Skip to main content
Log in

Steep subduction of the Indian continental mantle lithosphere beneath the eastern Himalaya revealed by gravity anomalies

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The geometry and deformation of the Indian continental mantle lithosphere (ICML) beneath the India-Eurasia collision zone are critical to understanding the accommodation of continent-continent convergence. In this paper, the distribution of residual gravity anomalies in the upper mantle of southern Tibet is estimated using the gravity data and seismic velocity models, and the heterogeneous density distribution of the upper-mantle is then recovered through three-dimensional gravity inversion. The results reveal a low-density anomaly (~300 km W-E and ~100 km N-S) in the upper mantle under the eastern Himalaya, while there is no obvious density anomaly under the western Himalaya. The western boundary of the low-density anomaly coincides with the Yadong-Gulu Rift (YGR) on the surface (89°-90°E), and its southern boundary is located at ~28°N, approximately 130 km southward from the Indus-Yarlung suture, probably representing the mantle suture at depth. This observation indicates that, in contrast to the western ICML which is probably underthrusting at a shallow angle, the eastern ICML be likely subducting steeply, accompanying asthenosphere upwelling. Such a laterally varying geometry suggests that a major tearing of the ICML may have taken place from the intersection of the mantle suture and the YGR in the upper mantle. The tearing and the steep subduction of the ICML might be associated with the magmatic and mineralization events in the eastern Himalaya-Gangdese and the formation of the YGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amante C, Eakins B W. 2009. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. Boulder: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division

    Google Scholar 

  • Bai Z, Zhang S, Braitenberg C. 2013. Crustal density structure from 3D gravity modeling beneath Himalaya and Lhasa blocks, Tibet. J Asian Earth Sci, 78: 301–317

    Google Scholar 

  • Bian S, Gong J, Zuza AV, Yang R, Tian Y, Ji J, Chen H, Xu Q, Chen L, Lin X, Cheng X, Tu J, Yu X. 2020. Late Pliocene onset of the Cona rift, eastern Himalaya, confirms eastward propagation of extension in Himalayan-Tibetan orogen. Earth Planet Sci Lett, 544: 116383

    Google Scholar 

  • Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Amer, 95: 2081–2092

    Google Scholar 

  • Ceylan S, Ni J, Chen J Y, Zhang Q, Tilmann F, Sandvol E. 2012. Fragmented Indian plate and vertically coherent deformation beneath eastern Tibet. J Geophys Res, 117: B11303

    Google Scholar 

  • Chen B, Liu J, Chen C, Du J, Sun Y. 2015. Elastic thickness of the Himalayan-Tibetan orogen estimated from the fan wavelet coherence method, and its implications for lithospheric structure. Earth Planet Sci Lett, 409: 1–14

    Google Scholar 

  • Chen M, Niu F, Tromp J, Lenardic A, Lee C T A, Cao W, Ribeiro J. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet. Nat Commun, 8: 15659

    Google Scholar 

  • Chen Y, Li W, Yuan X, Badal J, Teng J. 2015. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth Planet Sci Lett, 413: 13–24

    Google Scholar 

  • Fecher T, Pail R, Gruber T. 2017. GOCO05C: A new combined gravity field model based on full normal equations and regionally varying weighting. Surv Geophys, 38: 571–590

    Google Scholar 

  • Guo L H, Meng X H, Shi L, Li S L. 2009. 3-D correlation imaging for gravity and gravity gradiometry data (in Chinese with abstract in English). Chin J Geophys, 52: 1098–1106

    Google Scholar 

  • Hammer P, Berthet T, Hetényi G, Cattin R, Drukpa D, Chophel J, Lechmann S, Moigne N L, Champollion C, Doerflinger E. 2013. Flexure of the India plate underneath the Bhutan Himalaya. Geophys Res Lett, 40: 4225–4230

    Google Scholar 

  • Hetényi G, Cattin R, Berthet T, Le Moigne N, Chophel J, Lechmann S, Hammer P, Drukpa D, Sapkota S N, Gautier S, Thinley K. 2016. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies. Sci Rep, 6: 33866

    Google Scholar 

  • Hetényi G, Cattin R, Brunet F, Bollinger L, Vergne J, Nábĕlek J L, Diament M. 2007. Density distribution of the India plate beneath the Tibetan Plateau: Geophysical and petrological constraints on the kinetics of lower-crustal eclogitization. Earth Planet Sci Lett, 264: 226–244

    Google Scholar 

  • Hou Z Q, Li Z Q. 2004. Possible location for underthrusting front of the Indus continent: Constraints from Helium isotope of the geothermal gas in southern Tibet and eastern Tibet (in Chinese with abstract in English). Acte Geol Sin, 4: 482–493

