Skip to main content
Log in

Mechanisms and climatic-ecological effects of the Great Oxidation Event in the early Proterozoic

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

This paper briefly introduces the conception and research history of the Great Oxidation Event (GOE) in the early Paleoproterozoic and summarizes the primary geological and geochemical records of this event. On the basis of these, we overview the significant progress in three fields of the GOE: the timing and process of its startup, its mechanisms, and its climatic-ecological effects. The records of mass-independent fractionation of sulfur isotopes suggest that the startup of the GOE might be multi-episodic, which is obviously inconsistent with the single-episodic opinion obtained from atmospheric model simulations. The fundamental mechanism of the GOE was the source of the atmospheric O2 exceeding the sink, but it remains uncertain whether it was due to the increase in the source or the decrease in the sink. The GOE substantially affected the climate, biological evolution, and biogeochemical cycles, but the specific processes remain elusive. In consideration of the current progress, we propose four aspects for future explorations, including the construction of geological and geochemical proxies for extremely low atmospheric oxygen content (pO2), how the GOE changed the evolutions of Earth’s habitability and the processes in deep Earth, and constraining the mechanism of the GOE by coupling geological events with different time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelin Y V, Heaman L M, Semenov V S. 1995. U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: Implications for the timing and duration of Paleoproterozoic continental rifting. Precambrian Res, 75: 31–46

    Article  Google Scholar 

  • Anbar A D, Duan Y, Lyons T W, Arnold G L, Kendall B, Creaser R A, Kaufman A J, Gordon G W, Scott C, Garvin J, Buick R. 2007. A whiff of oxygen before the Great Oxidation Event? Science, 317: 1903–1906

    Article  Google Scholar 

  • Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297: 1137–1142

    Article  Google Scholar 

  • Aulbach S, Stagno V. 2016. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology, 44: 751–754

    Article  Google Scholar 

  • Barley M E, Bekker A, Krapez B. 2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet Sci Lett, 238: 156–171

    Article  Google Scholar 

  • Barley M E, Pickard A L, Sylvester P J. 1997. Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature, 385: 55–58

    Article  Google Scholar 

  • Barton E S, Altermann W, Williams I S, Smith C B. 1994. U-Pb zircon age for a tuff in the Campbell Group, Griqualand West sequence, South Africa: Implications for early Proterozoic rock accumulation rates. Geology, 22: 343–346

    Article  Google Scholar 

  • Bau M, Romer R L, Lüders V, Beukes N J. 1999. Pb, O, and C isotopes in silicified Mooidraai dolomite (Transvaal Supergroup, South Africa): Implications for the composition of Paleoproterozoic seawater and ‘dating’ the increase of oxygen in the Precambrian atmosphere. Earth Planet Sci Lett, 174: 43–57

    Article  Google Scholar 

  • Bekker A, Holland H D, Wang P L, Rumble III D, Stein H J, Hannah J L, Coetzee L L, Beukes N J. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117–120

    Article  Google Scholar 

  • Bekker A, Holland H D. 2012. Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet Sci Lett, 317–318: 295–304

    Article  Google Scholar 

  • Bekker A, Kaufman A J, Karhu J A, Beukes N J, Swart Q D, Coetzee L L, Eriksson K A. 2001. Chemostratigraphy of the Paleoproterozoic duitschland formation, South Africa: Implications for coupled climate change and carbon cycling. Am J Sci, 301: 261–285

    Article  Google Scholar 

  • Bekker A, Krapez B, Karhu J A. 2020. Correlation of the stratigraphic cover of the Pilbara and Kaapvaal cratons recording the lead up to Paleoproterozoic Icehouse and the GOE. Earth-Sci Rev, 211: 103389

    Article  Google Scholar 

  • Beukes N J, Dorland H, Gutzmer J, Nedachi M, Ohmoto H. 2002. Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology, 30: 491–494

    Article  Google Scholar 

  • Blamey N J F, Brand U, Parnell J, Spear N, Lécuyer C, Benison K, Meng F, Ni P. 2016. Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology, 44: 651–654

    Article  Google Scholar 

  • Blättler C L, Claire M W, Prave A R, Kirsimäe K, Higgins J A, Medvedev P V, Romashkin A E, Rychanchik D V, Zerkle A L, Paiste K, Kreitsmann T, Millar I L, Hayles J A, Bao H, Turchyn A V, Warke M R, Lepland A. 2018. Two-billion-year-old evaporites capture Earth’s great oxidation. Science, 360: 320–323

    Article  Google Scholar 

  • Brasier A T, Martin A P, Melezhik V A, Prave A R, Condon D J, Fallick A E. 2013. Earth’s earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia. Precambrian Res, 235: 278–294

    Article  Google Scholar 

  • Breitburg D, Levin L A, Oschlies A, Grégoire M, Chavez F P, Conley D J, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto G S, Limburg K E, Montes I, Naqvi S W A, Pitcher G C, Rabalais N N, Roman M R, Rose K A, Seibel B A, Telszewski M, Yasuhara M, Zhang J. 2018. Declining oxygen in the global ocean and coastal waters. Science, 359: eaam7240

    Article  Google Scholar 

  • Brocks J J, Logan G A, Buick R, Summons R E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285: 1033–1036

    Article  Google Scholar 

  • Buick R. 2007. Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology, 5: 97–100

    Article  Google Scholar 

  • Butterfield N J. 2017. Oxygen, animals and aquatic bioturbation: An updated account. Geobiology, 16: 3–16

    Article  Google Scholar 

  • Campbell I H, Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci, 1: 554–558

