Skip to main content
Log in

Holocene thermal maximum mode versus the continuous warming mode: Problems of data-model comparisons and future research prospects

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Holocene, the most recent interglacial, provides an important time window for evaluating current global warming and predicting future temperature changes. With the development of new temperature proxies and improvements in climate models, significant progress has been made in understanding Holocene temperature changes. However, a major debate persists about whether global temperatures during the Holocene followed a pattern of gradual warming from the end of the Last Glacial Maximum, which culminated in a temperature maximum in the early to middle Holocene, followed by gradual cooling in the late Holocene (the thermal maximum mode); or whether there was a continuous warming trend that continued to the present day (the continuous warming mode). Significant discrepancies exist between different proxy records as well as between proxy records and models, which have resulted in the “Holocene temperature conundrum” that has challenged paleoclimatologists for the past decade. Here, we summarize the progress made to date in the study of Holocene temperature change via proxy reconstructions, climate model simulations, and paleoclimate data assimilation. We emphasize that the current research has limitations in terms of the multiplicity and seasonality of proxy records, the spatial heterogeneity of temperature records, and the incorporation of feedback processes (e.g., vegetation, cloud-radiation feedback) in climate models. These limitations have hindered a comprehensive understanding of the processes and mechanisms of Holocene temperature changes. To solve the “Holocene temperature conundrum”, it is necessary to strengthen theoretical research on climate proxies from the perspective of the underlying processes and mechanisms, elucidate the seasonal response of various temperature proxies, emphasize regional differences in temperature changes, and expand quantitative temperature reconstructions to areas with limited records. However, it is also necessary to improve the simulation performance of complex feedback processes in climate models, reduce simulation errors, and advance the research on data assimilation of Holocene continental temperature records, which may ultimately lead to the optimal integration of paleoclimate records and simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affolter S, Häuselmann A, Fleitmann D, Edwards R L, Cheng H, Leuenberger M. 2019. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci Adv, 5: Eaav3809

    Google Scholar 

  • Andersson C, Pausata F S R, Jansen E, Risebrobakken B, Telford R J. 2010. Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean. Clim Past, 6: 179–193

    Google Scholar 

  • Bader J, Jungclaus J, Krivova N, Lorenz S, Maycock A, Raddatz T, Schmidt H, Toohey M, Wu C J, Claussen M. 2020. Global temperature modes shed light on the Holocene temperature conundrum. Nat Commun, 11: 4726

    Google Scholar 

  • Baker J L, Lachniet M S, Chervyatsova O, Asmerom Y, Polyak V J. 2017. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nat Geosci, 10: 430–435

    Google Scholar 

  • Banerjee A, Yeung L Y, Murray L T, Tie X, Tierney J E, Legrande A N. 2022. Clumped-isotope constraint on upper-tropospheric cooling during the Last Glacial Maximum. AGU Adv, 3: E2022AV000688

    Google Scholar 

  • Bartlein P J, Harrison S P, Brewer S, Connor S, Davis B A S, Gajewski K, Guiot J, Harrison-Prentice T I, Henderson A, Peyron O, Prentice I C, Scholze M, Seppä H, Shuman B, Sugita S, Thompson R S, Viau A E, Williams J, Wu H. 2011. Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Clim Dyn, 37: 775–802

    Google Scholar 

  • Bereiter B, Shackleton S, Baggenstos D, Kawamura K, Severinghaus J. 2018. Mean global ocean temperatures during the last glacial transition. Nature, 553: 39–44

    Google Scholar 

  • Berger A. 1988. Milankovitch theory and climate. Rev Geophys, 26: 624–657

    Google Scholar 

  • Birks H J B, Heiri O, Seppä H, Bjune A E. 2010. Strengths and weaknesses of quantitative climate reconstructions based on Late-Quaternary biological proxies. Open Ecol J, 3: 68–110

    Google Scholar 

  • Bova S, Rosenthal Y, Liu Z Y, Godad S P, Yan M. 2021. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature, 589: 548–553

    Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt C D, Kageyama M, Kitoh A, Laîné A, Loutre M F, Marti O, Merkel U, Ramstein G, Valdes P, Weber S L, Yu Y, Zhao Y. 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Clim Past, 3: 261–277

    Google Scholar 

  • Brierley C M, Zhao A, Harrison S P, Braconnot P, Williams C J R, Thornalley D J R, Shi X X, Peterschmitt J Y, Ohgaito R, Kaufman D S, Kageyama M, Hargreaves J C, Erb M P, Emile-Geay J, D’Agostino R, Chandan D, Carré M, Bartlein P J, Zheng W P, Zhang Z S, Zhang Q, Yang H, Volodin E M, Tomas R A, Routson C, Peltier W R, Otto-Bliesner B, Morozova P A, McKay N P, Lohmann G, Legrande A N, Guo C C, Cao J, Brady E, Annan J D, Abe-Ouchi A. 2020. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Clim Past, 16: 1847–1872

    Google Scholar 

  • Briner J P, McKay N P, Axford Y, Bennike O, Bradley R S, de Vernal A, Fisher D, Francus P, Fréchette B, Gajewski K, Jennings A, Kaufman D S, Miller G, Rouston C, Wagner B. 2016. Holocene climate change in Arctic Canada and Greenland. Quat Sci Rev, 147: 340–364