    Google Scholar 

  • Hou Z Q, Zhao Z D, Gao Y F, Yang Z M, Jiang W. 2006. Tearing and dischronal subduction of the Indian continental slab: Evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet (in Chinese with abstract in English). Acta Petro Sin, 22: 761–774

    Google Scholar 

  • Hou Z, Duan L, Lu Y, Zheng Y, Zhu D, Yang Z, Yang Z, Wang B, Pei Y, Zhao Z, McCuaig T C. 2015. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geol, 110: 1541–1575

    Google Scholar 

  • Huang Y. 2015. Iterative regularization methods for large-scale discrete ILL-posed problems (in Chinese). Doctoral Dissertation. Beijing: Tsinghua University

    Google Scholar 

  • Jin Y, McNutt M K, Zhu Y S. 1996. Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies. J Geophys Res, 101: 11275–11290

    Google Scholar 

  • Kaban M K, Stolk W, Tesauro M, El Khrepy S, Al-Arifi N, Beekman F, Cloetingh S A P L. 2016. 3D density model of the upper mantle of Asia based on inversion of gravity and seismic tomography data. Geochem Geophys Geosyst, 17: 4457–4477

    Google Scholar 

  • Klemperer S L, Zhao P, Whyte C J, Darrah T H, Crossey L J, Karlstrom K E, Liu T, Winn C, Hilton D R, Ding L. 2022. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision. Proc Natl Acad Sci USA, 119: 12

    Google Scholar 

  • Kosarev G, Kind R, Sobolev S V, Yuan X, Hanka W, Oreshin S. 1999. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 283: 1306–1309

    Google Scholar 

  • Li C, van der Hilst R D, Meltzer A S, Robert Engdahl E. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet Sci Lett, 274: 157–168

    Google Scholar 

  • Li J, Song X. 2018. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet. Proc Natl Acad Sci USA, 115: 8296–8300

    Google Scholar 

  • Li Y, Oldenburg D W. 1998. 3-D inversion ofgravity data. Geophysics, 63: 109–119

    Google Scholar 

  • Li Y, Gao M, Wu Q. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics, 611: 51–60

    Google Scholar 

  • Liang S X, Wang Q, Jiao Y J, Liao G Z, Guo J. 2019. Analysis and evaluation of the potential field inversion using LSQR method (in Chinese with abstract in English). Geophys Geochem Explor, 43: 359–366

    Google Scholar 

  • Liang X, Chen Y, Tian X, Chen Y J, Ni J, Gallegos A, Klemperer S L, Wang M, Xu T, Sun C, Si S, Lan H, Teng J. 2016. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth Planet Sci Lett, 443: 162–175

    Google Scholar 

  • Liu Z C, Wang J G, Liu X C, Liu Y, Lai Q Z. 2021. Middle Miocene ultrapotassic magmatism in the Himalaya: A response to mantle unrooting process beneath the orogen. Terra Nova, 33: 240–251

    Google Scholar 

  • Liu Z, Tian X, Yuan X, Liang X, Chen Y, Zhu G, Zhang H, Li W, Tan P, Zuo S, Wu C, Nie S, Wang G, Yu G, Zhou B. 2020. Complex structure of upper mantle beneath the Yadong-Gulu rift in Tibet revealed by S-to-P converted waves. Earth Planet Sci Lett, 531: 115954

    Google Scholar 

  • Lü Q T, Jiang M, Xu Z Q, Ma K Y, Hirn A. 1998. Tomographical evidence for India Plate underthrusting only Tethyan Himalaya (in Chinese). Chin Sci Bull, 43: 1308–1311

    Google Scholar 

  • McKenzie D, McKenzie J, Fairhead D. 2019. The mechanical structure of Tibet. Geophys J Int, 217: 950–969

    Google Scholar 

  • Nábĕlek J, Hetényi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su H, Chen J, Huang B S, Hi-CLIMB Team. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325: 1371–1374

    Google Scholar 

  • Nunn C, Roecker S W, Priestley K F, Liang X, Gilligan A. 2014. Joint inversion of surface waves and teleseismic body waves across the Tibetan collision zone: The fate of subducted Indian lithosphere. Geophys J Int, 198: 1526–1542

    Google Scholar 

  • Paige C C, Saunders M A. 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw, 8: 43–71

    Google Scholar 

  • Panet I, Pajot-Métivier G, Greff-Lefftz M, Métivier L, Diament M, Mandea M. 2014. Mapping the mass distribution of Earth’s mantle using satellite-derived gravity gradients. Nat Geosci, 7: 131–135