    Article  Google Scholar 

  • Canfield D E, Glazer A N, Falkowski P G. 2010. The evolution and future of Earth’s nitrogen cycle. Science, 330: 192–196

    Article  Google Scholar 

  • Canfield D E, van Z M A, Nabhan S, Bjerrum C J, Zhang S C, Wang H J, Wang X M. 2021. Petrographic carbon in ancient sediments constrains Proterozoic Era atmospheric oxygen levels. Proc Natl Acad Sci USA, 118: e2101544118

    Article  Google Scholar 

  • Canfield D E, Zhang S, Frank A B, Wang X, Wang H, Su J, Ye Y, Frei R. 2018. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nat Commun, 9: 2871

    Article  Google Scholar 

  • Canil D. 1997. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature, 389: 842–845

    Article  Google Scholar 

  • Capotondi A, Alexander M A, Bond N A, Curchitser E N, Scott J D. 2012. Enhanced upper ocean stratification with climate change in the CMIP3 models. J Geophys Res, 117: C04031

    Google Scholar 

  • Catling D C, Claire M W. 2005. How Earth’s atmosphere evolved to an oxic state: A status report. Earth Planet Sci Lett, 237: 1–20

    Article  Google Scholar 

  • Catling D C, Zahnle K J, McKay C P. 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science, 293: 839–843

    Article  Google Scholar 

  • Catling D C, Zahnle K J. 2020. The Archean atmosphere. Sci Adv, 6: eaax1420

    Article  Google Scholar 

  • Chen X, Ling H F, Vance D, Shields-Zhou G A, Zhu M Y, Poulton S W, Och L M, Jiang S Y, Li D, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Commun, 6: 7142

    Article  Google Scholar 

  • Chen Y J. 1987. Discussion on the geological environment changes at 2.3 Ga (in Chinese). Young Geologist of Nanjing University, 1: 119–125

    Google Scholar 

  • Chen Y J, Chen W Y, Li Q G, Santosh M, Li J R. 2019. Discovery of the Huronian Glaciation Event in China: Evidence from glacigenic diamictites in the Hutuo Group in Wutai Shan. Precambrian Res, 320: 1–12

    Article  Google Scholar 

  • Cloud P E. 1968. Atmospheric and hydrospheric evolution on the primitive Earth. Science, 160: 729–736

    Article  Google Scholar 

  • Cole D B, Reinhard C T, Wang X, Gueguen B, Halverson G P, Gibson T, Hodgskiss M S W, McKenzie N R, Lyons T W, Planavsky N J. 2016. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 44: 555–558

    Article  Google Scholar 

  • Corfu F, Andrews A J. 1986. A U-Pb age for mineralized Nipissing diabase, Gowganda, Ontario. Can J Earth Sci, 23: 107–109

    Article  Google Scholar 

  • Cornell D H, Schütte S S, Eglington B L. 1996. The Ongeluk basaltic andesite formation in Griqualand West, South Africa: Submarine alteration in a 2222 Ma proterozoic sea. Precambrian Res, 79: 101–123

    Article  Google Scholar 

  • Crowe S A, Døssing L N, Beukes N J, Bau M, Kruger S J, Frei R, Canfield D E. 2013. Atmospheric oxygenation three billion years ago. Nature, 501: 535–538

    Article  Google Scholar 

  • Cui H, Kitajima K, Spicuzza M J, Fournelle J H, Ishida A, Brown P E, Valley J W. 2018. Searching for the Great Oxidation Event in North America: A reappraisal of the huronian supergroup by SIMS sulfur four-isotope analysis. Astrobiology, 18: 519–538

    Article  Google Scholar 

  • Daye M, Klepac-Ceraj V, Pajusalu M, Rowland S, Farrell-Sherman A, Beukes N, Tamura N, Fournier G, Bosak T. 2019. Light-driven anaerobic microbial oxidation of manganese. Nature, 576: 311–314

    Article  Google Scholar 

  • Dimroth E, Kimberley M M. 1976. Precambrian atmospheric oxygen: Evidence in the sedimentary distributions of carbon, sulfur, uranium, and iron. Can J Earth Sci, 13: 1161–1185

    Article  Google Scholar 

  • Eary L E, Rai D. 1987. Kinetics of chromium(III) oxidation to chromium (VI) by reaction with manganese dioxide. Environ Sci Technol, 21: 1187–1193

    Article  Google Scholar 

  • Eguchi J, Seales J, Dasgupta R. 2020. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nat Geosci, 13: 71–76

    Article  Google Scholar 

  • Evans D A, Beukes N J, Kirschvink J L. 1997. Low-latitude glaciation in the Palaeoproterozoic era. Nature, 386: 262–266

    Article  Google Scholar 

  • Fairey B, Tsikos H, Corfu F, Polteau S. 2013. U-Pb systematics in carbonates of the Postmasburg Group, Transvaal Supergroup, South Africa: Primary versus metasomatic controls. Precambrian Res, 231: 194–205

    Article  Google Scholar 

  • Fang Z Y, Qin L P, Liu W, Yao T, Chen X Y, Wei S Q. 2021. Absence of hexavalent chromium in marine carbonates: Implications for chromium isotopes as paleoenvironment proxy. Natl Sci Rev, 8: nwaa090

    Article  Google Scholar 

  • Farquhar J, Bao H M, Thiemens M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289: 756–758

    Article  Google Scholar 

  • Farquhar J, Peters M, Johnston D T, Strauss H, Masterson A, Wiechert U, Kaufman A J. 2007. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature, 449: 706–709