    Google Scholar 

  • Cao J T, Rao Z G, Shi F X, Jia G D. 2020. Ice formation on lake surfaces in winter causes warm-season bias of lacustrine brGDGT temperature estimates. Biogeosciences, 17: 2521–2536

    Google Scholar 

  • Cao X Y, Tian F, Herzschuh U, Ni J, Xu Q H, Li W J, Zhang Y R, Luo M Y, Chen F H. 2022. Human activities have reduced plant diversity in eastern China over the last two millennia. Glob Change Biol, 28: 4962–4976

    Google Scholar 

  • Cartapanis O, Jonkers L, Moffa-Sanchez P, Jaccard S L, de Vernal A. 2022. Complex spatio-temporal structure of the Holocene Thermal Maximum. Nat Commun, 13: 5662

    Google Scholar 

  • Chen F H, Ding L, Piao S L, Zhou T J, Xu B Q, Yao T D, Li X. 2021a. The Tibetan Plateau as the engine for Asian environmental change: The Tibetan Plateau Earth system research into a new era. Sci Bull, 66: 1263–1266

    Google Scholar 

  • Chen F H, Duan Y W, Hou J Z. 2021b. An 88 ka temperature record from a subtropical lake on the southeastern margin of the Tibetan Plateau (third pole): New insights and future perspectives. Sci Bull, 66: 1056–1057

    Google Scholar 

  • Chen F H, Zhang J F, Liu J B, Cao X Y, Hou J Z, Zhu L P, Xu X K, Liu X J, Wang M D, Wu D, Huang L X, Zeng T, Zhang S, Huang W, Zhang X, Yang K. 2020. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quat Sci Rev, 243: 106444

    Google Scholar 

  • Chen J, Zhang Q, Kjellström E, Lu Z Y, Chen F H. 2022. The contribution of vegetation-climate feedback and resultant sea ice loss to amplified Arctic warming during the mid-Holocene. Geophys Res Lett, 49, https://doi.org/10.1029/2022GL098816

  • Chen W Z, Xiao A G, Braconnot P, Ciais P, Viovy N, Zhang R. 2022. Mid-Holocene high-resolution temperature and precipitation gridded reconstructions over China: Implications for elevation-dependent temperature changes. Earth Planet Sci Lett, 593: 117656

    Google Scholar 

  • Chen X L, Zhou T J, Wu P L, Guo Z, Wang M H. 2020. Emergent constraints on future projections of the western North Pacific Subtropical High. Nat Commun, 11: 2802

    Google Scholar 

  • Chen Z M, Zhou T J, Chen X L, Zhang W X, Zhang L X, Wu M N, Zou L W. 2022. Observationally constrained projection of Afro-Asian monsoon precipitation. Nat Commun, 13: 2552

    Google Scholar 

  • Clegg B F, Kelly R, Clarke G H, Walker I R, Hu F S. 2011. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska. Proc Natl Acad Sci USA, 108: 19299–19304

    Google Scholar 

  • Davis B A S, Brewer S, Stevenson A C, Guiot J. 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev, 22: 1701–1716

    Google Scholar 

  • Dearing Crampton-Flood E D, Tierney J E, Peterse F, Kirkels F M S A, Sinninghe Damsté J S. 2020. BayMBT: A Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats. Geochim Cosmochim Acta, 268: 142–159

    Google Scholar 

  • Deevey E S, Flint R F. 1957. Postglacial hypsithermal interval. Science, 125: 182–184

    Google Scholar 

  • Dolman A M, Laepple T. 2018. Sedproxy: A forward model for sediment-archived climate proxies. Clim Past, 14: 1851–1868

    Google Scholar 

  • Dong Y J, Wu N Q, Li F J, Zhang D, Zhang Y T, Shen C M, Lv H Y. 2022. The Holocene temperature conundrum answered by mollusk records from East Asia. Nat Commun, 13: 5153

    Google Scholar 

  • Duan Y W, Sun Q, Werne J P, Hou J Z, Yang H, Wang Q, Khormali F, Chen F H. 2022a. The impact of precipitation on the distributions of branched tetraethers in alkaline soils. Org Geochem, 169: 104410

    Google Scholar 

  • Duan Y W, Sun Q, Werne J P, Hou J Z, Yang H, Wang Q, Khormali F, Xia D S, Chu G Q, Chen F H. 2022b. General Holocene warming trend in arid Central Asia indicated by soil isoprenoid tetraethers. Glob Planet Change, 215: 103879

    Google Scholar 

  • Duan Y W, Sun Q, Werne J P, Yang H, Jia J, Wang L B, Xie H C, Chen F H. 2020. Soil pH dominates the distributions of both 5- and 6-methyl branched tetraethers in arid regions. J Geophys Res-Biogeosci, 125, https://doi.org/10.1029/2019JG005356

  • Dyke A S. 2004. An outline of North American deglaciation with emphasis on central and northern Canada. Dev Quat Sci, 2: 373–424

    Google Scholar 

  • Eldevik T, Risebrobakken B, Bjune A E, Andersson C, Birks H J B, Dokken T M, Drange H, Glessmer M S, Li C, Nilsen J E Ø, Otterå O H, Richter K, Skagseth Ø. 2014. A brief history of climate—The northern seas from the Last Glacial Maximum to global warming. Quat Sci Rev, 106: 225–246

