Skip to main content
Log in

Neogene subduction initiation models in the western Pacific and analysis of subduction zone parameters

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Neogene is an important period for studying the onset of subduction, with numerous subduction zones forming in the western Pacific, including the Ryukyu, Manila, Philippine, North Sulawesi, Halmahera, New Britain, Solomon, and New Hebrides subduction zones. However, studies on these subduction zones are relatively independent, so it is important to conduct systematic comparative studies. In this paper, we review the initiation models of Neogene subduction in the western Pacific, with the three typical types of subduction initiation models including polarity-reversal, induced subduction re-initiation, and non-inherited subduction initiation to form new ruptures. In addition, the parameters of different subduction zones are collated to form five categories: basic features, subducting plate features, upper plate features, kinematic features, and subsequent activity. The regularity of the subduction processes, the specificity of the different subduction cases, and the possible constraints between the subduction initiation types and the characteristics of the subduction zone parameters are discussed and analyzed. The compiled dataset of the subduction zone parameters can provide data support for related studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaru M. 2007. Global travel time tomography with 3-D reference models. Dissertation for Doctoral Degree. Utrecht: Utrecht University. 274

    Google Scholar 

  • Arculus R J, Ishizuka O, Bogus K A, Gurnis M, Hickey-Vargas R, Al-jahdali M H, Bandini-Maeder A N, Barth A P, Brandl P A, Drab L, do Monte Guerra R, Hamada M, Jiang F, Kanayama K, Kender S, Kusano Y, Li H, Loudin L C, Maffione M, Marsaglia K M, McCarthy A, Meffre S, Morris A, Neuhaus M, Savov I P, Sena C, Tepley III F J, van der Land C, Yogodzinski G M, Zhang Z. 2015. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc. Nat Geosci, 8: 728–733

    Article  Google Scholar 

  • Baes M, Sobolev S V, Quinteros J. 2018. Subduction initiation in mid-ocean induced by mantle suction flow. Geophys J Int, 215: 1515–1522

    Article  Google Scholar 

  • Baes M, Sobolev S V. 2017. Mantle flow as a trigger for subduction initiation: A missing element of the Wilson Cycle concept. Geochem Geophys Geosyst, 18: 4469–4486

    Article  Google Scholar 

  • Barrier E, Huchon P, Aurelio M. 1991. Philippine fault: A key for Philippine kinematics. Geology, 19: 32–35

    Article  Google Scholar 

  • Bird P. 2003. An updated digital model of plate boundaries. Geochem Geophys Geosyst, 4: 1027

    Article  Google Scholar 

  • Bercovici D, Ricard Y. 2014. Plate tectonics, damage and inheritance. Nature, 508: 513–516

    Article  Google Scholar 

  • Chen L, Wang X, Liang X, Wan B, Liu L. 2020. Subduction tectonics vs. Plume tectonics—Discussion on driving forces for plate motion. Sci China Earth Sci, 63: 315–328

    Article  Google Scholar 

  • Coffin M F, Eldholm O. 1993. Scratching the surface: Estimating dimensions of large igneous provinces. Geology, 21: 515–518

    Article  Google Scholar 

  • Cottam M A, Hall R, Forster M A, Boudagher-Fadel M K. 2011. Basement character and basin formation in Gorontalo Bay, Sulawesi, Indonesia: New observations from the Togian Islands. SP, 355: 177–202

    Article  Google Scholar 

  • Crameri F, Conrad C P, Montési L, Lithgow-Bertelloni C R. 2019. The dynamic life of an oceanic plate. Tectonophysics, 760: 107–135

    Article  Google Scholar 

  • Crameri F, Magni V, Domeier M, Shephard G E, Chotalia K, Cooper G, Eakin C M, Grima A G, Gürer D, Király Á, Mulyukova E, Peters K, Robert B, Thielmann M. 2020. A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat Commun, 11: 3750

    Article  Google Scholar 

  • Dong M, Zhang J, Jiang C, Hao T, Xu Y, Huang S, Liu L, Nan F, Fang G. 2022. Thermal simulation of migration mechanism of the Halmahera volcanic arc, Indonesia. J Asian Earth Sci, 232: 105042

    Article  Google Scholar 

  • Faccenna C, Holt A F, Becker T W, Lallemand S, Royden L H. 2018. Dynamics of the Ryukyu/Izu-Bonin-Marianas double subduction system. Tectonophysics, 746: 229–238

    Article  Google Scholar 

  • Fan J, Wu S, Spence G. 2015. Tomographic evidence for a slab tear induced by fossil ridge subduction at Manila Trench, South China Sea. Int Geol Rev, 57: 998–1013

