Skip to main content
Log in

Development trends of the national secure PNT system based on BDS

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Satellite navigation systems are vulnerable. To guarantee the positioning, navigation and timing (PNT) safety of core infrastructure, it is necessary to establish a secure PNT system with hybrid physical principles. In this paper, the augmentations of the BeiDou satellite system (BDS) itself are analysed, namely augmentations through the BDS inter-satellite link, BDS geostationary orbit (GEO) and inclined geostationary orbit (IGSO) satellites, and BDS PNT services supported by low earth orbit (LEO) satellites. Then, taking BDS as the core component, the comprehensive PNT infrastructure seamlessly covering deep space and deep ocean is described, consisting of the deep space PNT constellation, the sea-floor PNT sonar beacon network, and the ground-based low frequency and very low frequency (VLF) long wave radio stations. Moreover, the key technologies of resilient PNT application matching comprehensive PNT and various autonomous perception PNT information are discussed, such as resilient PNT sensor integration, the resilient PNT functional model and the resilient stochastic model. As a future development direction, the key factors of intelligent PNT services are analysed, including the intelligent perception of PNT application scenes, the intelligent optimization of PNT functional and stochastic models and the intelligent fusion of multisource PNT information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aresta C. 2017. Resilience of the PNT Systems: A Portuguese case study [EB/OL]. [2021-07-28]. https://comum.rcaap.pt/bitstream/10400.26/21053/1/ASPOF%20Catarina%20Matos%20Aresta%20-%20Resilience%20of%20the%20PNT%20systems%20-%20A%20portugueses%20case%20study.pdf

  • Dalal M. 2012. Low noise, low power interface circuits and systems for high frequency resonant Micro-Gyroscopes. Doctoral Dissertation. Atlanta: Georgia Institute of Technology

    Google Scholar 

  • El-Sheimy N, Youssef A. 2020. Inertial sensors technologies for navigation applications: State of the art and future trends. Satell Navig, 1: 9

    Article  Google Scholar 

  • El-Sheimy N, Li Y. 2021. Indoor navigation: State of the art and future trends. Satell Navig, 2: 88–110

    Article  Google Scholar 

  • Executive Office of the President. Strengthening national resilience through responsible use of positioning, navigation, and timing services [EB/OL]. (2020-02-18). [2022-07-07] https://www.federalregister.gov/documents/2020/02/18/2020-03337/strengthening-national-resilience-through-responsible-use-of-positioning-navigation-and-timing

  • Fuentes A F. 1987. LORAN-C in the 21st century. IEEE Aerospace and Electronic Systems Magazine, 2: 8–10

    Article  Google Scholar 

  • Hu A P. 2018. Research on the development of land-based ultra-long-range radio navigation (in Chinese). Navigation Positioning and Timing, 5: 1–6

    Google Scholar 

  • Li R, Zheng S Y, Wang E, Chen J P, Feng S J, Wang D, Dai L. 2020. Advances in BeiDou Navigation Satellite System (BDS) and satellite navigation augmentation technologies. Satell Navig, 1: 126–148

    Google Scholar 

  • Li R B, Liu J Y, Zeng Q H, Hua B. 2004. Evaluation of MEMs based micro inertial navigation system (in Chinese). J Chin Inert Technol, 12: 88–94

    Google Scholar 

  • Liu J N, Gao K F, Guo W F, Cui J S, Guo C. 2020. Role, path, and vision of “5G + BDS/GNSS”. Satell Navig, 1: 23

    Article  Google Scholar 

  • Mao Y, Song X Y, Feng L P. 2009. Visibility analysis of X-ray pulsar navigation (in Chinese). Geomat Inform Sci Wuhan Univ, 34: 222–225

    Google Scholar 

  • Mcneff J. 2010. Changing the game changer, The way ahead for military PNT. (2010-10-25). [2022-6-20]. https://insidegnss.com/military-pnt-the-way-ahead

  • Pang Y, Zhang L J, Chen C J. 2005. An improved algorithm for UWB precision positioning based on time averaging (in Chinese). J Beijing Jiaotong Univ, 29: 60–63

    Google Scholar 

  • Parkinson B. 2015. Assured PNT strengths and synergies [EB/OL]. [2022-01-31]. https://www.gps.gov/governance/advisory/meetings/2015-06/parkinson2.pdf

  • Parkinson B. 2017. Assuring PNT for all [EB/OL]. [2022-01-31]. https://www.gps.gov/governance/advisory/meetings/2017-11/parkinson.pdf

  • Qin X, Yang Y, Sun B. 2022. The refined resilient model for underwater acoustic positioning. Ocean Eng, 266: 112795

    Article  Google Scholar 

  • Qin X, Yang Y, Sun B. 2023. A robust method to estimate the coordinates of seafloor stations by direct-path ranging. Mar Geodesy, 46: 83–98

    Article  Google Scholar 

  • Ren X, Yang Y, Zhu J, Xu T. 2017. Orbit determination of the Next-Generation Beidou satellites with intersatellite link measurements and a priori orbit constraints. Adv Space Res, 60: 2155–2165