    Google Scholar 

  • Fang M, Li X. 2016. Paleoclimate data assimilation: Its motivation, progress and prospects. Sci China Earth Sci, 59: 1817–1826

    Google Scholar 

  • Fang X Q, Hou G L. 2011. Synthetically reconstructed Holocene temperature change in China (in Chinese). Sci Geogr Sin, 31: 385–393

    Google Scholar 

  • Feng X P, Zhao C, D’Andrea W J, Hou J Z, Yang X D, Xiao X Y, Shen J, Duan Y W, Chen F H. 2022. Evidence for a relatively warm mid-to late Holocene on the southeastern Tibetan Plateau. Geophys Res Lett, 49: e2022GL098740

    Google Scholar 

  • Feng X P, Zhao C, D’Andrea W J, Liang J, Zhou A F, Shen J. 2019. Temperature fluctuations during the Common Era in subtropical southwestern China inferred from brGDGTs in a remote alpine lake. Earth Planet Sci Lett, 510: 26–36

    Google Scholar 

  • Ge Q S, Wang S B, Zheng J Y. 2006. Reconstruction of temperature series of China for the last 5,000 years (in Chinese). Prog Natural Sci, 16: 689–696

    Google Scholar 

  • Gong G F. 1987. Changes in climatic zones and shifts in biological distribution boundaries in China during historical period (in Chinese). Historical Geography, 5: 1–10

    Google Scholar 

  • Hafsten U. 1970. A sub-division of the Late Pleistocene period on a synchronous basis, intended for global and universal usage. Palaeogeogr Palaeoclimatol Palaeoecol, 7: 279–296

    Google Scholar 

  • Harning D J, Curtin L, Geirsdóttir Á, D’Andrea W J, Miller G H, Sepúlveda J. 2020. Lipid biomarkers quantify Holocene summer temperature and ice cap sensitivity in Icelandic lakes. Geophys Res Lett, 47: E2019GL085728

    Google Scholar 

  • He Y Q, Yao T D, Shen Y P, Zhang Z L, Chen T, Zhang D. 2003. Climatic differences in China during the Holocene indicated by the various climatic proxy data from different parts of China (in Chinese). J Glaciol Geocryol, 25: 11–18

    Google Scholar 

  • Heikkilä M, Seppä H. 2003. A 11,000yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quat Sci Rev, 22: 541–554

    Google Scholar 

  • Hou J Z, Huang Y S, Zhao J T, Liu Z H, Colman S, An Z S. 2015. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau. Geophys Res Lett, 43: 1323–1330

    Google Scholar 

  • Hou J Z, Li C G, Lee S. 2019. The temperature record of the Holocene: Progress and controversies. Sci Bull, 64: 565–566

    Google Scholar 

  • Huguet A, Fosse C, Laggoun-Défarge F, Delarue F, Derenne S. 2013. Effects of a short-term experimental microclimate warming on the abundance and distribution of branched GDGTs in a French peatland. Geochim Cosmochim Acta, 105: 294–315

    Google Scholar 

  • IPCC. 2021. Summary for Policymakers. In: Masson Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O,Yu R, Zhou B, eds. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. in Press

  • Izumi K, Bartlein P J, Harrison S P. 2013. Consistent large-scale temperature responses in warm and cold climates. Geophys Res Lett, 40: 1817–1823

    Google Scholar 

  • Jackson S T, Williams J W. 2004. Modern analogs in quaternary paleoecology: here today, gone yesterday, gone tomorrow? Annu Rev Earth Planet Sci, 32: 495–537

    Google Scholar 

  • Jansen E, Overpeck J, Briffa K R, Duplessy J C, Joos F, Masson-Delmotte V, Olago D, Otto Bliesner B, Peltier W R, Rahmstorf S, Ramesh D, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D. 2007. Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L, eds. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assesement Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press

    Google Scholar 

  • Jansen E, Andersson C, Moros M, Nisancioglu K H, Nyland B F, Telford R J. 2008. The early to mid Holocene thermal optimum in the northern North Atlantic and Nordic Seas: The role of seasonal orbital forcing and Holocene century to millennial scale climate events. In: Battarbee R W, Binney H A, eds. Natural Climate Variability and Global Warming: A Holocene Perspective. Oxford: Wiley-Blackwell. 123–137

    Google Scholar 

  • Jiang D B, Lang X M, Tian Z P, Wang T. 2012. Considerable model-data mismatch in temperature over China during the mid-Holocene: Results of PMIP simulations. J Clim, 25: 4135–4153

    Google Scholar 

  • Johnsen S J, Dahl-Jensen D, Gundestrup N, Steffensen J P, Clausen H B, Miller H, Masson-Delmotte V, Sveinbjörnsdottir A E, White J. 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci, 16: 299–307

    Google Scholar 

  • Joos F, Spahni R. 2008. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci USA, 105: 1425–1430

    Google Scholar 

  • Juggins S. 2013. Quantitative reconstructions in palaeolimnology: New paradigm or sick science? Quat Sci Rev, 64: 20–32

