Skip to main content
Log in

Discovery of the largest natural carbon onions on Earth

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The synthesis of carbon onions in the laboratory by various methods is common; however, naturally occurring carbon onions have only been found in a few geological samples on Earth. This study used high-resolution transmission electron microscopy to identify natural carbon onions in seven intrusion-affected coal samples collected from Permian coal-bearing strata in the Yongan Coalfield, Fujian Province, South China. This study identified the largest natural carbon onions ever recorded on Earth; their outer diameter was ∼55 nm. Granite porphyry intrusions and quartz hydrothermal veins are abundant in the Permian coal-bearing strata in this coalfield. All samples collected were tectonically deformed coals with highly developed structural fractures, friction mirror planes, and maximum vitrinite reflectance values of 4.0–9.5%. Natural carbon onions observed in the coal samples had single or multiple cores, with 24–46 graphitic shells characterized by outer diameters of 24–55 nm. The maximum vitrinite reflectance, outer diameter, and graphitic shell number of carbon onions in the intrusion-affected coal were positively correlated, indicating that the carbon onions were secondary products formed during coal metamorphism owing to magmatic intrusion. Our results suggest that carbon onions in intrusion-affected coal are synthesized by chemical vapor deposition. We speculate that natural carbon onions exist mainly in fractures or cavities, similar to vapor-deposited pyrolytic carbon, which is the leading cause of the uneven distribution of carbon onions in intrusion-affected coals in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam M, Hart A, Stevens L A, Wood J, Robinson J P, Rigby S P. 2018. Microwave synthesis of carbon onions in fractal aggregates using heavy oil as a precursor. Carbon, 138: 427–435

    Article  Google Scholar 

  • Bagge-Hansen M, Bastea S, Hammons J A, Nielsen M H, Lauderbach L M, Hodgin R L, Pagoria P, May C, Aloni S, Jones A, Shaw W L, Bukovsky E V, Sinclair N, Gustavsen R L, Watkins E B, Jensen B J, Dattelbaum D M, Firestone M A, Huber R C, Ringstrand B S, Lee J R I, van Buuren T, Fried L E, Willey T M. 2019. Detonation synthesis of carbon nanoonions via liquid carbon condensation. Nat Commun, 10: 1–8

    Article  Google Scholar 

  • Becker L, McDonald G D, Bada J L. 1993. Carbon onions in meteorites. Nature, 361: 595

    Article  Google Scholar 

  • Berthe D, Choukroune P, Jegouzo P. 1979. Orthogneiss, mylonite and non coaxial deformation of granites: The example of the South Armorican Shear Zone. J Struct Geol, 1: 31–42

    Article  Google Scholar 

  • Beyssac O, Rouzaud J N, Goffé B, Brunet F, Chopin C. 2002. Graphitization in a high-pressure, low-temperature metamorphic gradient: A Raman microspectroscopy and HRTEM study. Contrib Mineral Petrol, 143: 19–31

    Article  Google Scholar 

  • Blank V D, Denisov V N, Kirichenko A N, Kulnitskiy B A, Martushov S Y, Mavrin B N, Perezhogin I A. 2007. High pressure transformation of single-crystal graphite to form molecular carbon-onions. Nanotechnology, 18: 345601

    Article  Google Scholar 

  • Buseck P R, Huang B J. 1985. Conversion of carbonaceous material to graphite during metamorphism. Geochim Cosmochim Acta, 49: 2003–2016

    Article  Google Scholar 

  • Bustin R M. 1983. Heating during thrust faulting in the Rocky Mountains: Friction or fiction? Tectonophysics, 95: 309–328

    Article  Google Scholar 

  • Cao S, Liu J, Leiss B, Neubauer F, Genser J, Zhao C. 2011. Oligo-Miocene shearing along the Ailao Shan-Red River shear zone: Constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif, SE Tibet, China. Gondwana Res, 19: 975–993

    Article  Google Scholar 

  • Chen Q L. 2018. Characteristics of shale gas in Middle Permian Tongziyan Formation in Fujian Province (in Chinese). Coal Geol Explor, 46: 79–85

    Google Scholar 

  • Chen X H, Deng F M, Wang J X, Yang H S, Wu G T, Zhang X B, Peng J C, Li W Z. 2001. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chem Phys Lett, 336: 201–204

    Article  Google Scholar 

  • Chen X H, Yang H S, Wu G T, Wang M, Deng F M, Zhang X B, Peng J C, Li W Z. 2000. Generation of curved or closed-shell carbon nanostructures by ball-milling of graphite. J Cryst Growth, 218: 57–61

