Skip to main content
Log in

Dynamic modeling of tectonic carbon processes: State of the art and conceptual workflow

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Plate tectonics plays a critical role in modulating atmospheric CO2 concentration on the geological timescale (⩾106 year). A growing consensus on tectonic and Earth’s CO2 history in the Cenozoic and deeper time provides solid restrictions and standards for testing tectonic carbon processes against global measurements. Despite this, modeling the causal relationship between tectonic events and atmospheric CO2 levels remains a challenge. We examine the current state of the global tectonic CO2 research and suggest a conceptual workflow for numerical experiments that integrates plate tectonics and deep carbon dynamics. Future tectonic carbon cycle modeling should include at least four modules: (1) simulation of carbon-carrying processes, such as carbon ingassing and outgassing at the scale of minerals; (2) calculation of CO2 fluxes in tectonic settings like subduction, mantle plume, and plate rifting; (3) reconstruction of carbon cycling within the plates-scale tectonic scenario, particularly involving the processes of supercontinent convergence and dispersion; and (4) comparison with atmospheric CO2 history data and iterations, aiming to find the coincidental link between different tectonic carbon fluxes and climate changes. According to our analysis, the recent advancements in each of the four modules have paved the path for a more general assembly. We envision that the large variety of carbon transportation parameters across more than ten orders of magnitude in both time and space is the primary technical hurdle in simulating tectonic carbon dynamics. We propose a boundary-condition-connected approach for simulating the global carbon cycle to realize carbon exchange between the solid earth and surface spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat Geosci, 7: 355–360

    Article  Google Scholar 

  • Amar M N, Ghriga M A, Ouaer H, El Amine Ben Seghier M, Pham B T, Andersen P Ø. 2020. Modeling viscosity of CO2 at high temperature and pressure conditions. J Nat Gas Sci Eng, 77: 103271

    Article  Google Scholar 

  • Anderson K R, Poland M P. 2017. Abundant carbon in the mantle beneath Hawai’i. Nat Geosci, 10: 704–708

    Article  Google Scholar 

  • Armstrong McKay D I, Lenton T M. 2018. Reduced carbon cycle resilience across the Palaeocene-Eocene Thermal Maximum. Clim Past, 14: 1515–1527

    Article  Google Scholar 

  • Bains S, Norris R D, Corfield R M, Faul K L. 2000. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature, 407: 171–174

    Article  Google Scholar 

  • Barry P H, de Moor J M, Giovannelli D, Schrenk M, Hummer D R, Lopez T, Pratt C A, Segura Y A, Battaglia A, Beaudry P, Bini G, Cascante M, d’Errico G, di Carlo M, Fattorini D, Fullerton K, Gazel E, González G, Halldórsson S A, Iacovino K, Ilanko T, Kulongoski J T, Manini E, Martínez M, Miller H, Nakagawa M, Ono S, Patwardhan S, Ramírez C J, Regoli F, Smedile F, Turner S, Vetriani C, Yücel M, Ballentine C J, Fischer T P, Hilton D R, Lloyd K G. 2019. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature, 568: 487–492

    Article  Google Scholar 

  • Beerling D J, Royer D L. 2011. Convergent Cenozoic CO2 history. Nat Geosci, 4: 418–420

    Article  Google Scholar 

  • Bekaert D V, Turner S J, Broadley M W, Barnes J D, Halldórsson S A, Labidi J, Wade J, Walowski K J, Barry P H. 2021. Subduction-driven volatile recycling: A global mass balance. Annu Rev Earth Planet Sci, 49: 37–70

    Article  Google Scholar 

  • Berner R A, Caldeira K. 1997. The need for mass balance and feedback in the geochemical carbon cycle. Geology, 25: 955–956

    Article  Google Scholar 

  • Bond D P G, Wignall P B. 2014. Large igneous provinces and mass extinctions: An update. In: Keller G, Kerr A C, eds. Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Geol Soc Amer Spec Pap, 505: 29–55

  • Broecker W S, Peng T H. 1987. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob Biogeochem Cycle, 1: 15–29

    Article  Google Scholar 

  • Brune S, Williams S E, Müller R D. 2017. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci, 10: 941–946

    Article  Google Scholar 

  • Burton M R, Sawyer G M, Granieri D. 2013. Deep carbon emissions from volcanoes. Rev Mineral Geochem, 75: 323–354

    Article  Google Scholar 

  • Chavrit D, Humler E, Grasset O. 2014. Mapping modern CO2 fluxes and mantle carbon content all along the mid-ocean ridge system. Earth Planet Sci Lett, 387: 229–239