    Google Scholar 

  • Parsons A J, Hosseini K, Palin R M, Sigloch K. 2020. Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central Tethys oceans. Earth-Sci Rev, 208: 103084

    Google Scholar 

  • Patella D. 1997. Introduction to ground surface self-potential tomography. Geophys Prospect, 45: 653–681

    Google Scholar 

  • Peng M, Jiang M, Li Z H, Xu Z, Zhu L, Chan W, Chen Y, Wang Y, Yu C, Lei J, Zhang L, Li Q, Xu L. 2016. Complex Indian subduction style with slab fragmentation beneath the Eastern Himalayan Syntaxis revealed by teleseismic P-wave tomography. Tectonophysics, 667: 77–86

    Google Scholar 

  • Ren Y, Shen Y. 2008. Finite frequency tomography in southeastern Tibet: Evidence for the causal relationship between mantle lithosphere dela-mination and the north-south trending rifts. J Geophys Res, 113: B10316

    Google Scholar 

  • Saha G K, Prakasam K S, Rai S S. 2020. Diversity in the peninsular Indian lithosphere revealed from ambient noise and earthquake tomography. Phys Earth Planet Inter, 306: 106523

    Google Scholar 

  • She Y, Fu G. 2020. Uplift mechanism of the highest mountains at eastern Himalayan syntaxis revealed by in situ dense gravimetry. Geophys Res Lett, 47: e2020GL091208

    Google Scholar 

  • Shen W, Ritzwoller M H, Kang D, Kim Y H, Lin F C, Ning J, Wang W, Zheng Y, Zhou L. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys J Int, 206: 954–979

    Google Scholar 

  • Shi D, Klemperer S L, Shi J, Wu Z, Zhao W. 2020. Localized foundering of Indian lower crust in the India-Tibet collision zone. Proc Natl Acad Sci USA, 117: 24742–24747

    Google Scholar 

  • Shi D, Wu Z, Klemperer S L, Zhao W, Xue G, Su H. 2015. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone. Earth Planet Sci Lett, 414: 6–15

    Google Scholar 

  • Shi D, Zhao W, Klemperer S L, Wu Z, Mechie J, Shi J, Xue G, Su H. 2016. West-east transition from underplating to steep subduction in the India-Tibet collision zone revealed by receiver-function profiles. Earth Planet Sci Lett, 452: 171–177

    Google Scholar 

  • Si S, Gao R, Tian X. 2019. East-west differential underthrusting of the Indian lithospheric plate beneath central Tibet revealed by imaging VP/VS. J Geophys Res-Solid Earth, 124: 9714–9730

    Google Scholar 

  • Singer J, Kissling E, Diehl T, Hetényi G. 2017. The underthrusting Indian crust and its role in collision dynamics of the Eastern Himalaya in Bhutan: Insights from receiver function imaging. J Geophys Res-Solid Earth, 122: 1152–1178

    Google Scholar 

  • Sun S, Chen C. 2016. A self-constrained inversion of magnetic data based on correlation method. J Appl Geophys, 135: 8–16

    Google Scholar 

  • Sun X, Lu Y, Li Q, Li R. 2021. A downgoing Indian lithosphere control on along-strike variability ofporphyry mineralization in the Gangdese Belt of Southern Tibet. Econ Geol, 116: 29–46

    Google Scholar 

  • Tian X, Chen Y, Tseng T L, Klemperer S L, Thybo H, Liu Z, Xu T, Liang X, Bai Z, Zhang X, Si S, Sun C, Lan H, Wang E, Teng J. 2015. Weakly coupled lithospheric extension in southern Tibet. Earth Planet Sci Lett, 430: 171–177

    Google Scholar 

  • Tian Y, Li H, Wang Y, Ye Q, Guo A. 2021. Gravity gradient inversion of gravity field and steady-state ocean circulation explorer satellite data for the lithospheric density structure in the Qinghai-Tibet Plateau region and the surrounding regions. J Geophys Res-Solid Earth, 126: e2020JB021291

    Google Scholar 

  • Tilmann F, Ni J. 2003. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. Science, 300: 1424–1427

    Google Scholar 

  • Wang R, Weinberg R F, Zhu D C, Hou Z Q, Yang Z M. 2022. The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan orogen. GSA Bull, 134: 681–690

    Google Scholar 

  • Webb A A G, Guo H, Clift P D, Husson L, Müller T, Costantino D, Yin A, Xu Z, Cao H, Wang Q. 2017. The Himalaya in 3D: Slab dynamics controlled mountain building and monsoon intensification. Lithosphere, 9: 637–651