    Article  Google Scholar 

  • Fendorf S E, Fendorf M, Sparks D L, Gronsky R. 1992. Inhibitory mechanisms of Cr(III) oxidation by δ-MnO2. J Colloid Interface Sci, 153: 37–54

    Article  Google Scholar 

  • Fike D A, Grotzinger J P, Pratt L M, Summons R E. 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744–747

    Article  Google Scholar 

  • Fischer W W, Hemp J, Valentine J S. 2016. How did life survive Earth’s great oxygenation? Curr Opin Chem Biol, 31: 166–178

    Article  Google Scholar 

  • Föllmi K B. 1995. 160 m.y. record of marine sedimentary phosphorus burial: Coupling of climate and continental weathering under greenhouse and icehouse conditions. Geology, 23: 503

    Article  Google Scholar 

  • French K L, Hallmann C, Hope J M, Schoon P L, Zumberge J A, Hoshino Y, Peters C A, George S C, Love G D, Brocks J J, Buick R, Summons R E. 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc Natl Acad Sci USA, 112: 5915–5920

    Article  Google Scholar 

  • Frei R, Gaucher C, Døssing L N, Sial A N. 2011. Chromium isotopes in carbonates—A tracer for climate change and for reconstructing the redox state of ancient seawater. Earth Planet Sci Lett, 312: 114–125

    Article  Google Scholar 

  • Frei R, Gaucher C, Poulton S W, Canfield D E. 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461: 250–253

    Article  Google Scholar 

  • Gaillard F, Scaillet B, Arndt N T. 2011. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature, 478: 229–232

    Article  Google Scholar 

  • Gao P, Santosh M. 2020. Trace element and stable isotope characteristics of Algoma-type sulfidic banded iron formations from the Wutai Complex, central North China Craton. Ore Geol Rev, 116: 103221

    Article  Google Scholar 

  • Garvin J, Buick R, Anbar A D, Arnold G L, Kaufman A J. 2009. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science, 323: 1045–1048

    Article  Google Scholar 

  • Gilleaudeau G J, Frei R, Kaufman A J, Kah L C, Azmy K, Bartley J K, Chernyavskiy P, Knoll A H. 2016. Oxygenation of the mid-Proterozoic atmosphere: Clues from chromium isotopes in carbonates. Geochem Persp Let, 2: 178–187

    Article  Google Scholar 

  • Godfrey L V, Falkowski P G. 2009. The cycling and redox state of nitrogen in the Archaean ocean. Nat Geosci, 2: 725–729

    Article  Google Scholar 

  • Gold D A, Caron A, Fournier G P, Summons R E. 2017. Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature, 543: 420–423

    Article  Google Scholar 

  • Goldblatt C, Lenton T M, Watson A J. 2006. Bistability of atmospheric oxygen and the Great Oxidation. Nature, 443: 683–686

    Article  Google Scholar 

  • Grandstaff D. 1980. Origin of uraniferous conglomerates at Elliot Lake, Canada and Witwatersrand, South Africa: Implications for oxygen in the Precambrian atmosphere. Precambrian Res, 13: 1–26

    Article  Google Scholar 

  • Greber N D, Dauphas N, Bekker A, Ptáček M P, Bindeman I N, Hofmann A. 2017. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science, 357: 1271–1274

    Article  Google Scholar 

  • Gregory B S, Claire M W, Rugheimer S. 2021. Photochemical modelling of atmospheric oxygen levels confirms two stable states. Earth Planet Sci Lett, 561: 116818

    Article  Google Scholar 

  • Gumsley A P, Chamberlain K R, Bleeker W, Söderlund U, de Kock M O, Larsson E R, Bekker A. 2017. Timing and tempo of the Great Oxidation Event. Proc Natl Acad Sci USA, 114: 1811–1816

    Article  Google Scholar 

  • Guo Q J, Strauss H, Kaufman A J, Schroder S, Gutzmer J, Wing B, Baker M A, Bekker A, Jin Q S, Kim S T, Farquhar J. 2009. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology, 37: 399–402

    Article  Google Scholar 

  • Gutzmer J, Beukes N J. 1998. High-grade manganese ores in the Kalahari manganese field: Characterisation and dating of ore-forming events. Final Report. 221

  • Hannah J L, Bekker A, Stein H J, Markey R J, Holland H D. 2004. Primitive Os and 2316 Ma age for marine shale: Implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet Sci Lett, 225: 43–52

    Article  Google Scholar 

  • Hardisty D S, Lu Z, Planavsky N J, Bekker A, Philippot P, Zhou X, Lyons T W. 2014. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology, 42: 619–622

    Article  Google Scholar 

  • Hardisty D S, Lu Z, Bekker A, Diamond C W, Gill B C, Jiang G, Kah L C, Knoll A H, Loyd S J, Osburn M R, Planavsky N J, Wang C, Zhou X, Lyons T W. 2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet Sci Lett, 463: 159–170

    Article  Google Scholar 

  • He H P, Wu X, Xian H Y, Zhu J X, Yang Y P, Lv Y, Li Y L, Konhauser K O. 2021. An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nat Commun, 12: 6611

    Article  Google Scholar 

  • Hoffman P F, Kaufman A J, Halverson G P, Schrag D P. 1998. A Neoproterozoic snowball earth. Science, 281: 1342–1346

    Article  Google Scholar 

  • Holland H D. 1962. Model for the evolution of the Earth’s atmosphere. In: Engel A E J, James H L, Leonard B F, eds. Petrologic Studies: A Volume to Honor A.F. Buddington. New York: Geological Society of America. 447–477