    Article  Google Scholar 

  • Chiodini G, Cardellini C, Di Luccio F, Selva J, Frondini F, Caliro S, Rosiello A, Beddini G, Ventura G. 2020. Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Sci Adv, 6: eabc2938

    Article  Google Scholar 

  • Connolly J A D. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett, 236: 524–541

    Article  Google Scholar 

  • Connolly J A D. 2009. The geodynamic equation of state: What and how. Geochem Geophys Geosyst, 10: Q10014

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 298: 1–13

    Article  Google Scholar 

  • Denning A S. 2022. Where has all the carbon gone? Annu Rev Earth Planet Sci, 50: 55–78

    Article  Google Scholar 

  • Dessert C, Dupré B, François L M, Schott J, Gaillardet J, Chakrapani G, Bajpai S. 2001. Erosion of Deccan Traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet Sci Lett, 188: 459–474

    Article  Google Scholar 

  • Ding Z L, Duan X N, Ge Q S, Zhang Z Q. 2009. Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries. Sci China Ser D-Earth Sci, 52: 1447–1469

    Article  Google Scholar 

  • Ducea M N, Currie C A, Balica C, Lazar I, Mallik A, Petrescu L, Vlasceanu M. 2022. Diapirism of carbonate platforms subducted into the upper mantle. Geology, 50: 929–933

    Article  Google Scholar 

  • Duncan M S, Dasgupta R. 2017. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nat Geosci, 10: 387–392

    Article  Google Scholar 

  • Elsworth G, Galbraith E, Halverson G, Yang S. 2017. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nat Geosci, 10: 213–216

    Article  Google Scholar 

  • Ernst R E, Youbi N. 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr Palaeoclimatol Palaeoecol, 478: 30–52

    Article  Google Scholar 

  • Farsang S, Louvel M, Zhao C, Mezouar M, Rosa A D, Widmer R N, Feng X, Liu J, Redfern S A T. 2021. Deep carbon cycle constrained by carbonate solubility. Nat Commun, 12: 4311

    Article  Google Scholar 

  • Friedlingstein P, O’Sullivan M, Jones M W, Andrew R M, Hauck J, Olsen A, Peters G P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell J G, Ciais P, Jackson R B, Alin S, Aragão L E O C, Arneth A, Arora V, Bates N R, Becker M, Benoit-Cattin A, Bittig H C, Bopp L, Bultan S, Chandra N, Chevallier F, Chini L P, Evans W, Florentie L, Forster P M, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton R A, Ilyina T, Jain A K, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken J I, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro D R, Nabel J E M S, Nakaoka S I, Niwa Y, O’Brien K, Ono T, Palmer P I, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith A J P, Sutton A J, Tanhua T, Tans P P, Tian H, Tilbrook B, van der Werf G, Vuichard N, Walker A P, Wanninkhof R, Watson A J, Willis D, Wiltshire A J, Yuan W, Yue X, Zaehle S. 2020. Global carbon budget 2020. Earth Syst Sci Data, 12: 3269–3340

    Article  Google Scholar 

  • Foley S F, Fischer T P. 2017. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat Geosci, 10: 897–902

    Article  Google Scholar 

  • Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nat Commun, 8: 14845

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre C J. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol, 159: 3–30

    Article  Google Scholar 

  • Gerya T. 2022. Numerical modeling of subduction: State of the art and future directions. Geosphere, 18: 503–561

    Article  Google Scholar 

  • Gonzalez C M, Gorczyk W, Gerya T V. 2016. Decarbonation of subducting slabs: Insight from petrological-thermomechanical modeling. Gondwana Res, 36: 314–332

    Article  Google Scholar 

  • Gonzalez C M, Gorczyk W. 2017. Decarbonation in an intracratonic setting: Insight from petrological-thermomechanical modeling. J Geophys Res-Solid Earth, 122: 5992–6013

    Article  Google Scholar 

  • Gorczyk W, Gonzalez C M. 2019. CO2 degassing and melting of metasomatized mantle lithosphere during rifting-Numerical study. Geosci Front, 10: 1409–1420

    Article  Google Scholar 

  • Guo Z, Wilson M, Dingwell D B, Liu J. 2021. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic. Nat Commun, 12: 3891