    Google Scholar 

  • Kaufman D S, Ager T A, Anderson N J, Anderson P M, Andrews J T, Bartlein P J, Brubaker L B, Coats L L, Cwynar L C, Duvall M L, Dyke A S, Edwards M E, Eisner W R, Gajewski K, Geirsdóttir A, Hu F S, Jennings A E, Kaplan M R, Kerwin M W, Lozhkin A V, MacDonald G M, Miller G H, Mock C J, Oswald W W, Otto-Bliesner B L, Porinchu D F, Rühland K, Smol J P, Steig E J, Wolfe B B. 2004. Holocene thermal maximum in the western Arctic (0°–180°W). Quat Sci Rev, 23: 529–560

    Google Scholar 

  • Kaufman D S, Axford Y L, Henderson A C G, McKay N P, Oswald W W, Saenger C, Anderson R S, Bailey H L, Clegg B, Gajewski K, Hu F S, Jones M C, Massa C, Routson C C, Werner A, Wooller M J, Yu Z C. 2016. Holocene climate changes in eastern Beringia (NW North America)—A systematic review of multi-proxy evidence. Quat Sci Rev, 147: 312–339

    Google Scholar 

  • Kaufman D S, Broadman E. 2023. Revisiting the Holocene global temperature conundrum. Nature, 614: 425–435

    Google Scholar 

  • Kaufman D, McKay N, Routson C, Erb M, Dätwyler C, Sommer P S, Heiri O, Davis B. 2020a. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci Data, 7: 201

    Google Scholar 

  • Kaufman D, McKay N, Routson C, Erb M, Davis B, Heiri O, Jaccard S, Tierney J, Dätwyler C, Axford Y, Brussel T, Cartapanis O, Chase B, Dawson A, de Vernal A, Engels S, Jonkers L, Marsicek J, Moffa-Sánchez P, Morrill C, Orsi A, Rehfeld K, Saunders K, Sommer P S, Thomas E, Tonello M, Tóth M, Vachula R, Andreev A, Bertrand S, Biskaborn B, Bringué M, Brooks S, Caniupán M, Chevalier M, Cwynar L, Emile-Geay J, Fegyveresi J, Feurdean A, Finsinger W, Fortin M C, Foster L, Fox M, Gajewski K, Grosjean M, Hausmann S, Heinrichs M, Holmes N, Ilyashuk B, Ilyashuk E, Juggins S, Khider D, Koinig K, Langdon P, Larocque-Tobler I, Li J, Lotter A, Luoto T, Mackay A, Magyari E, Malevich S, Mark B, Massaferro J, Montade V, Nazarova L, Novenko E, Pařil P, Pearson E, Peros M, Pienitz R, Płóciennik M, Porinchu D, Potito A, Rees A, Reinemann S, Roberts S, Rolland N, Salonen S, Self A, Seppä H, Shala S, St-Jacques J M, Stenni B, Syrykh L, Tarrats P, Taylor K, van den Bos V, Velle G, Wahl E, Walker I, Wilmshurst J, Zhang E, Zhilich S. 2020b. A global database of Holocene paleotemperature records. Sci Data, 7: 115

    Google Scholar 

  • Kim J H, Rimbu N, Lorenz S J, Lohmann G, Nam S I, Schouten S, Rühlemann C, Schneider R R. 2004. North Pacific and North Atlantic sea-surface temperature variability during the Holocene. Quat Sci Rev, 23: 2141–2154

    Google Scholar 

  • Kuang X Y, Han Y C, Wang Z Y. 2021. Dynamic downscaling simulation of millennial climate in China since the Last Glacial Maximum-Climate comparison of three typical periods (in Chinese). Quat Sci, 41: 842–855

    Google Scholar 

  • Laepple T, Shakun J, He F, Marcott S. 2022. Concerns of assuming linearity in the reconstruction of thermal maxima. Nature, 607: E12–E14

    Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia A C M, Levrard B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys, 428: 261–285

    Google Scholar 

  • Leduc G, Schneider R, Kim J H, Lohmann G. 2010. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quaternary Sci Rev, 29: 989–1004

    Google Scholar 

  • Lei Y Y, Yang H, Dang X Y, Zhao S J, Xie S C. 2016. Absence of a significant bias towards summer temperature in branched tetraether-based paleothermometer at two soil sites with contrasting temperature seasonality. Org Geochem, 94: 83–94

    Google Scholar 

  • Li H S, Liu X Q, Arnold A, Elliott B, Flores R, Kelley A M, Tripati A. 2021. Mass 47 clumped isotope signatures in modern lacustrine authigenic carbonates in Western China and other regions and implications for paleotemperature and paleoelevation reconstructions. Earth Planet Sci Lett, 562: 116840

    Google Scholar 

  • Li J Y, Xu Q H, Zheng Z, Lu H Y, Luo Y L, Li Y C, Li C H, Seppä H. 2015. Assessing the importance of climate variables for the spatial distribution of modern pollen data in China. Quat Res, 83: 287–297

    Google Scholar 

  • Li P X, Furtado K, Zhou T J, Chen H M, Li J. 2021. Convection-permitting modelling improves simulated precipitation over the central and eastern Tibetan Plateau. Q J R Meteorol Soc, 147: 341–362

    Google Scholar 

  • Liang C, Zhao Y, Qin F, Zheng Z, Xiao X, Ma C, Li H, Zhao W. 2020. Pollen-based Holocene quantitative temperature reconstruction on the eastern Tibetan Plateau using a comprehensive method framework. Sci China Earth Sci, 63: 1144–1160