    Article  Google Scholar 

  • Chen Y, Qin Y, Ji M, Duan H, Wu C, Shi Q, Zhang X, Wang Z. 2020. Influence of lamprophyre sills on coal metamorphism, coalbed gas composition and coalbed gas occurrence in the Tongxin Minefield, Datong Coalfield, China. Int J Coal Geol, 217: 103286

    Article  Google Scholar 

  • Choi M, Altman I S, Kim Y J, Pikhitsa P V, Lee S, Park G S, Jeong T, Yoo J B. 2004. Formation of shell-shaped carbon nanoparticles above a critical laser power in irradiated acetylene. Adv Mater, 16: 1721–1725

    Article  Google Scholar 

  • Choucair M, Stride J A. 2012. The gram-scale synthesis of carbon onions. Carbon, 50: 1109–1115

    Article  Google Scholar 

  • Clemens J D, Watkins J M. 2001. The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contrib Mineral Petrol, 140: 600–606

    Article  Google Scholar 

  • Cooper J R, Crelling J C, Rimmer S M, Whittington A G. 2007. Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: Implications for generation of volatiles. Int J Coal Geol, 71: 15–27

    Article  Google Scholar 

  • Dai S, Wang X, Zhou Y, Hower J C, Li D, Chen W, Zhu X, Zou J. 2011. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chem Geol, 282: 29–44

    Article  Google Scholar 

  • Dhand V, Yadav M, Kim S H, Rhee K Y. 2021. A comprehensive review on the prospects of multi-functional carbon nano onions as an effective, high- performance energy storage material. Carbon, 175: 534–575

    Article  Google Scholar 

  • Du A B, Liu X G, Fu D J, Han P D, Xu B S. 2007. Onion-like fullerenes synthesis from coal. Fuel, 86: 294–298

    Article  Google Scholar 

  • Fossen H, Rykkelid E. 1990. Shear zone structures in the Øygarden area, West Norway. Tectonophysics, 174: 385–397

    Article  Google Scholar 

  • Fu D, Liu X, Lin X, Li T, Jia H, Xu B. 2007. Synthesis of encapsulating and hollow onion-like fullerenes from coal. J Mater Sci, 42: 3805–3809

    Article  Google Scholar 

  • Gapais D, Bale P, Choukroune P, Cobbold P R, Mahjoub Y, Marquer D. 1987. Bulk kinematics from shear zone patterns: Some field examples. J Struct Geol, 9: 635–646

    Article  Google Scholar 

  • Gapais D, Barbarin B. 1986. Quartz fabric transition in a cooling syntectonic granite (Hermitage Massif, France). Tectonophysics, 125: 357–370

    Article  Google Scholar 

  • Gapais D. 1989. Shear structures within deformed granites: Mechanical and thermal indicators. Geology, 17: 1144

    Article  Google Scholar 

  • GB/T 1574-2007. 2008. Test Method for Analysis of Coal Ash (in Chinese). Beijing: Standards Press of China. 1–28

    Google Scholar 

  • GB/T 16773-2008. 2008. Method of Preparing Coal Samples for the Coal Petrographic Analysis (in Chinese). Beijing: Standards Press of China. 1–12

    Google Scholar 

  • GB/T 19227-2008. 2008. Determination of Nitrogen in Coal (in Chinese). Beijing: Standards Press of China. 1–13

    Google Scholar 

  • GB/T 212-2008. 2008. Proximate Analysis of Coal (in Chinese). Beijing: Standards Press of China. 1–12

    Google Scholar 

  • GB/T 476-2001. 2002. Ultimate Analysis of Coal (in Chinese). Beijing: Standards Press of China. 1–9

    Google Scholar 

  • GB/T 476-2008. 2008. Determination of Carbon and Hydrogen in Coal (in Chinese). Beijing: Standards Press of China. 1–13

    Google Scholar 

  • GB/T 6948-2008. 2008. Method of Determining Microscopically the Reflectance of Vitrinite in Coal (in Chinese). Beijing: Standards Press of China. 1–10

    Google Scholar 

  • Goodarzi F, Eckstrand O R, Snowdon L, Williamson B, Stasiuk L D. 1992. Thermal metamorphism of bitumen in Archean rocks by ultramafic volcanic flows. Int J Coal Geol, 20: 165–178

    Article  Google Scholar 

  • Goodarzi F, Gentzis T, Jackson G, Macqueen R W. 1993. Optical characteristics of heat-affected bitumens from the Nanisivik Mine, NW Baffin Island, Arctic Canada. Energy Sources, 15: 359–376