    Article  Google Scholar 

  • Ren X, Yang Y, Zhu J, Xu T. 2019. Comparing satellite orbit determination by batch processing and extended Kalman filtering using inter-satellite link measurements of the next-generation BeiDou satellites. GPS Solut, 23: 25

    Article  Google Scholar 

  • Scholz A. 2020. Resilient PNT system concepts for critical infrastructure [EB/OL]. [2021-07-28]. https://www.gps.gov/cgsic/meetings/2020/scholz.pdf

  • Shuai P, Chen S L, Wu Y F, Zhang C P, Li P. 2006. X-ray pulsar navigation technology and the development (in Chinese). Aerospace China, 10: 27–32

    Google Scholar 

  • Sun W Z, Yin X D, Zeng A M, Bao J Y. 2019. Differential positioning algorithm for deep-sea control points on constraint of depth difference and horizontal distance constraint (in Chinese). Acta Geodaet Cartogra Sin, 48: 1190–1196

    Google Scholar 

  • The World Radiocommunication Conference Resolution 609. 2007. Protection of aeronautical radionavigation service systems from the equivalent power flux-density produced by radionavigation-satellite service networks and systems in the 1164–1215MHz frequency band. [2020-06-20]. https://www.itu.int/en/ITU-R/space/Res609%20CM%20Documents/RES-609_e.pdf

  • U.S. Department of Transportation. What is positioning, navigation and timing (PNT)? [EB/OL]. (2017-06-13). [2020-06-20]. https://www.transportation.gov/pnt/what-positioning-navigation-and-timing-pnt

  • U.S. Department of Transportation and Department of Defense. 2010. National positioning, navigation, and timing architecture implementation plan. (2010-07-28). [2020-06-20]. https://rosap.ntl.bts.gov/view/dot/18293

  • U.S. Senate. 2015. National positioning, navigation, and timing resilience and security act of 2015 [EB/OL]. (2017-12-12). [2020-06-20]. https://www.congress.gov/bill/114th-congress/house-bill/1678/text?r=6&s=5

  • U.S. Senate. 2017. National timing resilience and security act of 2017[EB/OL]. (2017-12-12). [2020-06-20]. https://www.congress.gov/bill/115th-congress/senate-bill/2220/text?q=%7B%22search%22%3A%22timing+resilience%22%7D&r=2&s=6

  • U.S. Senate. 2018. National timing resilience and security act of 2018[EB/OL]. (2018-11-4). [2020-06-20]. https://rntfnd.org/wp-content/uploads/National-Timing-Security-and-Resilience-Act-of-2018.pdf

  • Wang J, Xu T, Nie W, Yu X. 2020a. The construction of sound speed field based on back propagation neural network in the global ocean. Mar Geodesy, 43: 621–642

    Article  Google Scholar 

  • Wang J, Xu T, Wang Z. 2020b. Adaptive robust unscented Kalman filter for AUV acoustic navigation. Sensors, 20: 60

    Article  Google Scholar 

  • Wang R, Zhao F, Peng J H, Luo H Y, Lu B, Lu T. 2011. Combination of Wi-Fi and Bluetooth for indoor localization (in Chinese). J Comput Res Develop, 48(Suppl): 28–33

    Google Scholar 

  • Wang Z, Yan J H, Zhang H Y. 2011. Changhe 2 navigation system and its technolighy update (in Chinese). Digital Commun World, 78: 86–87

    Google Scholar 

  • Xin M, Yang F, Wang F, Shi B, Zhang K, Liu H. 2018. A TOA/AOA underwater acoustic positioning system based on the equivalent sound speed. J Navigation, 71: 1431–1440

    Article  Google Scholar 

  • Xin M Z, Yang F L, Xue S Q, Wang Z J, Han Y F. 2020. A constant gradient sound ray tracing underwater positioning algorithm considering incident beam angle (in Chinese). Acta Geodaet Cartograph Sin, 49: 1535–1542

    Google Scholar 

  • Yang Y F, Yang Y X, Hu X, Tang C, Guo R, Zhou S, Xu J, Pan J, Su M. 2021. BeiDou-3 broadcast clock estimation by integration of observations of regional tracking stations and inter-satellite links. GPS Solut, 25: 57

    Article  Google Scholar 

  • Yang Y F, Yang Y X, Xu JY, Xu Y Y, Zhao A. 2020. Navigation satellites orbit determination with the enhancement of low earth orbit satellites (in Chinese). Geomat Inform Sci Wuhan Univ, 45: 46–52

    Google Scholar 

  • Yang Y X. 2016. Concepts of comprehensive PNT and related key technologies (in Chinese). Acta Geodaet Cartograph Sin, 45: 505–510

    Google Scholar 

  • Yang Y X. 2018. Resilient PNT concept frame (in Chinese). Acta Geodaet Cartograph Sin, 47: 893–898

    Google Scholar 

  • Yang Y X, Ding Q, Gao W G, Li J L, Xu Y Y, Sun B J. 2022. Principle and performance of BDSBAS and PPP-B2b of BDS-3. Satell Navig, 3: 1–9