    Google Scholar 

  • Holland H D. 1984. The Chemical Evolution of the Atmosphere and Ocean. Princeton: Princeton University Press

    Book  Google Scholar 

  • Holland H D. 1994. Early Proterozoic atmospheric change. In: Bengtson S, ed. Early Life on Earth: Nobel Symposium 84. New York: Columbia University Press. 237–244

    Google Scholar 

  • Holland H D. 1999. When did the Earth’s atmosphere become oxic? A reply. Geochem News, 100: 20–22

    Google Scholar 

  • Holland H D. 2002. Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta, 66: 3811–3826

    Article  Google Scholar 

  • Holland H D. 2006. The oxygenation of the atmosphere and oceans. Phil Trans R Soc B, 361: 903–915

    Article  Google Scholar 

  • Homann M. 2019. Earliest life on Earth: Evidence from the Barberton Greenstone Belt, South Africa. Earth-Sci Rev, 196: 102888

    Article  Google Scholar 

  • Huang J P, Liu X Y, He Y S, Shen S Z, Hou Z Q, Li S G, Li C Y, Yao L J, Huang J P. 2021. The oxygen cycle and a habitable Earth. Sci China Earth Sci, 64: 511–528

    Article  Google Scholar 

  • Izon G, Luo G, Uveges B T, Beukes N, Kitajima K, Ono S, Valley J W, Ma X, Summons R E. 2022. Bulk and grain-scale minor sulfur isotope data reveal complexities in the dynamics of Earth’s oxygenation. Proc Natl Acad Sci USA, 119: e2025606119

    Article  Google Scholar 

  • Johnson J E, Gerpheide A, Lamb M P, Fischer W W. 2014. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. GSA Bull, 126: 813–830

    Article  Google Scholar 

  • Johnson J E, Webb S M, Thomas K, Ono S, Kirschvink J L, Fischer W W. 2013. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc Natl Acad Sci USA, 110: 11238–11243

    Article  Google Scholar 

  • Johnston D T, Wolfe-Simon F, Pearson A, Knoll A H. 2009. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc Natl Acad Sci USA, 106: 16925–16929

    Article  Google Scholar 

  • Johnston D T. 2011. Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle. Earth-Sci Rev, 106: 161–183

    Article  Google Scholar 

  • Kadoya S, Catling D C, Nicklas R W, Puchtel I S, Anbar A D. 2020. Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oxidation. Nat Commun, 11: 2774

    Article  Google Scholar 

  • Kanzaki Y, Murakami T. 2016. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols. Geochim Cosmochim Acta, 174: 263–290

    Article  Google Scholar 

  • Karhu J A, Holland H D. 1996. Carbon isotopes and the rise of atmospheric oxygen. Geology, 24: 867–870

    Article  Google Scholar 

  • Kasting J F. 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res, 34: 205–229

    Article  Google Scholar 

  • Kasting J F. 1993. Earth’s early atmosphere. Science, 259: 920–926

    Article  Google Scholar 

  • Kaufman A J, Johnston D T, Farquhar J, Masterson A L, Lyons T W, Bates S, Anbar A D, Arnold G L, Garvin J, Buick R. 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science, 317: 1900–1903

    Article  Google Scholar 

  • Keller C B, Harrison T M. 2020. Constraining crustal silica on ancient Earth. Proc Natl Acad Sci USA, 117: 21101–21107

    Article  Google Scholar 

  • Kendall B. 2021. Recent advances in geochemical paleo-oxybarometers. Annu Rev Earth Planet Sci, 49: 399–433

    Article  Google Scholar 

  • Ketchum K Y, Heaman L M, Bennett G, Hughes D J. 2013. Age, petrogenesis and tectonic setting of the Thessalon volcanic rocks, Huronian Supergroup, Canada. Precambrian Res, 233: 144–172

    Article  Google Scholar 

  • Kirschvink J L, Gaidos E J, Bertani L E, Beukes N J, Gutzmer J, Maepa L N, Steinberger R E. 2000. Paleoproterozoic snowball earth: Extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA, 97: 1400–1405

    Article  Google Scholar 

  • Konhauser K O, Lalonde S V, Planavsky N J, Pecoits E, Lyons T W, Mojzsis S J, Rouxel O J, Barley M E, Rosìere C, Fralick P W, Kump L R, Bekker A. 2011. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature, 478: 369–373

    Article  Google Scholar 

  • Konhauser K O, Pecoits E, Lalonde S V, Papineau D, Nisbet E G, Barley M E, Arndt N T, Zahnle K, Kamber B S. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458: 750–753

    Article  Google Scholar 

  • Konhauser K O, Robbins L J, Pecoits E, Peacock C, Kappler A, Lalonde S V. 2015. The Archean Nickel famine revisited. Astrobiology, 15: 804–815

    Article  Google Scholar 

  • Kopp R E, Kirschvink J L, Hilburn I A, Nash C Z. 2005. The Paleoproterozoic snowball earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA, 102: 11131–11136

    Article  Google Scholar 

  • Krapež B, Müller S G, Fletcher I R, Rasmussen B. 2017. A tale of two basins? Stratigraphy and detrital zircon provenance of the Palaeoproterozoic Turee Creek and Horseshoe basins of Western Australia. Precambrian Res, 294: 67–90

    Article  Google Scholar 

  • Krissansen-Totton J, Buick R, Catling D C. 2015. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am J Sci, 315: 275–316

    Article  Google Scholar 

  • Krissansen-Totton J, Kipp M A, Catling D C. 2021. Carbon cycle inverse modeling suggests large changes in fractional organic burial are consistent with the carbon isotope record and may have contributed to the rise of oxygen. Geobiology, 19: 342–363