    Article  Google Scholar 

  • Hazen R M, Schiffries C M. 2013. Why deep carbon? Rev Mineral Geochem, 75: 1–6

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett, 292: 79–88

    Article  Google Scholar 

  • House B M, Bebout G E, Hilton D R. 2019. Carbon cycling at the Sunda margin, Indonesia: A regional study with global implications. Geology, 47: 483–486

    Article  Google Scholar 

  • Hu J S, Liu L J, Zhou Q. 2018. Reproducing past subduction and mantle flow using high-resolution global convection models. Earth Planet Phys, 2: 189–207

    Article  Google Scholar 

  • Hülse D, Arndt S, Wilson J D, Munhoven G, Ridgwell A. 2017. Understanding the causes and consequences of past marine carbon cycling variability through models. Earth-Sci Rev, 171: 349–382

    Article  Google Scholar 

  • Iwamori H. 1998. Transportation of H2O and melting in subduction zones. Earth Planet Sci Lett, 160: 65–80

    Article  Google Scholar 

  • Jagoutz O, MacDonald F A, Royden L. 2016. Low-latitude arc-continent collision as a driver for global cooling. Proc Natl Acad Sci USA, 113: 4935–4940

    Article  Google Scholar 

  • Ji W, Wu F Y. 2022. Volatile cycling and evolution of habitable environment on Earth. Acta Petrologica Sin, 38: 1285–1301

    Article  Google Scholar 

  • Johnston F K B, Turchyn A V, Edmonds M. 2011. Decarbonation efficiency in subduction zones: Implications for warm Cretaceous climates. Earth Planet Sci Lett, 303: 143–152

    Article  Google Scholar 

  • Kasting J F. 2019. The Goldilocks Planet? How silicate weathering maintains Earth “just right”. Elements, 15: 235–240

    Article  Google Scholar 

  • Kelemen P B, Manning C E. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA, 112: 3997–4006

    Article  Google Scholar 

  • Kender S, Bogus K, Pedersen G K, Dybkjær K, Mather T A, Mariani E, Ridgwell A, Riding J B, Wagner T, Hesselbo S P, Leng M J. 2021. Paleocene/Eocene carbon feedbacks triggered by volcanic activity. Nat Commun, 12: 5186

    Article  Google Scholar 

  • Kent D V, Muttoni G. 2008. Equatorial convergence of India and early Cenozoic climate trends. Proc Natl Acad Sci USA, 105: 16065–16070

    Article  Google Scholar 

  • Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature, 411: 293–296

    Article  Google Scholar 

  • Kump L R, Brantley S L, Arthur M A. 2000. Chemical weathering, atmospheric CO2, and climate. Annu Rev Earth Planet Sci, 28: 611–667

    Article  Google Scholar 

  • Lacis A A, Schmidt G A, Rind D, Ruedy R A. 2010. Atmospheric CO2: Principal control knob governing Earth’s temperature. Science, 330: 356–359

    Article  Google Scholar 

  • Lan C Y, Tao R B, Zhang L F, Guo S. 2022. Carbon releasing mechanisms and flux estimation in subducting slabs: problems and progress. Acta Petrologica Sin, 38: 1523–1540

    Article  Google Scholar 

  • Lee H, Muirhead J D, Fischer T P, Ebinger C J, Kattenhorn S A, Sharp Z D, Kianji G. 2016. Massive and prolonged deep carbon emissions associated with continental rifting. Nat Geosci, 9: 145–149

    Article  Google Scholar 

  • Lenton T M, Held H, Kriegler E, Hall J W, Lucht W, Rahmstorf S, Schellnhuber H J. 2008. Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA, 105: 1786–1793

    Article  Google Scholar 

  • Lowenstein T K, Demicco R V. 2006. Elevated eocene atmospheric CO2 and its subsequent decline. Science, 313: 1928

    Article  Google Scholar 

  • Li S G, Yang W, Ke S, Meng X, Tian H, Xu L, He Y, Huang J, Wang X C, Xia Q, Sun W, Yang X, Ren Z Y, Wei H, Liu Y, Meng F, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl Sci Rev, 4: 111–120

    Article  Google Scholar 

  • Li S, Zhao S, Liu X, Cao H, Yu S, Li X, Somerville I, Yu S, Suo Y. 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Sci Rev, 186: 37–75

    Article  Google Scholar 

  • Liu P, Xue Z, Wang D, Tian W, Zhang X, Guo Z. 2022. Super-eruptions and their environmental impacts. Acta Petrologica Sin, 38: 1375–1388