    Article  Google Scholar 

  • Guo Y J, Zheng Z, Feng Y L. 2003. HRTEM observation of turpentine soot and China wood oil soot (in Chinese with English abstract). J Mineral Petrol, 23: 18–20

    Google Scholar 

  • Gurba L W, Weber C R. 2001. Effects of igneous intrusions on coalbed methane potential, Gunnedah Basin, Australia. Int J Coal Geol, 46: 113–131

    Article  Google Scholar 

  • Harris P J F, Vis R D. 2003. High-resolution transmission electron microscopy of carbon and nanocrystals in the Allende meteorite. Proc R Soc Lond A, 459: 2069–2076

    Article  Google Scholar 

  • Harris P J F, Vis R D, Heymann D. 2000. Fullerene-like carbon nanostructures in the Allende meteorite. Earth Planet Sci Lett, 183: 355–359

    Article  Google Scholar 

  • He C, Zhao N, Shi C, Du X, Li J. 2006. Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts. Mater Chem Phys, 97: 109–115

    Article  Google Scholar 

  • Hou Q L, Zhang Z M. 1990. The study of the concept of mylonitic coal (in Chinese with English abstract). J Jiaozuo Min Inst, 2: 21–26

    Google Scholar 

  • Hu Z X. 2003. Discussion on coal metamorphic factors and types in Fujian (in Chinese with English abstract). J Shandong Univ Sci Technol-Nat Sci, 22: 36–38

    Google Scholar 

  • Huang J Y, Yasuda H, Mori H. 1999. Highly curved carbon nanostructures produced by ball-milling. Chem Phys Lett, 303: 130–134

    Article  Google Scholar 

  • Ignatov I, Mosin O. 2014. The structure and composition of carbonaceous fullerene containing mineral shungite and microporous crystalline aluminosilicate mineral zeolite. Nanotechnol Res Pract, 1: 30–42

    Article  Google Scholar 

  • Iijima S. 1980. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J Cryst Growth, 50: 675–683

    Article  Google Scholar 

  • Kang J, Li J, Du X, Shi C, Zhao N, Nash P. 2008. Synthesis of carbon nanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper. Mater Sci Eng-A, 475: 136–140

    Article  Google Scholar 

  • Kisch H J, Taylor G H. 1966. Metamorphism and alteration near an intrusive-coal contact. Econ Geol, 61: 343–361

    Article  Google Scholar 

  • Kobayashi T, Sekine T, He H. 2003. Formation of carbon onion from heavily shocked SiC. Chem Mater, 15: 2681–2683

    Article  Google Scholar 

  • Krebs V, Marêché J F, Furdin G, Dumay D. 1994. Contribution to the study of carbon deposition in coke ovens. Fuel, 73: 1904–1910

    Article  Google Scholar 

  • Kroto H W. 1992. Carbon onions introduce new flavour to fullerene studies. Nature, 359: 670–671

    Article  Google Scholar 

  • Kuznetsov V L, Chuvilin A L, Butenko Y V, Mal’kov I Y, Titov V M. 1994. Onion-like carbon from ultra-disperse diamond. Chem Phys Lett, 222: 343–348

    Article  Google Scholar 

  • Le Bayon R, Brey G P, Ernst W G, Mählmann R F. 2011. Experimental kinetic study of organic matter maturation: Time and pressure effects on vitrinite reflectance at 400°C. Org Geochem, 42: 340–355

    Article  Google Scholar 

  • Le Guillou C, Rouzaud J N, Bonal L, Quirico E, Derenne S, Remusat L. 2012. High resolution TEM of chondritic carbonaceous matter: Metamorphic evolution and heterogeneity. Meteorit Planet Sci, 47: 345–362

    Article  Google Scholar 

  • Li H, Ogawa Y, Shimada S. 2003. Mechanism of methane flow through sheared coals and its role on methane recovery. Fuel, 82: 1271–1279

    Article  Google Scholar 

  • Li J, Qin Y, Chen Y, Luo Q, Deng R, Guo S, Zhong N, Chen Q. 2021. Differential graphitization of organic matter in coal: Some new understandings from reflectance evolution of meta-anthracite macerals. Int J Coal Geol, 240: 103747

    Article  Google Scholar 

  • Li K, Rimmer S M, Liu Q. 2018. Geochemical and petrographic analysis of graphitized coals from Central Hunan, China. Int J Coal Geol, 195: 267–279

    Article  Google Scholar 

  • Li K, Zhong D. 1992. Microstructures of coal and their relation with gas outbursts—A case study of the Yutianbao Coal Mine, Nantong (in Chinese with English abstract). Acta Geol Sin, 66: 148–157