    Google Scholar 

  • Xu B, Griffin W L, Xiong Q, Hou Z Q, O’Reilly S Y, Guo Z, Pearson N J, Gréau Y, Yang Z M, Zheng Y C. 2017. Ultrapotassic rocks and xe-noliths from South Tibet: Contrasting styles of interaction between li-thospheric mantle and asthenosphere during continental collision. Geology, 45: 51–54

    Google Scholar 

  • Xu Q, Liu H, Yuan X, Zhao J, Pei S. 2021. Eastward dipping style of the underthrusting Indian Lithosphere Beneath the Tethyan Himalaya illuminated by P and S receiver functions. J Geophys Res-Solid Earth, 126: e2020JB021219

    Google Scholar 

  • Xu Z Q, Yang J S, Hou Z Q, Zhang Z M, Zeng L S, Li H B, Zhang J X, Li Z H, Ma X X. 2016. The progress in the study of continental dynamics of the Tibetan Plateau (in Chinese with English abstract). Geol China, 43: 1–42

    Google Scholar 

  • Xuan S, Jin S. 2022. Moho depth and crustal density structure in the Tibetan Plateau from gravity data modelling. J Asian Earth Sci, 233: 105261

    Google Scholar 

  • Yang W C, Hou Z Z, Yu C Q. 2015. Three-dimensional density structure of the Tibetan Plateau and crustal mass movement (in Chinese). Chin J Geophys, 58: 4223–4234

    Google Scholar 

  • Yang Y, Ritzwoller M H, Zheng Y, Shen W, Levshin A L, Xie Z. 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. J Geophys Res, 117: B04303

    Google Scholar 

  • Ye Z, Tenzer R, Sneeuw N. 2018. Comparison of methods for a 3-D density inversion from airborne gravity gradiometry. Stud Geophys Geod, 62: 1–16

    Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Google Scholar 

  • Zeng H L. 2005. Gravity Field and Gravity Exploration (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Zhang M H, He H, Qiao J H, Huang J M, Lei S M, Tu C L. 2015. Integration of Regional Gravity Survey in Qinghai-Plateau (CGS2016001) (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Zhao G, Liu J, Chen B, Kaban M K, Zheng X. 2020. Moho beneath Tibet based on a joint analysis ofgravity and seismic data. Geochem Geophys Geosyst, 21: 2019GC008849

    Google Scholar 

  • Zhao J, Yuan X, Liu H, Kumar P, Pei S, Kind R, Zhang Z, Teng J, Ding L, Gao X, Xu Q, Wang W. 2010. The boundary between the Indian and Asian tectonic plates below Tibet. Proc Natl Acad Sci USA, 107: 11229–11233

    Google Scholar 

  • Zhao W, Kumar P, Mechie J, Kind R, Meissner R, Wu Z, Shi D, Su H, Xue G, Karplus M, Tilmann F. 2011. Tibetan plate overriding the Asian plate in central and northern Tibet. Nat Geosci, 4: 870–873

    Google Scholar 

  • Zhao W, Nelson K D, Che J, Quo J, Lu D, Wu C, Liu X. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366: 557–559

    Google Scholar 

  • Zheng Y C, Hou Z Q, Fu Q, Zhu D C, Liang W, Xu P. 2016. Mantle inputs to Himalayan anatexis: Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves. Lithos, 264: 125–140

    Google Scholar 

  • Zhong Y, Ren Z, Tang J, Lin Y, Chen B, Deng Y, Jiang Y. 2022. Constrained gravity inversion with adaptive inversion grid refinement in spherical coordinates and its application to mantle structure beneath Tibetan Plateau. J Geophys Res-Solid Earth, 127: e2021JB022916

    Google Scholar 

  • Zhu D C, Zhao Z D, Niu Y, Mo X X, Chung S L, Hou Z Q, Wang L Q, Wu F Y. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett, 301: 241–255

    Google Scholar 

Download references

Acknowledgements

We appreciate the web services for gravity data provided by the International Center for Global Model (ICGEM). Three reviewers and the responsible editor greatly improved the paper and helped us enhance the abstract. We thank them for their contributions to this work. This work was supported by the National Natural Science Foundation of China (Grant Nos. 91755215, 42230311, 41930112, 41902068) and the China Geological Survey Project (Grant No. DD20221661). We express our gratitude to the Baojun LIU Academician Fund of the Chengdu Center, China Geological Survey for their sponsorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuben Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Wang, X., Xu, Z. et al. Steep subduction of the Indian continental mantle lithosphere beneath the eastern Himalaya revealed by gravity anomalies. Sci. China Earth Sci. 66, 1994–2010 (2023). https://doi.org/10.1007/s11430-022-1110-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1110-y

Keywords

Navigation