    Article  Google Scholar 

  • Kump L R, Barley M E. 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature, 448: 1033–1036

    Article  Google Scholar 

  • Kump L R, Junium C, Arthur M A, Brasier A T, Fallick A E, Melezhik V A, Lepland A, Črne A E, Luo G M. 2011. Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science, 334: 1694–1696

    Article  Google Scholar 

  • Kump L R. 2008. The rise of atmospheric oxygen. Nature, 451: 277–278

    Article  Google Scholar 

  • Kump L R, Kasting J F, Barley M E. 2001. Rise of atmospheric oxygen and the “upside-down” Archean mantle. Geochem Geophys Geosyst, 2: 1025–10

    Article  Google Scholar 

  • Lalonde S V, Konhauser K O. 2015. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc Natl Acad Sci USA, 112: 995–1000

    Article  Google Scholar 

  • Lee C T A, Yeung L Y, McKenzie N R, Yokoyama Y, Ozaki K, Lenardic A. 2016. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat Geosci, 9: 417–424

    Article  Google Scholar 

  • Li Z X, Lee C T. 2004. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet Sci Lett, 228: 483–493

    Article  Google Scholar 

  • Liu H, Zartman R E, Ireland T R, Sun W D. 2019. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks. Proc Natl Acad Sci USA, 116: 18854–18859

    Article  Google Scholar 

  • Liu W, Hao J, Elzinga E J, Piotrowiak P, Nanda V, Yee N, Falkowski P G. 2020. Anoxic photogeochemical oxidation of manganese carbonate yields manganese oxide. Proc Natl Acad Sci USA, 117: 22698–22704

    Article  Google Scholar 

  • Logan G A, Hayes J M, Hieshima G B, Summons R E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature, 376: 53–56

    Article  Google Scholar 

  • Luo G M, Kump L R, Wang Y B, Tong J N, Arthur M A, Yang H, Huang J H, Yin H F, Xie S C. 2010. Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction. Earth Planet Sci Lett, 300: 101–111

    Article  Google Scholar 

  • Luo G M, Ono S, Beukes N, Wang D T, Xie S C, Summons R E. 2016. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv, 2: e1600134

    Article  Google Scholar 

  • Luo G M, Xie S C, Liu D, Algeo T J. 2014. Microbial influences on paleoenvironmental changes during the Permian-Triassic boundary crisis. Sci China Earth Sci, 57: 965–975

    Article  Google Scholar 

  • Luo G, Junium C K, Izon G, Ono S, Beukes N J, Algeo T J, Cui Y, Xie S, Summons R E. 2018. Nitrogen fixation sustained productivity in the wake of the Palaeoproterozoic Great Oxygenation Event. Nat Commun, 9: 978

    Article  Google Scholar 

  • Luo G, Junium C K, Kump L R, Huang J, Li C, Feng Q, Shi X, Bai X, Xie S. 2014. Shallow stratification prevailed for ~1700 to ~1300 Ma ocean: Evidence from organic carbon isotopes in the North China Craton. Earth Planet Sci Lett, 400: 219–232

    Article  Google Scholar 

  • Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315

    Article  Google Scholar 

  • MacGregor A M. 1927. The problem of the Precambrian atmosphere. South Afr J Sci, 24: 155–172

    Google Scholar 

  • Mänd K, Lalonde S V, Robbins L J, Thoby M, Paiste K, Kreitsmann T, Paiste P, Reinhard C T, Romashkin A E, Planavsky N J, Kirsimäe K, Lepland A, Konhauser K O. 2020. Palaeoproterozoic oxygenated oceans following the Lomagundi-Jatuli Event. Nat Geosci, 13: 302–306

    Article  Google Scholar 

  • Mao H, Mao W L. 2020. Key problems of the four-dimensional Earth system. Matter Radiat at Extremes, 5: 038102

    Article  Google Scholar 

  • Margulis L, Sagan D. 1986. Chapter 6. The Oxygen HolocaustMicrocosmos: Four Billion Years of Evolution from Our Microbial Ancestors. Oakland: University of California Press. 99–115

    Google Scholar 

  • Martin D M B, Clendenin C W, Krapez B, McNaughton N J. 1998. Tectonic and geochronological constraints on late Archaean and Palaeoproterozoic stratigraphic correlation within and between the Kaapvaal and Pilbara Cratons. J Geol Soc, 155: 311–322

    Article  Google Scholar 

  • Melezhik V A, Fallick A E, Medvedev P V, Makarikhin V V. 1999. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-“red beds” association in a global context: A case for the world-wide signal enhanced by a local environment. Earth-Sci Rev, 48: 71–120

    Article  Google Scholar 

  • Melezhik V A, Huhma H, Condon D J, Fallick A E, Whitehouse M J. 2007. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology, 35: 655–658

    Article  Google Scholar 

  • Miao L, Moczydlowska M, Zhu S, Zhu M. 2019. New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Res, 321: 172–198

    Article  Google Scholar 

  • Mojzsis S J, Coath C D, Greenwood J P, McKeegan K D, Harrison T M. 2003. Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim Cosmochim Acta, 67: 1635–1658

    Article  Google Scholar 

  • Murakami T, Utsunomiya S, Imazu Y, Prasad N. 2001. Direct evidence of late Archean to early Proterozoic anoxic atmosphere from a product of 2.5 Ga old weathering. Earth Planet Sci Lett, 184: 523–528