    Google Scholar 

  • Li P, Yu X, Li H, Qiu J, Zhou X. 2013. Jurassic-Cretaceous tectonic evolution of Southeast China: Geochronological and geochemical constraints of Yanshanian granitoids. Int Geol Rev, 55: 1202–1219

    Article  Google Scholar 

  • Lin X, Liu X G, Fu D J, Li T B, Yang Y Z, Xu B S. 2006. Synthesis and formation mechanism of coal derived fullerenes by plasma (in Chinese with English abstract). Coal Conv, 29: 1–4

    Google Scholar 

  • Lister G S, Snoke A W. 1984. S-C mylonites. J Struct Geol, 6: 617–638

    Article  Google Scholar 

  • Liu X G, Du A B, Fu D J, Han P D, Wang X M, Jia H S. 2005. Synthesis of onion-like fullerenes from Chinese coals (in Chinese with English abstract). Trans Mater Heat Treat, 26: 31–33

    Google Scholar 

  • Liu X G, Wang C J, Yang Y Z, Guo X M, Wen H R, Xu B S. 2009. Synthesis of nano onion-like fullerenes by using Fe/Al2O3 as catalyst by chemical vapor deposition. Chin Sci Bull, 54: 137–141

    Article  Google Scholar 

  • Manawi Y, Ihsanullah Y, Samara A, Al-Ansari T, Atieh M. 2018. A Review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials, 11: 822

    Article  Google Scholar 

  • Marshall A O, Jehlička J, Rouzaud J N, Marshall C P. 2014. Multiple generations of carbonaceous material deposited in Apex chert by basin-scale pervasive hydrothermal fluid flow. Gondwana Res, 25: 284–289

    Article  Google Scholar 

  • Nasibulin A G, Moisala A, Brown D P, Kauppinen E I. 2003. Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors. Carbon, 41: 2711–2724

    Article  Google Scholar 

  • Noël Y, De La Pierre M, Zicovich-Wilson C M, Orlando R, Dovesi R. 2014. Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: Insights from an ab initio hybrid DFT study. Phys Chem Chem Phys, 16: 13390–13401

    Article  Google Scholar 

  • Pe-Piper G, Koukouvelas I, Piper D J W. 1998. Synkinematic granite emplacement in a shear zone: The Pleasant Hills pluton, Canadian Appalachians. GSA Bull, 110: 523–536

    Article  Google Scholar 

  • Pérez-Bustamante F, Avalos-Belmontes F, Ramos-Cano F, Pérez-Bustamante R. 2019. Nanotubes and other allotropic carbon forms by chemical vapor deposition on an inconel surface. Rev Mex Fís, 66: 105–109

    Article  Google Scholar 

  • Qiu J, Li Q, Wang Z, Sun Y, Zhang H. 2006. CVD synthesis of coal-gasderived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide. Carbon, 44: 2565–2568

    Article  Google Scholar 

  • Rimmer S M, Crelling J C, Yoksoulian L E. 2015. An occurrence of coked bitumen, Raton Formation, Purgatoire River Valley, Colorado, U.S.A. Int J Coal Geol, 141–142: 63–73

    Article  Google Scholar 

  • Romero-Sarmiento M F, Rouzaud J N, Bernard S, Deldicque D, Thomas M, Littke R. 2014. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation. Org Geochem, 71: 7–16

    Article  Google Scholar 

  • Ruan C, Li Z, Zhang D, Yuan X, Liang C, Chang Y, Huang H, Xu L, Chen M. 2020. A scalable chemical vapor deposition synthesis of high purity hollow carbon onions. Carbon, 161: 622–628

    Article  Google Scholar 

  • Sano N, Wang H, Chhowalla M, Alexandrou I, Amaratunga G A J. 2001. Synthesis of carbon ‘onions’ in water. Nature, 414: 506–507

    Article  Google Scholar 

  • Sharma A, Kyotani T, Tomita A. 2000. Direct observation of layered structure of coals by a transmission electron microscope. Energy Fuels, 14: 515–516

    Article  Google Scholar 

  • Shcherbakova T F. 2017. Crystallization temperature of anatectic melt: An example of biotite-muscovite granite in the Rikolatvi structure, Belomorian Mobile Belt. Geochem Int, 55: 833–839

    Article  Google Scholar 

  • Shumilova T, Kis V K, Masaitis V, Isaenko S, Makeev B. 2014. Onion-like carbon in impact diamonds from the Popigai astrobleme. Eur J Mineral, 26: 267–277