    Article  Google Scholar 

  • Frisch W, Meschede M, Blakey R C. 2011. Plate Tectonics: Continental Drift and Mountain Building. Berlin Heidelberg: Springer

    Book  Google Scholar 

  • Gao X, Zhang J, Sun Y J, Wu S G.A. 2012. Simulation study on the thermal structure of Manila trench subduction zone (in Chinese). Chin J Geophys, 55: 117–125

    Article  Google Scholar 

  • Gong W, Jiang X D, Xing J H, Li D Y, Xu C. 2019. Dynamical processes in the New Guinea-Solomon arc subduction system: Constraints on the initiation of plate subduction (in Chinese). Mar Geol Quat Geol, 39: 115–130

    Google Scholar 

  • Greene H G, Collot J-Y, Fisher M A, Crawford A J. 1994. Neogene tectonic evolution of the New Hebrides island arc: A review incorporating ODP drilling results. Ocean Drilling Program College Station, TX, Proceedings of the Ocean Drilling Program, Scientific Results

  • Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities. Geophys J Int, 150: 321–361

    Article  Google Scholar 

  • Gurnis M, Hall C, Lavier L. 2004. Evolving force balance during incipient subduction. Geochem Geophys Geosyst, 5: Q07001

    Article  Google Scholar 

  • Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J Asian Earth Sci, 20: 353–431

    Article  Google Scholar 

  • Hall R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571: 1–41

    Article  Google Scholar 

  • Hall R. 2019. The subduction initiation stage of the Wilson cycle. Spec Publ, 470: 415–437

    Article  Google Scholar 

  • Hall C E, Gurnis M, Sdrolias M, Lavier L L, Müller R D. 2003. Catastrophic initiation of subduction following forced convergence across fracture zones. Earth Planet Sci Lett, 212: 15–30

    Article  Google Scholar 

  • Hall R, Ali J R, Anderson C D, Baker S J. 1995. Origin and motion history of the Philippine Sea Plate. Tectonophysics, 251: 229–250

    Article  Google Scholar 

  • Hall R, Smyth H R. 2008. Cenozoic arc processes in Indonesia: Identification of the key influences on the stratigraphic record in active volcanic arcs. In: Draut A E, Clift P D, Scholl D W, eds. Formation and Applications of the Sedimentary Record in Arc Collision Zones. GSA Special Papers. 436

  • Hall R, Cottam M A, Wilson M E J. 2011. The SE Asian gateway: History and tectonics of the Australia-Asia collision. Spec Publ, 355: 1–6

    Article  Google Scholar 

  • Hanyu T, Tejada M L G, Shimizu K, Ishizuka O, Fujii T, Kimura J I, Chang Q, Senda R, Miyazaki T, Hirahara Y, Vaglarov B S, Goto K T, Ishikawa A. 2017. Collision-induced post-plateau volcanism: Evidence from a seamount on Ontong Java Plateau. Lithos, 294–295: 87–96

    Article  Google Scholar 

  • Hayes G P, Moore G L, Portner D E, Hearne M, Flamme H, Furtney M, Smoczyk G M. 2018. Slab2, a comprehensive subduction zone geometry model. Science, 362: 58–61

    Article  Google Scholar 

  • Heuret A, Conrad C P, Funiciello F, Lallemand S, Sandri L. 2012. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophys Res Lett, 39: L05304

    Article  Google Scholar 

  • Heuret A, Lallemand S. 2005. Plate motions, slab dynamics and back-arc deformation. Phys Earth Planet Inter, 149: 31–51

    Article  Google Scholar 

  • Heuret A, Lallemand S, Funiciello F, Piromallo C, Faccenna C. 2011. Physical characteristics of subduction interface type seismogenic zones revisited. Geochem Geophys Geosyst, 12: Q01004

    Article  Google Scholar 

  • Holm R J, Spandler C, Richards S W. 2013. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea. Tectonophysics, 603: 189–212

    Article  Google Scholar 

  • Holm R J, Rosenbaum G, Richards S W. 2016. Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting. Earth-Sci Rev, 156: 66–81

    Article  Google Scholar 

  • Holt A F, Buffett B A, Becker T W. 2015. Overriding plate thickness control on subducting plate curvature. Geophys Res Lett, 42: 3802–3810

    Article  Google Scholar 

  • Holt A F, Condit C B. 2021. Slab temperature evolution over the lifetime of a subduction zone. Geochem Geophys Geosyst, 22: e2020GC009476

    Article  Google Scholar 

  • Hu J S, Gurnis M. 2020. Subduction duration and slab dip. Geochem Geophys Geosyst, 21: e2019GC008862