    Article  Google Scholar 

  • Murakami T, Sreenivas B, Sharma S D, Sugimori H. 2011. Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics. Geochim Cosmochim Acta, 75: 3982–4004

    Article  Google Scholar 

  • Nelson D R, Trendall A F, Altermann W. 1999. Chronological correlations between the Pilbara and Kaapvaal cratons. Precambrian Res, 97: 165–189

    Article  Google Scholar 

  • Nelson D R. 1998. Compilation of SHRIMP U-Pb zircon geochronology data. 1997. Geological Survey of Western Australia, Record 1998/2, 242

  • Nicklas R W, Puchtel I S, Ash R D, Piccoli P M, Hanski E, Nisbet E G, Waterton P, Pearson D G, Anbar A D. 2019. Secular mantle oxidation across the Archean-Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. Geochim Cosmochim Acta, 250: 49–75

    Article  Google Scholar 

  • Och L M, Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci Rev, 110: 26–57

    Article  Google Scholar 

  • Ohmoto H, Kakegawa T, Lowe D R. 1993. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: Sulfur isotope evidence. Science, 262: 555–557

    Article  Google Scholar 

  • Ohmoto H. 1996. Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology, 24: 1135

    Article  Google Scholar 

  • Ohmoto H. 1997. When did the Earth’s atmosphere become oxic? Geochem News, 93: 26–27

    Google Scholar 

  • Ohmoto H. 2020. A seawater-sulfate origin for early Earth’s volcanic sulfur. Nat Geosci, 13: 576–583

    Article  Google Scholar 

  • Olson S L, Kump L R, Kasting J F. 2013. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem Geol, 362: 35–43

    Article  Google Scholar 

  • Ono S, Eigenbrode J L, Pavlov A A, Kharecha P, Rumble Iii D, Kasting J F, Freeman K H. 2003. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet Sci Lett, 213: 15–30

    Article  Google Scholar 

  • Ono S. 2017. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in Earth’s atmosphere. Annu Rev Earth Planet Sci, 45: 301–329

    Article  Google Scholar 

  • Ossa Ossa F, Eickmann B, Hofmann A, Planavsky N J, Asael D, Pambo F, Bekker A. 2018. Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event. Earth Planet Sci Lett, 486: 70–83

    Article  Google Scholar 

  • Ostrander C M, Johnson A C, Anbar A D. 2021. Earth’s first redox revolution. Annu Rev Earth Planet Sci, 49: 337–366

    Article  Google Scholar 

  • Ostrander C M, Nielsen S G, Owens J D, Kendall B, Gordon G W, Romaniello S J, Anbar A D. 2019. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat Geosci, 12: 186–191

    Article  Google Scholar 

  • Ozaki K, Thompson K J, Simister R L, Crowe S A, Reinhard C T. 2019. Anoxygenic photosynthesis and the delayed oxygenation of Earth’s atmosphere. Nat Commun, 10: 3026

    Article  Google Scholar 

  • Papineau D, Mojzsis S J, Coath C D, Karhu J A, McKeegan K D. 2005. Multiple sulfur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochim Cosmochim Acta, 69: 5033–5060

    Article  Google Scholar 

  • Papineau D, Mojzsis S J, Schmitt A K. 2007. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett, 255: 188–212

    Article  Google Scholar 

  • Partridge M A, Golding S D, Baublys K A, Young E. 2008. Pyrite paragenesis and multiple sulfur isotope distribution in late Archean and early Paleoproterozoic Hamersley Basin sediments. Earth Planet Sci Lett, 272: 41–49

    Article  Google Scholar 

  • Pavlov A A, Kasting J F, Brown L L, Rages K A, Freedman R. 2000. Greenhouse warming by CH4 in the atmosphere of early Earth. J Geophys Res, 105: 11981–11990

    Article  Google Scholar 

  • Pavlov A A, Kasting J F. 2002. Mass-Independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology, 2: 27–41

    Article  Google Scholar 

  • Peng P, Feng L, Sun F, Yang S, Su X, Zhang Z, Wang C. 2017. Dating the Gaofan and Hutuo Groups-Targets to investigate the Paleoproterozoic Great Oxidation Event in North China. J Asian Earth Sci, 138: 535–547

    Article  Google Scholar 

  • Philippot P, Ávila J N, Killingsworth B A, Tessalina S, Baton F, Caquineau T, Muller E, Pecoits E, Cartigny P, Lalonde S V, Ireland T R, Thomazo C, van Kranendonk M J, Busigny V. 2018. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat Commun, 9: 2245

    Article  Google Scholar 

  • Pickard A. 2003. SHRIMP U-Pb zircon ages for the Palaeoproterozoic Kuruman Iron Formation, Northern Cape Province, South Africa: Evidence for simultaneous BIF deposition on Kaapvaal and Pilbara Cratons. Precambrian Res, 125: 275–315

    Article  Google Scholar 

  • Planavsky N J, Asael D, Hofmann A, Reinhard C T, Lalonde S V, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith A J B, Beukes N J, Bekker A, Johnson T M, Konhauser K O, Lyons T W, Rouxel O J. 2014a. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci, 7: 283–286

    Article  Google Scholar 

  • Planavsky N J, Bekker A, Hofmann A, Owens J D, Lyons T W. 2012. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc Natl Acad Sci USA, 109: 18300–18305

    Article  Google Scholar 

  • Planavsky N J, Crowe S A, Fakhraee M, Beaty B, Reinhard C T, Mills B J W, Holstege C, Konhauser K O. 2021. Evolution of the structure and impact of Earth’s biosphere. Nat Rev Earth Environ, 2: 123–139