    Google Scholar 

  • Lin C G, Chen D L, Yang K, Ou T H. 2018. Impact of model resolution on simulating the water vapor transport through the central Himalayas: Implication for models’ wet bias over the Tibetan Plateau. Clim Dyn, 51: 3195–3207

    Google Scholar 

  • Liu Y G, Zhang M, Liu Z Y, Xia Y, Huang Y, Peng Y R, Zhu Q. 2018. A possible role of dust in resolving the Holocene temperature conundrum. Sci Rep, 8: 4434

    Google Scholar 

  • Liu Z Y, Zhu J, Rosenthal Y, Zhang X, Otto-Bliesner B L, Timmermann A, Smith R S, Lohmann G, Zheng W P, Timm O E. 2014. The Holocene temperature conundrum. Proc Natl Acad Sci USA, 111, https://doi.org/10.1073/pnas.1407229111

  • Liu Z, Otto-Bliesner B L, He F, Brady E C, Tomas R, Clark P U, Carlson A E, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J. 2009. Transient simulation of last deglaciation with a new mechanism for Belling-Allerad warming. Science, 325: 310–314

    Google Scholar 

  • Lohmann G, Pfeiffer M, Laepple T, Leduc G, Kim J H. 2013. A model-data comparison of the Holocene global sea surface temperature evolution. Clim Past, 9: 1807–1839

    Google Scholar 

  • Lohmann G, Wagner A, Prange M. 2021. Resolution of the atmospheric model matters for the Northern Hemisphere Mid-Holocene climate. Dyn Atmos Oceans, 93: 101206

    Google Scholar 

  • Longo W M, Huang Y S, Russell J M, Morrill C, Daniels W C, Giblin A E, Crowther J. 2020. Insolation and greenhouse gases drove Holocene winter and spring warming in Arctic Alaska. Quat Sci Rev, 242: 106438

    Google Scholar 

  • Lu H X, Liu W G, Yang H, Wang H Y, Liu Z H, Leng Q, Sun Y B, Zhou W J, An Z S. 2019. 800-kyr land temperature variations modulated by vegetation changes on Chinese Loess Plateau. Nat Commun, 10: 1958

    Google Scholar 

  • Man Z M. 1992. Exploration of climatic characteristics of Yangshao warm period in the Huang-Huai-Hai Plain (in Chinese). Historical Geography, 10

  • Marchal O, Cacho I, Stocker T F, Grimalt J O, Calvo E, Martrat B, Shackleton N, Vautravers M, Cortijo E, van Kreveld S, Andersson C, Koç N, Chapman M, Sbaffi L, Duplessy J C, Sarnthein M, Turon J L, Duprat J, Jansen E. 2002. Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quat Sci Rev, 21: 455–483

    Google Scholar 

  • Marcott S A, Shakun J D, Clark P U, Mix A C. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science, 339: 1198–1201

    Google Scholar 

  • Marcott S A, Shakun J D. 2021. A complete palaeoclimate picture emerges. Nature, 599: 208–209

    Google Scholar 

  • Marsicek J, Shuman B N, Bartlein P J, Shafer S L, Brewer S. 2018. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature, 554: 92–96

    Google Scholar 

  • Martínez-Sosa P, Tierney J E, Stefanescu I C, Dearing Crampton-Flood E, Shuman B N, Routson C. 2021. A global Bayesian temperature calibration for lacustrine brGDGTs. Geochim Cosmochim Acta, 305: 87–105

    Google Scholar 

  • Masson-Delmotte V, Landais A, Stievenard M, Cattani O, Falourd S, Jouzel J, Johnsen S J, Dahl-Jensen D, Sveinsbjornsdottir A, White J W C, Popp T, Fischer H. 2005. Holocene climatic changes in Greenland: Different deuterium excess signals at Greenland Ice Core Project (GRIP) and NorthGRIP. J Geophys Res, 110, https://doi.org/10.1029/2004JD005575

  • Meehl G A, Senior C A, Eyring V, Flato G, Lamarque J F, Stouffer R J, Taylor K E, Schlund M. 2020. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci Adv, 6: Eaba1981

    Google Scholar 

  • Meyer H, Opel T, Laepple T, Dereviagin A Y, Hoffmann K, Werner M. 2015. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat Geosci, 8: 122–125

    Google Scholar 

  • Nesje A, Dahl S O. 1993. Lateglacial and Holocene glacier fluctuations and climate variations in western Norway: A review. Quat Sci Rev, 12: 255–261

    Google Scholar 

  • NGRIP members. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431: 147–151

    Google Scholar 

  • Osman M B, Tierney J E, Zhu J, Tardif R, Hakim G J, King J, Poulsen C J. 2021. Globally resolved surface temperatures since the Last Glacial Maximum. Nature, 599: 239–244

    Google Scholar 

  • Pang H X, Hou S G, Zhang W B, Wu S Y, Jenk T M, Schwikowski M, Jouzel J. 2020. Temperature trends in the northwestern Tibetan Plateau constrained by ice core water isotopes over the past 7,000 years. J Geophys Res-Atmos, 125, https://doi.org/10.1029/2020JD032560

  • Park H S, Kim S J, Stewart A L, Son S W, Seo K H. 2019. Mid-Holocene northern hemisphere warming driven by Arctic amplification. Sci Adv, 5: Eaax8203