    Article  Google Scholar 

  • Hu J S, Liu L J. 2016. Abnormal seismological and magmatic processes controlled by the tearing South American flat slabs. Earth Planet Sci Lett, 450: 40–51

    Article  Google Scholar 

  • Huang C Y, Wang P, Yu M, You C F, Liu C S, Zhao X, Shao L, Zhong G, Yumul Jr G P. 2019. Potential role of strike-slip faults in opening up the South China Sea. Natl Sci Rev, 6: 891–901

    Article  Google Scholar 

  • Ishizuka O, Hickey-Vargas R, Arculus R J, Yogodzinski G M, Savov I P, Kusano Y, McCarthy A, Brandl P A, Sudo M. 2018. Age of Izu-Bonin-Mariana arc basement. Earth Planet Sci Lett, 481: 80–90

    Article  Google Scholar 

  • Jarrard R D. 1986. Relations among subduction parameters. Rev Geophys, 24: 217–284

    Article  Google Scholar 

  • Jicha B R, Scholl D W, Singer B S, Yogodzinski G M, Kay S M. 2006. Revised age of Aleutian Island Arc formation implies high rate of magma production. Geology, 34: 661–664

    Article  Google Scholar 

  • Kizaki K. 1986. Geology and tectonics of the Ryukyu Islands. Tectonophysics, 125: 193–207

    Article  Google Scholar 

  • Knesel K M, Cohen B E, Vasconcelos P M, Thiede D S. 2008. Rapid change in drift of the Australian plate records collision with Ontong Java plateau. Nature, 454: 754–757

    Article  Google Scholar 

  • Kukacka M. 2003. Influence of the zone of weakness on dip angle and shear heating of subducted slabs. Phys Earth Planet Inter, 141: 243–252

    Article  Google Scholar 

  • Lallemand S, Arcay D. 2021. Subduction initiation from the earliest stages to self-sustained subduction: Insights from the analysis of 70 Cenozoic sites. Earth-Sci Rev, 221: 103779

    Article  Google Scholar 

  • Lallemand S, Font Y, Bijwaard H, Kao H. 2001. New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics, 335: 229–253

    Article  Google Scholar 

  • Li H, Arculus R J, Ishizuka O, Hickey-Vargas R, Yogodzinski G M, McCarthy A, Kusano Y, Brandl P A, Savov I P, Tepley Iii F J, Sun W. 2021. Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development. Nat Commun, 12: 1723

    Article  Google Scholar 

  • Li H Y, Li X, Ryan J G, Zhang C, Xu Y G. 2022. Boron isotopes in boninites document rapid changes in slab inputs during subduction initiation. Nat Commun, 13: 993

    Article  Google Scholar 

  • Li H Y, Taylor R N, Prytulak J, Kirchenbaur M, Shervais J W, Ryan J G, Godard M, Reagan M K, Pearce J A. 2019. Radiogenic isotopes document the start of subduction in the Western Pacific. Earth Planet Sci Lett, 518: 197–210

    Article  Google Scholar 

  • Li S Z, Zhao S J, Liu X, Suo Y H, Cao H H, Dai L M, Guo L L, Liu B, Yu S, Zhang G W. 2014. Ocean-continental transition and coupling processes (in Chinese). Periodical Ocean Univ China, 44: 22

    Google Scholar 

  • Lu G, Kaus B J P, Zhao L, Zheng T. 2015. Self-consistent subduction initiation induced by mantle flow. Terra Nova, 27: 130–138

    Article  Google Scholar 

  • Lu G, Zhao L, Chen L, Wan B, Wu F Y. 2021. Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth? Earth Planet Phys, 5: 123–140

    Article  Google Scholar 

  • Lv C C, Hao T Y, Rawlinson N, Zhao L, Xu Y, Liu L H. 2019. Introduction to the 3-D seismic observation of the north Sulawesi subduction zone and the study of initiation mechanism (in Chinese). Mar Geol Quat Geol, 39: 1–7

    Google Scholar 

  • Malavieille J, Lallemand S E, Dominguez S, Deschamps A, Lu C Y, Liu C S, Schnurle P, Angelier J, Collot J Y, Deffontaines B, Fournier M, Hsu S K, Le Formal J P, Liu S Y, Sibuet J C, Thareau N, Wang F, the ACT (Active Collision in Taiwan) Scientific Crew. 2002. Arc-continent collision in Taiwan: New marine observations and tectonic evolution. In: Byrne T B, Liu C S, eds. Geology and Geophysics of an Arc-continent Collision, Taiwan. Special Papers-Geological Society of America. 187–211