    Article  Google Scholar 

  • Yang Y X, Gao W G. 2004. Integrated navigation based on robust estimation outputs of multi-sensor measurements and adaptive weights of dynamic model information (in Chinese). Geomat Inform Sci Wuhan Univ, 29: 885–888

    Google Scholar 

  • Yang Y X, Gao W G. 2006. An optimal adaptive Kalman filter. J Geodesy, 80: 177–183

    Article  Google Scholar 

  • Yang Y X, Guo H R, He H B. 2021b. Principle of satellite navigation and positioning (in Chinese). Beijing: National Defense Industry Press

    Google Scholar 

  • Yang Y, He H, Xu G. 2001. Adaptively robust filtering for kinematic geodetic positioning. J Geodesy, 75: 109–116

    Article  Google Scholar 

  • Yang Y X, Li X Y. 2017. Micro-PNT and comprehensive PNT (in Chinese). Acta Geodaet Cartograph Sin, 46: 1249–1254

    Google Scholar 

  • Yang Y X, Liu L, Li J L, Yang Y F, Zhang T Q, Mao Y, Sun B J, Ren X. 2021a. Featured services and performance of BDS-3. Chin Sci Bull, 66: 2135–2143

    Google Scholar 

  • Yang Y X, Liu Y X, Sun D J, Xu T, Xue S Q, Han Y F, Zeng A M. 2020a. Seafloor geodetic network establishment and key technologies. Sci China Earth Sci, 63: 1188–1198

    Article  Google Scholar 

  • Yang Y X, Mao Y, Sun B J. 2020b. Basic performance and future developments of BeiDou global navigation satellite system. Satell Navig, 1: 1–8

    Article  Google Scholar 

  • Yang Y X, Qin X P. 2021. Resilient observation models for seafloor geodetic positioning. J Geod, 95: 79

    Article  Google Scholar 

  • Yang Y X, Ren X. 2018. Maintenance of space datum for autonomous satellite navigation (in Chinese). Geomat Inform Sci Wuhan Univ, 43: 1780–1787

    Google Scholar 

  • Yang Y X, Xu J Y. 2016. Navigation performance of BeiDou in polar area (in Chinese). Geomat Inform Sci Wuhan Univ, 41: 15–20

    Google Scholar 

  • Yang Y X, Xu T H. 2003. An adaptive Kalman filter combining variance component estimation with covariance matrix estimation based on moving window (in Chinese). Geomat Inform Sci Wuhan Univ, 28: 714–718

    Google Scholar 

  • Yang Y X, Xu T H, Xue S Q. 2017. Progresses and prospects in developing marine geodetic datum and marine navigation of China (in Chinese). Acta Geodaet Cartograph Sin, 46: 1–8

    Google Scholar 

  • Yang Y X, Xu Y Y, Li J L Y C. 2018. Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system. Sci China Earth Sci, 61: 614–624

    Article  Google Scholar 

  • Yang Y X, Yang C, Ren X. 2021c. PNT intelligent services (in Chinese). Acta Geodaet Cartograph Sin, 50: 1006–1012

    Google Scholar 

  • Zeng A M, Yang Y X, Ming F, Ma Y Y. 2021. Positioning model and analysis of the sailing circle mode of seafloor geodetic datum points (in Chinese). Acta Geodaet Cartograph Sin, 50: 939–952

    Google Scholar 

  • Zhang W, Yang Y X, Zeng A M, Xu Y Y. 2022. A GNSS/5G integrated three-dimensional positioning scheme based on D2D communication. Remote Sens, 14: 1517–1536

    Article  Google Scholar 

  • Zhang X H, Ma F J. 2019. Review of the development of LEO navigation-augmented GNSS (in Chinese). Acta Geodaet Cartograph Sin, 48: 1073–1087

    Google Scholar 

  • Zhao Q L, Wang C, Guo J, Yang G L, Liao M, Ma H Y, Liu J N. 2017. Enhanced orbit determination for BeiDou satellites with FengYun-3C onboard GNSS data. GPS Solut, 21: 1179–1190

    Article  Google Scholar 

  • Zhen W M, Ding C C. 2019. Development status and trend of land-based radio navigation system (in Chinese). GNSS World China, 44: 10–15

    Google Scholar 

  • Zhu B, Yang C, Liu Y. 2021. Analysis and comparison of three unsupervised learning clustering methods for GNSS multipath signals (in Chinese). Acta Geodaet Cartograph Sin, 50: 1762–1771

    Google Scholar 

  • Zou H X. 2014. The inertial navigation technology of next generation—Quantum navigation (in Chinese). Nat Defense Sci Tech, 35: 19–24

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Program of National Natural Science Foundation of China (Grant No. 41931076), the Laoshan Laboratory(Grant No. LSKJ202205101), the National Natural Science Foundation of China for Young Scholar (Grant No. 41904042), and the National Key Research and Development Program of China (Grant No. 2020YFB0505800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanxi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ren, X., Jia, X. et al. Development trends of the national secure PNT system based on BDS. Sci. China Earth Sci. 66, 929–938 (2023). https://doi.org/10.1007/s11430-022-1069-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1069-7

Keywords

Navigation