    Article  Google Scholar 

  • Liu Y, Chen C, He D, Chen W. 2019. Deep carbon cycle in subduction zones. Sci China Earth Sci, 62: 1764–1782

    Article  Google Scholar 

  • Lu C, Grand S P, Lai H, Garnero E J. 2019. TX2019slab: A new P and S tomography model incorporating subducting slabs. J Geophys Res-Solid Earth, 124: 11549–11567

    Article  Google Scholar 

  • MacDonald F A, Swanson-Hysell N L, Park Y, Lisiecki L, Jagoutz O. 2019. Arc-continent collisions in the tropics set Earth’s climate state. Science, 364: 181–184

    Article  Google Scholar 

  • Malusà M G, Frezzotti M L, Ferrando S, Brandmayr E, Romanelli F, Panza G F. 2018. Active carbon sequestration in the Alpine mantle wedge and implications for long-term climate trends. Sci Rep, 8: 4740

    Article  Google Scholar 

  • Malusà M G, Brandmayr E, Panza G F, Romanelli F, Ferrando S, Frezzotti M L. 2022. An explosive component in a December 2020 Milan earthquake suggests outgassing of deeply recycled carbon. Commun Earth Environ, 3: 5

    Article  Google Scholar 

  • Mann M E, Steinman B A, Brouillette D J, Miller S K. 2021. Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science, 371: 1014–1019

    Article  Google Scholar 

  • Manning C E, Shock E L, Sverjensky D A. 2013. The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions: Experimental and theoretical constraints. Rev Mineral Geochem, 75: 109–148

    Article  Google Scholar 

  • Marty B, Tolstikhin I N. 1998. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol, 145: 233–248

    Article  Google Scholar 

  • McKenzie N R, Horton B K, Loomis S E, Stockli D F, Planavsky N J, Lee C T A. 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 352: 444–447

    Article  Google Scholar 

  • Metcalfe I. 2021. Multiple Tethyan ocean basins and orogenic belts in Asia. Gondwana Res, 100: 87–130

    Article  Google Scholar 

  • Millar R J, Fuglestvedt J S, Friedlingstein P, Rogelj J, Grubb M J, Matthews H D, Skeie R B, Forster P M, Frame D J, Allen M R. 2017. Emission budgets and pathways consistent with limiting warming to 1.5°C. Nat Geosci, 10: 741–747

    Article  Google Scholar 

  • Mitchell R N, Spencer C J, Kirscher U, Wilde S A. 2022. Plate tectonic-like cycles since the Hadean: Initiated or inherited? Geology, 50: 827–831

    Article  Google Scholar 

  • Montanez I P, Tabor N J, Niemeier D, DiMichele W A, Frank T D, Fielding C R, Isbell J L, Birgenheier L P, Rygel M C. 2007. CO2-forced climate and vegetation instability during late Paleozoic deglaciation. Science, 315: 87–91

    Article  Google Scholar 

  • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42–43

    Article  Google Scholar 

  • Muirhead J D, Fischer T P, Oliva S J, Laizer A, van Wijk J, Currie C A, Lee H, Judd E J, Kazimoto E, Sano Y, Takahata N, Tiberi C, Foley S F, Dufek J, Reiss M C, Ebinger C J. 2020. Displaced cratonic mantle concentrates deep carbon during continental rifting. Nature, 582: 67–72

    Article  Google Scholar 

  • Müller R D, Seton M, Zahirovic S, Williams S E, Matthews K J, Wright N M, Shephard G E, Maloney K T, Barnett-Moore N, Hosseinpour M, Bower D J, Cannon J. 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu Rev Earth Planet Sci, 44: 107–138

    Article  Google Scholar 

  • Müller R D, Dutkiewicz A. 2018. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci Adv, 4: eaaq0500

    Article  Google Scholar 

  • Müller R D, Cannon J, Qin X, Watson R J, Gurnis M, Williams S, Pfaffelmoser T, Seton M, Russell S H J, Zahirovic S. 2018. GPlates: Building a virtual Earth through deep time. Geochem Geophys Geosyst, 19: 2243–2261

    Article  Google Scholar 

  • Müller R D, Mather B, Dutkiewicz A, Keller T, Merdith A, Gonzalez C M, Gorczyk W, Zahirovic S. 2022. Evolution of Earth’s tectonic carbon conveyor belt. Nature, 605: 629–639

    Article  Google Scholar 

  • Nance R D, Murphy J B, Santosh M. 2014. The supercontinent cycle: A retrospective essay. Gondwana Res, 25: 4–29