  • Mann P, Taira A. 2004. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics, 389: 137–190

    Article  Google Scholar 

  • Marchadier Y, Rangin C. 1990. Polyphase tectonics at the southern tip of the Manila trench, Mindoro-Tablas Islands, Philippines. Tectonophysics, 183: 273–287

    Article  Google Scholar 

  • McCarthy A, Chelle-Michou C, Müntener O, Arculus R, Blundy J. 2018. Subduction initiation without magmatism: The case of the missing Alpine magmatic arc. Geology, 46: 1059–1062

    Article  Google Scholar 

  • Meffre S, Falloon T J, Crawford T J, Hoernle K, Hauff F, Duncan R A, Bloomer S H, Wright D J. 2012. Basalts erupted along the Tongan fore arc during subduction initiation: Evidence from geochronology of dredged rocks from the Tonga fore arc and trench. Geochem Geophys Geosyst, 13: Q12003

    Article  Google Scholar 

  • Miura S, Suyehiro K, Shinohara M, Takahashi N, Araki E, Taira A. 2004. Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer-airgun data. Tectonophysics, 389: 191–220

    Article  Google Scholar 

  • Müller R D, Sdrolias M, Gaina C, Roest W R. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst, 9: Q04006

    Article  Google Scholar 

  • Müller R D, Seton M, Zahirovic S, Williams S E, Matthews K J, Wright N M, Shephard G E, Maloney K T, Barnett-Moore N, Hosseinpour M, Bower D J, Cannon J. 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu Rev Earth Planet Sci, 44: 107–138

    Article  Google Scholar 

  • Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. J Geophys Res-Solid Earth, 115: B12416

    Article  Google Scholar 

  • Pellissier L, Heine C, Rosauer D F, Albouy C. 2018. Are global hotspots of endemic richness shaped by plate tectonics? Biol J Linnean Soc, 123: 247–261

    Article  Google Scholar 

  • Peng D D, Liu L J, Hu J S, Li S Z, Liu Y M. 2021. Formation of East Asian stagnant slabs due to a pressure-driven Cenozoic mantle wind following Mesozoic subduction. Geophys Res Lett, 48: e94638

    Article  Google Scholar 

  • Petterson M G, Neal C R, Mahoney J J, Kroenke L W, Saunders A D, Babbs T L, Duncan R A, Tolia D, McGrail B. 1997. Structure and deformation of north and central Malaita, Solomon Islands: tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus. Tectonophysics, 283: 1–33

    Article  Google Scholar 

  • Reagan M K, Heaton D E, Schmitz M D, Pearce J A, Shervais J W, Koppers A A P. 2019. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth Planet Sci Lett, 506: 520–529

    Article  Google Scholar 

  • Rodríguez-González J, Negredo A M, Billen M I. 2012. The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction. Geochem Geophys Geosyst, 13: Q01002

    Article  Google Scholar 

  • Schellart W P, Lister G S, Toy V G. 2006. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth-Sci Rev, 76: 191–233

    Article  Google Scholar 

  • Shinjo R. 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system. Chem Geol, 157: 69–88

    Article  Google Scholar 

  • Sibuet J C, Hsu S K. 2004. How was Taiwan created? Tectonophysics, 379: 159–181

    Article  Google Scholar 

  • Sibuet J C, Zhao M, Wu J, Lee C S. 2021. Geodynamic and plate kinematic context of South China Sea subduction during Okinawa trough opening and Taiwan orogeny. Tectonophysics, 817: 229050

    Article  Google Scholar 

  • Stern R J. 2004. Subduction initiation: Spontaneous and induced. Earth Planet Sci Lett, 226: 275–292

    Article  Google Scholar 

  • Stern R J. 2016. Is plate tectonics needed to evolve technological species on exoplanets? Geosci Front, 7: 573–580

    Article  Google Scholar 

  • Stern R J, Gerya T. 2018. Subduction initiation in nature and models: A review. Tectonophysics, 746: 173–198

    Article  Google Scholar 

  • Sun W D. 2019a. The Magma Engine and the driving force of plate tectonics. Chin Sci Bull, 64: 2988–3006

    Article  Google Scholar 

  • Sun W D. 2019b. The Magma Engine and subduction initiation. Acta Geochim, 38: 611–612

    Article  Google Scholar 

  • Sun W D, Ling M X, Yang X Y, Fan W M, Ding X, Liang H Y. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Sci China Earth Sci, 53: 475–484

    Article  Google Scholar 

  • Sun W D, Zhang L P. 2022. Characterization of subduction initiation. J Ocean Limnol, https://doi.org/10.1007/s00343-021-1352-y