    Google Scholar 

  • Prahl F G, Rontani J F, Zabeti N, Walinsky S E, Sparrow M A. 2010. Systematic pattern in—Temperature residuals for surface sediments from high latitude and other oceanographic settings. Geochim Cosmochim Acta, 74: 131–143

    Google Scholar 

  • Rao Z G, Qin Q Q, Wei S K, Guo H C, Li Y X. 2022. Holocene temperature history and its significance to studies on historical human-land relationship in China (in Chinese). Acta Geogr Sin, 77: 1169–1180

    Google Scholar 

  • Rao Z G, Shi F X, Li Y X, Huang C, Zhang X Z, Yang W, Liu L D, Zhang X P, Wu Y. 2020. Long-term winter/summer warming trends during the Holocene revealed by α-cellulose γ18O/γ13C records from an alpine peat core from central Asia. Quat Sci Rev, 232: 106217

    Google Scholar 

  • Rehfeld K, Trachsel M, Telford R J, Laepple T. 2016. Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world. Clim Past, 12: 2255–2270

    Google Scholar 

  • Renssen H, Seppä H, Crosta X, Goosse H, Roche D M. 2012. Global characterization of the Holocene Thermal Maximum. Quat Sci Rev, 48: 7–19

    Google Scholar 

  • Renssen H, Seppä H, Heiri O, Roche D M, Goosse H, Fichefet T. 2009. The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci, 2: 411–414

    Google Scholar 

  • Roberts N. 1998. The Holocene: An Environmental History. Oxford: Blackwell

    Google Scholar 

  • Sachs J P. 2007. Cooling of Northwest Atlantic slope waters during the Holocene. Geophys Res Lett, 34: L03609

    Google Scholar 

  • Samartin S, Heiri O, Joos F, Renssen H, Franke J, Brönnimann S, Tinner W. 2017. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat Geosci, 10: 207–212

    Google Scholar 

  • Sejrup H P, Seppä H, McKay N P, Kaufman D S, Geirsdóttir Á, de Vernal A, Renssen H, Husum K, Jennings A, Andrews J T. 2016. North Atlantic-Fennoscandian Holocene climate trends and mechanisms. Quat Sci Rev, 147: 365–378

    Google Scholar 

  • Seltzer A M, Ng J, Aeschbach W, Kipfer R, Kulongoski J T, Severinghaus J P, Stute M. 2021. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature, 593: 228–232

    Google Scholar 

  • Seppä H, Bjune A E, Telford R J, Birks H J B, Veski S. 2009. Last nine-thousand years of temperature variability in Northern Europe. Clim Past, 5: 523–535

    Google Scholar 

  • Shi F, Lu H Y, Guo Z T, Yin Q Z, Wu H B, Xu C X, Zhang E L, Shi J F, Cheng J, Xiao X Y, Zhao C. 2021. The position of the current warm period in the context of the past 22,000 years of summer climate in China. Geophys Res Lett, 48, https://doi.org/10.1029/2020GL091940

  • Shi J W, Jiang D B, Tian Z P, Lang X M. 2022. Enhanced interannual variability in temperature during the Last Glacial Maximum. J Clim, 35: 5933–5950

    Google Scholar 

  • Shi Y F, Kong Z Z, Wang S M, Tang L Y, Wang F B, Yao T D, Zhao X T, Zhang P Y Shi S H. 1994. The climatic fluctuation and important events of Holocene Megathermal in China. Sci China Ser B, 37: 353–365

    Google Scholar 

  • Stott L, Cannariato K, Thunell R, Haug G H, Koutavas A, Lund S. 2004. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature, 431: 56–59

    Google Scholar 

  • Su F G, Duan X L, Chen D L, Hao Z C, Cuo L. 2013. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim, 26: 3187–3208

    Google Scholar 

  • Sun Q, Chu G Q, Liu G X, Wang X H, Liu M M, Shi L M, Xie M M, Lin Y. 2010. The occurrence and distributions of long chain alkenones in lakes (in Chinese). Acta Geosci Sin, 31: 485–494

    Google Scholar 

  • Sun X S, Zhao C, Zhang C, Feng X P, Yan T L, Yang X D, Shen J. 2021. Seasonality in Holocene temperature reconstructions in southwestern China. Paleoceanogr Paleoclimatol, 36, https://doi.org/10.1029/2020PA004025

  • Sundqvist H S, Kaufman D S, McKay N P, Balascio N L, Briner J P, Cwynar L C, Sejrup H P, Seppä H, Subetto D A, Andrews J T, Axford Y, Bakke J, Birks H J B, Brooks S J, de Vernal A, Jennings A E, Ljungqvist F C, Rühland K M, Saenger C, Smol J P, Viau A E. 2014. Arctic Holocene proxy climate database—New approaches to assessing geochronological accuracy and encoding climate variables. Clim Past, 10: 1605–1631

    Google Scholar 

  • Thompson A J, Zhu J, Poulsen C J, Tierney J E, Skinner C B. 2022. Northern Hemisphere vegetation change drives a Holocene thermal maximum. Sci Adv, 8: Eabi6535 Tian Z P, Jiang D B, Zhang R, Su B H. 2022. Transient climate simulations of the Holocene (version 1)—Experimental design and boundary conditions. Geosci Model Dev, 15: 4469–4487