    Article  Google Scholar 

  • Simpson C, Schmid S M. 1983. An evaluation of criteria to deduce the sense of movement in sheared rocks. GSA Bull, 94: 1281–1288

    Article  Google Scholar 

  • Smith P P K, Buseck P R. 1981. Graphitic carbon in the Allende meteorite: A microstructural study. Science, 212: 322–324

    Article  Google Scholar 

  • Song Y, Jiang B, Li M, Hou C, Mathews J P. 2020. Macromolecular transformations for tectonically-deformed high volatile bituminous via HRTEM and XRD analyses. Fuel, 263: 116756

    Article  Google Scholar 

  • Stach E, Mackowsky M T, Teichmüller M, Taylor G H, Chandra D, Teichmüller R. 1982. Stach’s Textbook of Coal Petrology. 3nd ed. Berlin: Gebrüder Borntraeger. 535

    Google Scholar 

  • Taylor G H, Teichmüller M, Davis A, Diessel C F K, Littke R, Robert P. 1998. Organic Petrology. Berlin: Gebrüder Borntraeger. 704

    Google Scholar 

  • Ugarte D. 1992. Curling and closure of graphitic networks under electron-beam irradiation. Nature, 359: 707–709

    Article  Google Scholar 

  • Vranjes-Wessely S, Misch D, Issa I, Kiener D, Fink R, Seemann T, Liu B, Rantitsch G, Sachsenhofer R F. 2020. Nanoscale pore structure of Carboniferous coals from the Ukrainian Donets Basin: A combined HRTEM and gas sorption study. Int J Coal Geol, 224: 103484

    Article  Google Scholar 

  • Wang X M, Wang H Y, Zhang H X, Zhao X G, Xu B S. 2004. HREM analysis of nano-structured onion-like fullerenes derived from coal (in Chinese with English abstract). J Chin Electron Microsc Soc, 23: 159–162

    Google Scholar 

  • Wang X, Zhao Y P. 2020. The time-temperature-maturity relationship: A chemical kinetic model of kerogen evolution based on a developed molecule-maturity index. Fuel, 278: 118264

    Article  Google Scholar 

  • Xu B. 2008. Prospects and research progress in nano onion-like fullerenes. New Carbon Mater, 23: 289–301

    Article  Google Scholar 

  • Yang H S, Zhang X B, Chen K S, Qi Z F, Xu Z D, Li W Z. 1999. A new method to synthesize carbon onions-Radio frequency plasma CVD (in Chinese with English abstract). Chin J Chem Phys, 12: 646–650

    Google Scholar 

  • Yang Y, Liu X, Guo X, Wen H, Xu B. 2011. Synthesis of nano onion-like fullerenes by chemical vapor deposition using an iron catalyst supported on sodium chloride. J Nanopart Res, 13: 1979–1986

    Article  Google Scholar 

  • Zhang C, Li J, Liu E, He C, Shi C, Du X, Hauge R H, Zhao N. 2012. Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon, 50: 3513–3521

    Article  Google Scholar 

  • Zhang W Y. 2010. Geological characteristics and genesis of graphite deposit in Laoyingshan Mine in Fujian (in Chinese with English abstract). J Geol, 34: 377–381

    Google Scholar 

  • Zhang Z J, Zuo R G. 2015. Tectonic evolution of southwestern Fujian Province and spatial-temporal distribution regularity of mineral deposits (in Chinese with English abstract). Acta Petrol Sin, 31: 217–229

    Google Scholar 

  • Zu F P, Shu L S, Li C. 2012. Evolution features of depositional and tectonic setting from late Paleozoic to Meso—Cenozoic in the Yong’an Basin (in Chinese with English abstract). Geol Rev, 58: 126–148

    Google Scholar 

Download references

Acknowledgements

We are extremely grateful to Chief Engineer Quanlin CHEN and Senior Engineer Ruijin DENG of Fujian Administration of Coal Geology for their great help in collecting geological samples, Professor Ningning ZHONG and Qingyong LUO of China University of Petroleum (Beijing) for their help in using reflected-light microscope, and Dr. Yu SONG of China University of Mining and Technology for his help in using fast Fourier transform (FFT) to calculate the interlayer spacing (d002) between the graphitic layers of carbon onions. We are also very grateful to the responsible editor and reviewers for their valuable comments and suggestions. This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 42130802 and 41972176) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilin Chen.

Supporting Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Qin, Y., Li, J. et al. Discovery of the largest natural carbon onions on Earth. Sci. China Earth Sci. 65, 1736–1750 (2022). https://doi.org/10.1007/s11430-021-9951-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9951-x

Keywords

Navigation