  • Sun W D, Zhang L P, Li H, Liu X. 2020a. The synchronic Cenozoic subduction initiations in the west Pacific induced by the closure of the Neo-Tethys Ocean. Sci Bull, 65: 2068–2071

    Article  Google Scholar 

  • Sun W D, Zhang L P, Liao R Q, Sun S J, Li C Y, Liu H. 2020b. Plate convergence in the Indo-Pacific region. J Ocean Limnol, 38: 1008–1017

    Article  Google Scholar 

  • Tang Q Q, Zhan W H, Li J, Feng Y C, Yao Y T, Sun J, Li Y H. 2017. Plate window tectonics reflected by volcanism on the eastern margin of the South China Sea (in Chinese). Mar Geol Quat Geol, 37: 119–126

    Google Scholar 

  • Torsvik T H, Doubrovine P V, Steinberger B, Gaina C, Spakman W, Domeier M. 2017. Pacific plate motion change caused the Hawaiian-Emperor Bend. Nat Commun, 8: 15660

    Article  Google Scholar 

  • Whattam S A, Malpas J, Ali J R, Smith I E M. 2008. New SW Pacific tectonic model: Cyclical intraoceanic magmatic arc construction and near-coeval emplacement along the Australia-Pacific margin in the Cenozoic. Geochem Geophys Geosyst, 9: Q03021

    Article  Google Scholar 

  • Wu F Y, Wang J G, Liu C Z, Liu T, Zhang C, Ji W Q. 2019. Intra-oceanic arc: Its formation and evolution. Acta Petrol Sin, 35: 1–15

    Article  Google Scholar 

  • Wu J, Suppe J, Lu R, Kanda R. 2016. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. J Geophys Res-Solid Earth, 121: 4670–4741

    Article  Google Scholar 

  • Xu M, Di H Z, Zhou Z Y, Li H Y, Lin J. 2019. Progress and insights into hydrolithosphere-lithosphere interactions in subduction zones (in Chinese). Mar Geol Quat Geol, 39: 58–70

    Google Scholar 

  • Yumul Jr G P, Dimalanta C B, Tamayo R A, Maury R C. 2003. Collision, subduction and accretion events in the Philippines: a synthesis. Isl Arc, 12: 77–91

    Article  Google Scholar 

  • Zhang J, Hao T, Dong M, Xu Y, Wang B, Ai Y, Fang G. 2021. Investigation of geothermal structure of the Sulawesi, using gravity and magnetic method. Sci China Earth Sci, 64: 278–293

    Article  Google Scholar 

  • Zhao M H, He E Y, Sun LT, Xu Y, You Q Y, Hao T Y, Du F, Qiu X L. 2016. Implications of the current state of deep seismicity in the subduction zone of the Mariana Trench for the study of the subduction zone of the Manila Trench (in Chinese). J Trop Oceanogr, 35: 48–60

    Google Scholar 

  • Zhao M H, Sibuet J C, Wu J. 2019. Intermingled fates of the South China Sea and Philippine Sea plate. Natl Sci Rev, 6: 886–890

    Article  Google Scholar 

  • Zheng Y, Li Y D, Xiong X. 2012. Efective lithospheric thicknes and its anisotropy in the North China Craton (in Chinese). Chin J Geophys, 55: 3576–3590

    Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Article  Google Scholar 

  • Zhong X Y, Li Z H. 2019. Forced subduction initiation at passive continental margins: Velocity-driven versus stress-driven. Geophys Res Lett, 46: 11054–11064

    Article  Google Scholar 

  • Zhong X Y, Li Z H. 2021. Subduction initiation at passive continental margins: A review based on numerical studies. Solid Earth Sci, 6: 249–267

    Article  Google Scholar 

  • Zhou X, Xu Z Q, Li Z H, Huangpu P P, Zhang J J. 2019. Dynamics of subducting plate in the upper mantle: numerical modeling (in Chinese). Chin J Geophys, 62: 2455–2465

    Google Scholar 

  • Zhou X, Li Z H, Gerya T V, Stern R J. 2020. Lateral propagation-induced subduction initiation at passive continental margins controlled by pre-existing lithospheric weakness. Sci Adv, 6: eaaz1048

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Editor-in-Chief, the responsible editor and the three reviewers for their constructive comments on this paper. We thank Martha EVONUK for editing the English text of a draft of this manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 91858212, 91858214, and 41906056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Huang, S., Hao, T. et al. Neogene subduction initiation models in the western Pacific and analysis of subduction zone parameters. Sci. China Earth Sci. 66, 472–491 (2023). https://doi.org/10.1007/s11430-022-1065-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1065-1

Keywords

Navigation