    Article  Google Scholar 

  • Planavsky N J, Reinhard C T, Wang X, Thomson D, McGoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyons T W. 2014b. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346: 635–638

    Article  Google Scholar 

  • Poulton S W, Bekker A, Cumming V M, Zerkle A L, Canfield D E, Johnston D T. 2021. A 200-million-year delay in permanent atmospheric oxygenation. Nature, 592: 232–236

    Article  Google Scholar 

  • Qin L, Wang X. 2017. Chromium isotope geochemistry. Rev Mineral Geochem, 82: 379–414

    Article  Google Scholar 

  • Rasmussen B, Bekker A, Fletcher I R. 2013. Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet Sci Lett, 382: 173–180

    Article  Google Scholar 

  • Rasmussen B, Buick R. 1999. Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology, 27: 115–118

    Article  Google Scholar 

  • Reinhard C T, Raiswell R, Scott C, Anbar A D, Lyons T W. 2009. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science, 326: 713–716

    Article  Google Scholar 

  • Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, Swan B K, Fonseca M M, Posada D, Stepanauskas R, Hollibaugh J T, Foster P G, Woyke T, Luo H. 2019. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J, 13: 2150–2161

    Article  Google Scholar 

  • Reinhard C T, Planavsky N J, Lyons T W. 2013. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature, 497: 100–103

    Article  Google Scholar 

  • Roberson A L, Roadt J, Halevy I, Kasting J F. 2011. Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon. Geobiology, 9: 313–320

    Article  Google Scholar 

  • Rollinson H, Adetunji J, Lenaz D, Szilas K. 2017. Archaean chromitites show constant Fe3+/ΣFe in Earth’s asthenospheric mantle since 3.8 Ga. Lithos, 282–283: 316–325

    Article  Google Scholar 

  • Roscoe S M. 1969. Huronian rocks and uraniferous conglomerates in the Canadian Shield. Geol Sur Canada, 68–40: 205

    Google Scholar 

  • Roscoe S M. 1973. The Huronian Supergroup, a Paleoaphebian succession showing evidence of atmospheric evolution. In: Young G M, ed. Huronian Stratigraphy and Sedimentation. St. John’s, Geological Association of Canada. 31–47

    Google Scholar 

  • Rye R, Holland H D. 1998. Paleosols and the evolution of atmospheric oxygen: A critical review. Am J Sci, 298: 621–672

    Article  Google Scholar 

  • Sahoo S K, Planavsky N J, Kendall B, Wang X, Shi X, Scott C, Anbar A D, Lyons T W, Jiang G. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546–549

    Article  Google Scholar 

  • Schirrmeister B E, de Vos J M, Antonelli A, Bagheri H C. 2013. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc Natl Acad Sci USA, 110: 1791–1796

    Article  Google Scholar 

  • Schirrmeister B E, Gugger M, Donoghue P C J. 2015. Cyanobacteria and the Great Oxidation Event: Evidence from genes and fossils. Palaeontology, 58: 769–785

    Article  Google Scholar 

  • Schneider D A, Bickford M E, Cannon W F, Schulz K J, Hamilton M A. 2002. Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: Implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior Region. Can J Earth Sci, 39: 999–1012

    Article  Google Scholar 

  • Schröder S, Bekker A, Beukes N J, Strauss H, van Niekerk H S. 2008. Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: Evidence from sulphate evaporites in the ~2.2–2.1 Gyr shallow-marine Lucknow Formation, South Africa. Terra Nova, 20: 108–117

    Article  Google Scholar 

  • Schröder S, Beukes N J, Armstrong R A. 2016. Detrital zircon constraints on the tectonostratigraphy of the Paleoproterozoic Pretoria Group, South Africa. Precambrian Res, 278: 362–393

    Article  Google Scholar 

  • Scott C, Wing B A, Bekker A, Planavsky N J, Medvedev P, Bates S M, Yun M, Lyons T W. 2014. Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir. Earth Planet Sci Lett, 389: 95–104

    Article  Google Scholar 

  • Sessions A L, Doughty D M, Welander P V, Summons R E, Newman D K. 2009. The continuing puzzle of the Great Oxidation Event. Curr Biol, 19: R567–R574

    Article  Google Scholar 

  • She Z, Yang F, Liu W, Xie L, Wan Y, Li C, Papineau D. 2016. The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China. J Earth Sci, 27: 297–316

    Article  Google Scholar 

  • Sheldon N D, Tabor N J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci Rev, 95: 1–52

    Article  Google Scholar 

  • Shen S Z, Zhang H. 2017. What triggered the big five mass extinction? Sci Bull, 62: 1119–1135

    Google Scholar 

  • Slotznick S P, Johnson J E, Rasmussen B, Raub T D, Webb S M, Zi J W, Kirschvink J L, Fischer W W. 2022. Reexamination of 2.5-Ga “whiff” of oxygen interval points to anoxic ocean before GOE. Sci Adv, 8: eabj7190

    Article  Google Scholar 

  • Smirnov A V, Evans D A D, Ernst R E, Söderlund U, Li Z X. 2013. Trading partners: Tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn. Precambrian Res, 224: 11–22

    Article  Google Scholar 

  • Smit M A, Mezger K. 2017. Earth’s early O2 cycle suppressed by primitive continents. Nat Geosci, 10: 788–792

    Article  Google Scholar 

  • Soo R M, Hemp J, Parks D H, Fischer W W, Hugenholtz P. 2017. On the origins of oxygenic photosynthesis and aerobic respiration in Cyano-bacteria. Science, 355: 1436–1440

