X, Ping B, Lin X, Li P, Yang Y, Chen B. 2018. Spatio-temporal variations in water use efficiency and its drivers in China over the last three decades. Ecol Indicators, 94: 292–304

    Google Scholar 

  • Sun Y, Piao S, Huang M, Ciais P, Zeng Z, Cheng L, Li X, Zhang X, Mao J, Peng S, Poulter B, Shi X, Wang X, Wang Y P, Zeng H. 2016. Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models. Glob Ecol Biogeogr, 25: 311–323

    Google Scholar 

  • Tabari H, Marofi S, Aeini A, Talaee P H, Mohammadi K. 2011. Trend analysis of reference evapotranspiration in the western half of Iran. Agric For Meteorol, 151: 128–136

    Google Scholar 

  • Tang X, Li H, Desai A R, Nagy Z, Luo J, Kolb T E, Olioso A, Xu X, Yao L, Kutsch W, Pilegaard K, Köstner B, Ammann C. 2014. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Sci Rep, 4: 7483

    Google Scholar 

  • van der Sleen P, Groenendijk P, Vlam M, Anten N P R, Boom A, Bongers F, Pons T L, Terburg G, Zuidema P A. 2015. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat Geosci, 8: 24–28

    Google Scholar 

  • Vicente-Serrano S M, Gouveia C, Camarero J J, Beguería S, Trigo R, López-Moreno J I, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Re-vuelto J, Morán-Tejeda E, Sanchez-Lorenzo A. 2013. Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA, 110: 52–57

    Google Scholar 

  • von Arx G, Dobbertin M, Rebetez M. 2012. Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric For Meteorol, 166–167: 144–155

    Google Scholar 

  • Walker J J, de Beurs K M, Wynne R H. 2014. Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sens Environ, 144: 85–97

    Google Scholar 

  • Wang J, Liu D, Ciais P, Peñuelas J. 2022. Decreasing rainfall frequency contributes to earlier leaf onset in northern ecosystems. Nat Clim Chang, 12: 386–392

    Google Scholar 

  • Wang L, Jiao W, MacBean N, Rulli M C, Manzoni S, Vico G, D’Odorico P. 2022. Dryland productivity under a changing climate. Nat Clim Chang, 12: 981–994

    Google Scholar 

  • Wolf S, Eugster W, Ammann C, Häni M, Zielis S, Hiller R, Stieger J, Imer D, Merbold L, Buchmann N. 2013. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environ Res Lett, 8: 035007

    Google Scholar 

  • Wolf S, Keenan T F, Fisher J B, Baldocchi D D, Desai A R, Richardson A D, Scott R L, Law B E, Litvak M E, Brunsell N A, Peters W, van der Laan-Luijkx I T. 2016. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc Natl Acad Sci USA, 113: 5880–5885

    Google Scholar 

  • Wu C, Chen J M, Black T A, Price D T, Kurz W A, Desai A R, Gonsamo A, Jassal R S, Gough C M, Bohrer G, Dragoni D, Herbst M, Gielen B, Berninger F, Vesala T, Mammarella I, Pilegaard K, Blanken P D. 2013. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob Ecol Biogeogr, 22: 994–1006

    Google Scholar 

  • Wu C, Peng J, Ciais P, Peñuelas J, Wang H, Beguería S, Andrew Black T, Jassal R S, Zhang X, Yuan W, Liang E, Wang X, Hua H, Liu R, Ju W, Fu Y H, Ge Q. 2022. Increased drought effects on the phenology of autumn leaf senescence. Nat Clim Chang, 12: 943–949

    Google Scholar 

  • Xu R, Li Y, Teuling A J, Zhao L, Spracklen D V, Garcia-Carreras L, Meier R, Chen L, Zheng Y, Lin H, Fu B. 2022. Contrasting impacts of forests on cloud cover based on satellite observations. Nat Commun, 13: 670

    Google Scholar 

  • Yue P, Zhang Q, Zhang L, Li H, Yang Y, Zeng J, Wang S. 2019. Long-term variations in energy partitioning and evapotranspiration in a semiarid grassland in the Loess Plateau of China. Agric For Meteorol, 278: 107671

    Google Scholar 

  • Yue S, Pilon P, Cavadias G. 2002. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol, 259: 254–271

    Google Scholar 

  • Zeng Z, Wu W, Ge Q, Li Z, Wang X, Zhou Y, Zhang Z, Li Y, Huang H, Liu G, Peñuelas J. 2021. Legacy effects of spring phenology on vegetation growth under preseason meteorological drought in the Northern Hemisphere. Agric For Meteorol, 310: 108630

    Google Scholar 

  • Zhang H, Chuine I, Regnier P, Ciais P, Yuan W. 2022. Deciphering the multiple effects of climate warming on the temporal shift of leaf unfolding. Nat Clim Chang, 12: 193–199

    Google Scholar 

  • Zhang Q, Yang Z, Hao X, Yue P. 2019. Conversion features of evapo-transpiration responding to climate warming in transitional climate regions in northern China. Clim Dyn, 52: 3891–3903

    Google Scholar 

  • Zhang Y, Schaap M G, Wei Z. 2020. Development of hierarchical ensemble model and estimates of soil water retention with global coverage. Geophys Res Lett, 47: e88819

    Google Scholar 

  • Zhang Y, Zhang J, Xia J, Guo Y, Fu Y H. 2022. Effects of vegetation phenology on ecosystem water use efficiency in a semiarid region of northern China. Front Plant Sci, 13: 945582, doi: https://doi.org/10.3389/fpls.2022.945582

    Google Scholar 

  • Zhou S, Yu B, Schwalm C R, Ciais P, Zhang Y, Fisher J B, Michalak A M, Wang W, Poulter B, Huntzinger D N, Niu S, Mao J, Jain A, Ricciuto D M, Shi X, Ito A, Wei Y, Huang Y, Wang G. 2017. Response of water use efficiency to global environmental change based on output from terrestrial biosphere models. Glob Biogeochem Cycle, 31: 1639–1655

    Google Scholar 

  • Zhou X, Geng X, Yin G, Hänninen H, Hao F, Zhang X, Fu Y H. 2020. Legacy effect of spring phenology on vegetation growth in temperate China. Agric For Meteorol, 281: 107845

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52279030, 51779272, 52009140 & U2243601), the Special Support Funds for National High-level Talents (Grant No. WR0166A012019), and the Independent Research Project of State Key Laboratory of Simulations and Regulation of Water Cycle in River Basin (Grant No. SKL2020ZY04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangwen Jia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Jia, Y., Niu, C. et al. Response of water-use efficiency to phenology in the natural forest and grassland of the Loess Plateau in China. Sci. China Earth Sci. 66, 2081–2096 (2023). https://doi.org/10.1007/s11430-022-1124-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1124-0

Keywords

Navigation