    Google Scholar 

  • Tierney J E, Poulsen C J, Montañez I P, Bhattacharya T, Feng R, Ford H L, Hönisch B, Inglis G N, Petersen S V, Sagoo N, Tabor C R, Thirumalai K, Zhu J, Burls N J, Foster G L, Goddéris Y, Huber B T, Ivany L C, Kirtland Turner S, Lunt D J, McElwain J C, Mills B J W, Otto-Bliesner B L, Ridgwell A, Zhang Y G. 2020a. Past climates inform our future. Science, 370: Eaay3701

    Google Scholar 

  • Tierney J E, Tingley M P. 2018. BAYSPLINE: A new calibration for the alkenone paleothermometer. Paleoceanography Paleoclimatology, 33: 281–301

    Google Scholar 

  • Tierney J E, Zhu J, King J, Malevich S B, Hakim G J, Poulsen C J. 2020b. Glacial cooling and climate sensitivity revisited. Nature, 584: 569–573

    Google Scholar 

  • Véquaud P, Thibault A, Derenne S, Anquetil C, Collin S, Contreras S, Nottingham A T, Sabatier P, Werne J P, Huguet A. 2022. FROG: A global machine-learning temperature calibration for branched GDGTs in soils and peats. Geochim Cosmochim Acta, 318: 468–494

    Google Scholar 

  • Viau A E, Gajewski K, Sawada M C, Fines P. 2006. Millennial-scale temperature variations in North America during the Holocene. J Geophys Res, 111: D09102

    Google Scholar 

  • Vinther B M, Buchardt S L, Clausen H B, Dahl-Jensen D, Johnsen S J, Fisher D A, Koerner R M, Raynaud D, Lipenkov V, Andersen K K, Blunier T, Rasmussen S O, Steffensen J P, Svensson A M. 2009. Holocene thinning of the Greenland ice sheet. Nature, 461: 385–388

    Google Scholar 

  • Wang C F, Bendle J A, Yang H, Yang Y, Hardman A, Yamoah A, Thorpe A, Mandel I, Greene S E, Huang J H, Xie S C. 2021. Global calibration of novel 3-hydroxy fatty acid based temperature and pH proxies. Geochim Cosmochim Acta, 302: 101–119

    Google Scholar 

  • Wang M D, Hou J Z, Duan Y W, Chen J H, Li X M, He Y, Lee S Y, Chen F H. 2021. Internal feedbacks forced middle Holocene cooling on the Qinghai-Tibetan Plateau. Boreas, 50: 1116–1130

    Google Scholar 

  • Wang S W, Gong D Y. 2000. Temperature changes during several special periods of the Holocene in China (in Chinese). Prog Natural Sci, 10: 325–332

    Google Scholar 

  • Wanner H, Beer J, Bütikofer J, Crowley T J, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan J O, Küttel M, Müller S A, Prentice I C, Solomina O, Stocker T F, Tarasov P, Wagner M, Widmann M. 2008. Mid- to Late Holocene climate change: An overview. Quat Sci Rev, 27: 1791–1828

    Google Scholar 

  • Weijers J W H, Bernhardt B, Peterse F, Werne J P, Dungait J A J, Schouten S, Sinninghe Damsté J S. 2011. Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils. Geochim Cosmochim Acta, 75: 3179–3190

    Google Scholar 

  • Weldeab S, Lea D W, Schneider R R, Andersen N. 2007. 155,000 years of west African monsoon and ocean thermal evolution. Science, 316: 1303–1307

    Google Scholar 

  • Wu D, Chen X M, Lv F Y, Brenner M, Curtis J, Zhou A F, Chen J H, Abbott M, Yu J Q, Chen F H. 2018. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat Sci Rev, 193: 54–67

    Google Scholar 

  • Wu H B, Li Q, Yu Y Y, Jiang W Q, Lin Y T, Sun A Z, Luo Y L. 2017. Quantitative climate reconstruction in China during the mid-Holocene (in Chinese). Quat Sci, 37: 982–998

    Google Scholar 

  • Xie S C, Yang H, Dang X Y, Wang C F. 2018. Some issues in microbial responses to environmental change and the application of molecular proxies (in Chinese). Geol Rev, 64: 183–189

    Google Scholar 

  • Xu Q H, Li Y C, Li Y, Yang X L, Zhang Z Q, Jia H J. 2006. Discussion on several issues in modern pollen process and Quaternary environmental research (in Chinese). Prog Natural Sci, 16: 647–656

    Google Scholar 

  • Yan T L, Zhao C, Yan H, Shi G, Sun X S, Zhang C, Feng X P, Leng C C. 2021. Elevational differences in Holocene thermal maximum revealed by quantitative temperature reconstructions at ~30°N on eastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 570: 110364

    Google Scholar 

  • Yang H, Pancost R D, Dang X Y, Zhou X Y, Evershed R P, Xiao G Q, Tang C Y, Gao L, Guo Z T, Xie S C. 2014. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid regions. Geochim Cosmochim Acta, 126: 49–69

    Google Scholar 

  • Yao T D, Masson-Delmotte V, Gao J, Yu W S, Yang X X, Risi C, Sturm C, Werner M, Zhao H B, He Y, Ren W, Tian L D, Shi C M, Hou S G. 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev Geophys, 51: 525–548