    Article  Google Scholar 

  • Sumner D Y, Bowring S A. 1996. U-Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Res, 79: 25–35

    Article  Google Scholar 

  • Swanner E D, Bekker A, Pecoits E, Konhauser K O, Cates N L, Mojzsis S J. 2013. Geochemistry of pyrite from diamictites of the Boolgeeda Iron Formation, Western Australia with implications for the GOE and Paleoproterozoic ice ages. Chem Geol, 362: 131–142

    Article  Google Scholar 

  • Tang H, Chen Y, Wu G, Lai Y. 2011. Paleoproterozoic positive δ13Ccarb excursion in the northeastern Sino-Korean craton: Evidence of the Lomagundi Event. Gondwana Res, 19: 471–481

    Article  Google Scholar 

  • Tang M, Chen K, Rudnick R L. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351: 372–375

    Article  Google Scholar 

  • Taverne Y J, Caron A, Diamond C, Fournier G, Lyons T W. 2020. Chapter 5—Oxidative stress and the early coevolution of life and biospheric oxygen. In: Sies H, ed. Oxidative Stress. New Yorks: Academic Press. 67–85

    Chapter  Google Scholar 

  • Thiemens M H, Lin M. 2021. Discoveries of mass independent isotope effects in the solar system: Past, present and future. Rev Mineral Geochem, 86: 35–95

    Article  Google Scholar 

  • Trendall A F, Compston W, Nelson D R, de Laeter J R, Bennett V C. 2004. SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western Australia. Aust J Earth Sci, 51: 621–644

    Article  Google Scholar 

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y. 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature, 440: 516–519

    Article  Google Scholar 

  • Walker J C G, Brimblecombe P. 1985. Iron and sulfur in the pre-biologic ocean. Precambrian Res, 28: 205–222

    Article  Google Scholar 

  • Walker R N, Muir M D, Diver W L, Williams N, Wilkins N. 1977. Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory, Australia. Nature, 265: 526–529

    Article  Google Scholar 

  • Wang S J, Rudnick R L, Gaschnig R M, Wang H, Wasylenki L E. 2019. Methanogenesis sustained by sulfide weathering during the Great Oxidation Event. Nat Geosci, 12: 296–300

    Article  Google Scholar 

  • Warke M R, Di Rocco T, Zerkle A L, Lepland A, Prave A R, Martin A P, Ueno Y, Condon D J, Claire M W. 2020. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”. Proc Natl Acad Sci USA, 117: 13314–13320

    Article  Google Scholar 

  • Warke M R, Schröder S. 2018. Synsedimentary fault control on the deposition of the Duitschland Formation (South Africa): Implications for depositional settings, Paleoproterozoic stratigraphic correlations, and the GOE. Precambrian Res, 310: 348–364

    Article  Google Scholar 

  • Williford K H, Van Kranendonk M J, Ushikubo T, Kozdon R, Valley J W. 2011. Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: In situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochim Cosmochim Acta, 75: 5686–5705

    Article  Google Scholar 

  • Yang W, Holland H D. 2003. The Hekpoort paleosol profile in Strata 1 at Gaborone, Botswana: Soil formation during the Great Oxidation Event. Am J Sci, 303: 187–220

    Article  Google Scholar 

  • Yin L M, Yuan X L, Meng F W, Hu J. 2005. Protists of the Upper Mesoproterozoic Ruyang Group in Shanxi Province, China. Precambrian Res, 141: 49–66

    Article  Google Scholar 

  • Yin L M. 1997. Acanthomorphic acritarchs from Meso-Neo-proterozoic shales of the Ruyang Group, Shanxi, China. Rev Palaeobot Palnol, 98: 15–25

    Article  Google Scholar 

  • Young G M. 2013. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geosci Front, 4: 247–261

    Article  Google Scholar 

  • Zahnle K J, Gacesa M, Catling D C. 2019. Strange messenger: A new history of hydrogen on Earth, as told by Xenon. Geochim Cosmochim Acta, 244: 56–85

    Article  Google Scholar 

  • Zahnle K, Claire M W, Catling D C. 2006. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology, 4: 271–283

    Article  Google Scholar 

  • Zegers T E, de W M J, Dann J, White S H. 1998. Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova, 10: 250–259

    Article  Google Scholar 

  • Zhou L, McKenna C A, Long D G F, Kamber B S. 2017. LA-ICP-MS elemental mapping of pyrite: An application to the Palaeoproterozoic atmosphere. Precambrian Res, 297: 33–55

    Article  Google Scholar 

  • Zhu X K, Wang Y, Yan B, Li J, Dong A G, Li Z H, Sun J. 2013. Developments of non-traditional stable isotope geochemistry. Bull Mineral Petrol Geochem, 32: 651–688

    Google Scholar 

Download references

Acknowledgements

We send our sincere thanks to Prof. Shucheng XIE, Xiaoying SHI, Guochun ZHAO, Shuguang LI, and Jianping HUANG, who read the draft of this paper and provided constructive comments. Dr. Christopher JUNIUM at Syracuse University polished the English. The responsible editor and two anonymous reviewers are also thanked for their comments and suggestions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 41821001, 42172216, 41873027), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB26000000), and the 111 Project of China (Grant No. BP0820004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genming Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Zhu, X., Wang, S. et al. Mechanisms and climatic-ecological effects of the Great Oxidation Event in the early Proterozoic. Sci. China Earth Sci. 65, 1646–1672 (2022). https://doi.org/10.1007/s11430-021-9934-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9934-y

Keywords

Navigation