    Article  Google Scholar 

  • Nataf H C. 2000. Seismic imaging of mantle plumes. Annu Rev Earth Planet Sci, 28: 391–417

    Article  Google Scholar 

  • Owens J D, Lyons T W, Lowery C M. 2018. Quantifying the missing sink for global organic carbon burial during a Cretaceous oceanic anoxic event. Earth Planet Sci Lett, 499: 83–94

    Article  Google Scholar 

  • Plank T, Manning C E. 2019. Subducting carbon. Nature, 574: 343–352

    Article  Google Scholar 

  • Pogge von Strandmann P A E, Jenkyns H C, Woodfine R G. 2013. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat Geosci, 6: 668–672

    Article  Google Scholar 

  • Porcelli D, Ballentine C J. 2002. Models for distribution of terrestrial noble gases and evolution of the atmosphere. Rev Mineral Geochem, 47: 411–480

    Article  Google Scholar 

  • Prokoph A, El Bilali H, Ernst R. 2013. Periodicities in the emplacement of large igneous provinces through the Phanerozoic: Relations to ocean chemistry and marine biodiversity evolution. Geosci Front, 4: 263–276

    Article  Google Scholar 

  • Rae J W B, Zhang Y G, Liu X, Foster G L, Stoll H M, Whiteford R D M. 2021. Atmospheric CO2 over the past 66 million years from Marine Archives. Annu Rev Earth Planet Sci, 49: 609–641

    Article  Google Scholar 

  • Raymo M E, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117–122

    Article  Google Scholar 

  • Ridgwell A, Zeebe R E. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett, 234: 299–315

    Article  Google Scholar 

  • Roelandt C, Goddéris Y, Bonnet M P, Sondag F. 2010. Coupled modeling of biospheric and chemical weathering processes at the continental scale. Glob Biogeochem Cycle, 24: GB2004

    Article  Google Scholar 

  • Rummel L, Kaus B J P, Baumann T S, White R W, Riel N. 2020. Insights into the compositional evolution of crustal magmatic systems from coupled petrological-geodynamical models. J Petrol, 61: egaa029

    Article  Google Scholar 

  • Saal A E, Hauri E H, Langmuir C H, Perfit M R. 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 419: 451–455

    Article  Google Scholar 

  • Schaller M F, Wright J D, Kent D V. 2011. Atmospheric PCO2 perturbations associated with the central atlantic magmatic province. Science, 331: 1404–1409

    Article  Google Scholar 

  • Scotese C R, Song H, Mills B J W, van der Meer D G. 2021. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Sci Rev, 215: 103503

    Article  Google Scholar 

  • Shen H, Zhao L, Guo Z, Yuan H, Wang X, Yang J, Guo Z, Deng C, Wu F. 2023. Dynamic link between Neo-Tethyan subduction and atmospheric CO2 changes. Science Bulletin, under review

  • Sleep N H, Zahnle K. 2001. Carbon dioxide cycling and implications for climate on ancient earth. J Geophys Res, 106: 1373–1399

    Article  Google Scholar 

  • Stern R J, Leybourne M I, Tsujimori T. 2016. Kimberlites and the start of plate tectonics. Geology, 44: 799–802

    Article  Google Scholar 

  • Sun C, Dasgupta R. 2019. Slab-mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet Sci Lett, 506: 38–52

    Article  Google Scholar 

  • Syracuse E M, van Keken P E, Abers G A, Suetsugu D, Bina C, Inoue T, Wiens D, Jellinek M. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90

    Article  Google Scholar 

  • Tamburello G, Pondrelli S, Chiodini G, Rouwet D. 2018. Global-scale control of extensional tectonics on CO2 earth degassing. Nat Commun, 9: 4608

    Article  Google Scholar 

  • Tajika E, Matsui T. 1992. Evolution of terrestrial proto-CO2 atmosphere coupled with thermal history of the Earth. Earth Planet Sci Lett, 113: 251–266

    Article  Google Scholar 

  • Tierney J E, Poulsen C J, Montañez I P, Bhattacharya T, Feng R, Ford H L, Hönisch B, Inglis G N, Petersen S V, Sagoo N, Tabor C R, Thirumalai K, Zhu J, Burls N J, Foster G L, Goddéris Y, Huber B T, Ivany L C, Kirtland Turner S, Lunt D J, McElwain J C, Mills B J W, Otto-Bliesner B L, Ridgwell A, Zhang Y G. 2020. Past climates inform our future. Science, 370: eaay3701