    Google Scholar 

  • Zhang C, Zhao C, Yu S Y, Yang X D, Cheng J, Zhang X J, Xue B, Shen J, Chen F H. 2022. Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau. Earth-Sci Rev, 226: 103927

    Google Scholar 

  • Zhang E L, Chang J, Cao Y M, Sun W W, Shulmeister J, Tang H Q, Langdon P G, Yang X D, Shen J. 2017. Holocene high-resolution quantitative summer temperature reconstruction based on subfossil chironomids from the southeast margin of the Qinghai-Tibetan Plateau. Quat Sci Rev, 165: 1–12

    Google Scholar 

  • Zhang W C, Wu H B, Cheng J, Geng J Y, Li Q, Sun Y, Yu Y Y, Lu H Y, Guo Z T. 2022a. Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass. Nat Commun, 13: 5334

    Google Scholar 

  • Zhang W C, Wu H B, Geng J Y, Cheng J. 2022b. Model-data divergence in global seasonal temperature response to astronomical insolation during the Holocene. Sci Bull, 67: 25–28

    Google Scholar 

  • Zhang W X, Furtado K, Zhou T J, Wu P L, Chen X L. 2022. Constraining extreme precipitation projections using past precipitation variability. Nat Commun, 13: 6319

    Google Scholar 

  • Zhang X, Chen F H. 2021. Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature, 600: E1–E3

    Google Scholar 

  • Zhang Y R, Renssen H, Seppä H, Valdes P J. 2017. Holocene temperature evolution in the Northern Hemisphere high latitudes—Model-data comparisons. Quat Sci Rev, 173: 101–113

    Google Scholar 

  • Zhao B Y, Castañeda I S, Bradley R S, Salacup J M, de Wet G A, Daniels W C, Schneider T. 2021. Development of an in situ branched GDGT calibration in Lake 578, southern Greenland. Org Geochem, 152: 104168

    Google Scholar 

  • Zhao C, Rohling E J, Liu Z Y, Yang X Q, Zhang E L, Cheng J, Liu Z H, An Z S, Yang X D, Feng X P, Sun X S, Zhang C, Yan T L, Long H, Yan H, Yu Z C, Liu W G, Yu S Y, Shen J. 2021. Possible obliquity-forced warmth in southern Asia during the last glacial stage. Sci Bull, 66: 1136–1145

    Google Scholar 

  • Zhao Y, Zhou T J, Li P X, Furtado K, Zou L W. 2021. Added value of a convection permitting model in simulating atmospheric water cycle over the Asian Water Tower. Geophys Res Atmos, 126, https://doi.org/10.1029/2021JD034788

  • Zhao Y, Zhou T J, Zhang W X, Li J. 2022. Change in precipitation over the Tibetan Plateau projected by weighted CMIP6 models. Adv Atmos Sci, 39: 1133–1150

    Google Scholar 

  • Zheng W P, Man W M, Sun Y, Luan Y H. 2019. Short commentary on CMIP6 Paleoclimate Modelling Intercomparison Project Phase 4 (PMIP4) (in Chinese). Clim Change Res, 15: 510–518

    Google Scholar 

  • Zheng Y H, Pancost R D, Naafs B D A, Li Q Y, Liu Z, Yang H. 2018. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene. Earth Planet Sci Lett, 493: 36–46

    Google Scholar 

  • Zheng Z, Zhang X, Man M L, Wei J H, Huang K Y. 2016. Review and data integration of pollen-based quantitative paleoclimate reconstruction studies in China and adjacent areas (in Chinese). Quat Sci, 36: 503–519

    Google Scholar 

  • Zhou T, Zhang W, Chen D, Zhang X, Li C, Zuo M, Chen X. 2021. Understanding and building upon pioneering work of Nobel Prize in Physics 2021 laureates Syukuro Manabe and Klaus Hasselmann: From greenhouse effect to Earth system science and beyond. Sci China Earth Sci, 65: 589–600

    Google Scholar 

  • Zhou T J, Zou L W, Chen X L. 2019. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6) (in Chinese). Adv Clim Change Res, 15: 445–456

    Google Scholar 

  • Zhu K Z. 1973. Preliminary study on the climate change in China over the past 5,000 years (in Chinese). Sci China, 16: 226–256

    Google Scholar 

  • Zhu Y C, Zhang R H, Moum J N, Wang F, Li X F, Li D L. 2022. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations. Natl Sci Rev, 9: Nwac044

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Qing SUN of the National Research Center for Geoanalysis, Prof. Josef WERNE of the University of Pittsburgh, Prof. Cheng ZHAO of Nanjing University, and Prof. Hongyan LIU of Peking University for helpful discussions on the contents of this paper. We also appreciate the tireless efforts of our students since 2005 in addressing the topic of Holocene temperature change, despite the lack of advanced methods and reliable records. These efforts have provided a deeper understanding of the progress in research on Holocene temperature conundrum. We also thank the responsible editor and two anonymous reviewers for their valuable comments and suggestions on the manuscript. We thank Prof. Jan Bloemendal for improving the English language. This work was supported by the National Natural Science Foundation of China (Grant No. 41988101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Duan, Y., Hao, S. et al. Holocene thermal maximum mode versus the continuous warming mode: Problems of data-model comparisons and future research prospects. Sci. China Earth Sci. 66, 1683–1701 (2023). https://doi.org/10.1007/s11430-022-1113-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1113-x

Keywords

Navigation