    Article  Google Scholar 

  • Trenberth K E. 1981. Seasonal variations in global sea level pressure and the total mass of the atmosphere. J Geophys Res, 86: 5238–5246

    Article  Google Scholar 

  • Tripati A, Backman J, Elderfield H, Ferretti P. 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436: 341–346

    Article  Google Scholar 

  • Tripati A K, Roberts C D, Eagle R A. 2009. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science, 326: 1394–1397

    Article  Google Scholar 

  • Van Der Meer D G, Zeebe R E, van Hinsbergen D J J, Sluijs A, Spakman W, Torsvik T H. 2014. Plate tectonic controls on atmospheric CO2 levels since the Triassic. Proc Natl Acad Sci USA, 111: 4380–4385

    Article  Google Scholar 

  • van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2 O from subducting slabs worldwide. J Geophys Res, 116: B01401

    Article  Google Scholar 

  • Wan B, Wu F, Chen L, Zhao L, Liang X, Xiao W, Zhu R. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Sci China Earth Sci, 62: 2005–2016

    Article  Google Scholar 

  • Wang J, Liu Y, Zhang Y, Wang C, Wang X. 2022. H2O-induced sedimentary carbon migration from subducting slabs to the forearc mantle. Sci China Earth Sci, 65: 2175–2187

    Article  Google Scholar 

  • Wang X, Zhao L, Yang J, Guo Z, Zhu R. 2023. Massive carbon storage in the forearc during the subduction of sediments. under review

  • Westerhold T, Marwan N, Drury A J, Liebrand D, Agnini C, Anagnostou E, Barnet J S K, Bohaty S M, De Vleeschouwer D, Florindo F, Frederichs T, Hodell D A, Holbourn A E, Kroon D, Lauretano V, Littler K, Lourens L J, Lyle M, Pälike H, Röhl U, Tian J, Wilkens R H, Wilson P A, Zachos J C. 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369: 1383–1387

    Article  Google Scholar 

  • Wong K, Mason E, Brune S, East M, Edmonds M, Zahirovic S. 2019. Deep carbon cycling over the past 200 million years: A review of fluxes in different tectonic settings. Front Earth Sci, 7: 263

    Article  Google Scholar 

  • Wilson J T. 1966. Did the Atlantic close and then re-open? Nature, 211: 676–681

    Article  Google Scholar 

  • Wu F, Wan B, Zhao L, Xiao W, Zhu R. 2020. Tethyan geodynamics. Acta Petrologica Sin, 36: 1627–1674

    Article  Google Scholar 

  • Yang J, Faccenda M. 2020. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature, 579: 88–91

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693

    Article  Google Scholar 

  • Zahirovic S, Matthews K J, Flament N, Müller R D, Hill K C, Seton M, Gurnis M. 2016. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Sci Rev, 162: 293–337

    Article  Google Scholar 

  • Zeebe R E. 2013. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions. Proc Natl Acad Sci USA, 110: 13739–13744

    Article  Google Scholar 

  • Zhang L, Tao R, Zhu J. 2017. Some problems of deep carbon cycle in subduction zone. Bull Mineral Petrol Geochemistry, 36: 185–196

    Google Scholar 

  • Zhang G L, Wang S, Zhang J, Zhan M J, Zhao Z H. 2020. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume. Geochim Cosmochim Acta, 290: 391–407

    Article  Google Scholar 

  • Zhang Y, Zindler A. 1993. Distribution and evolution of carbon and nitrogen in Earth. Earth Planet Sci Lett, 117: 331–345

    Article  Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

    Article  Google Scholar 

  • Zhao L, Malusà M G, Yuan H, Paul A, Guillot S, Lu Y, Stehly L, Solarino S, Eva E, Lu G, Bodin T, Zhao L, Malusà M G, Paul A, Guillot S, Solarino S, Eva E, Lu G, Paul A, Solarino S. 2020. Evidence for a serpentinized plate interface favouring continental subduction. Nat Commun, 11: 2171

    Article  Google Scholar 

  • Zhu R, Zhao P, Zhao L. 2021. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Sci China Earth Sci, 65: 1–24

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the constructive comments by the responsible editor and two anonymous reviewers. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41888101 and 41625016) and XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Zhao or Zhengtang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Guo, Z., Yuan, H. et al. Dynamic modeling of tectonic carbon processes: State of the art and conceptual workflow. Sci. China Earth Sci. 66, 456–471 (2023). https://doi.org/10.1007/s11430-022-1038-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1038-5

Keywords

Navigation