Skip to main content
Log in

The Paleogene to Neogene climate evolution and driving factors on the Qinghai-Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The growth of the Qinghai-Tibetan Plateau (QTP) during the Cenozoic drove dramatic climate and environmental change in this region. However, there has been limited comprehensive research into evolution of climate during this interval. Here we present a quantitative reconstruction using Bioclimatic Analysis (BA) and Joint Probability Density Functions (JPDFs) based on data available for 48 fossil floras, including macrofossils and palynological fossils collected in the QTP area from the Paleogene to Neogene (66–2.58 Ma). Both methods indicate that there was an overall decline in temperature and precipitation. Paleoclimatic simulations using Hadley Centre Coupled Model version3 (HadCM3) show that the most prominent climate change was very likely driven by QTP orographic evolution from the late Eocene, which was accompanied by a shift in temperature from a latitudinal distribution to a topographically controlled pattern. In addition, with the growth of the QTP, temperature and precipitation decreased gradually in the northeastern part of the plateau. Different sources of evidence, including plant fossil records, climate simulations and other proxies, indicate that the topographic evolution of the QTP and other geological events, in conjunction with global cooling, may have been the main factors driving climate change in this region. This research can provide insights into Cenozoic environmental change and ecosystem evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta R P, Huber M. 2020. Competing topographic mechanisms for the summer Indo-Asian monsoon. Geophys Res Lett, 47: e2019GL085112

    Article  Google Scholar 

  • An Z S, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62–66

    Article  Google Scholar 

  • Bai P R, Xiong X G, Zeng Y R, Ma D S, Fu H B, Li Y S, Jiang K Y, Zhang H S, Wu T, Huang J G, Liao Z M. 2018. The discovery and significance of the sporopollen assemblages from the Oliogene Rigongla Formation in the Lunggar region, Zhongba, Xizang (in Chinese with English Abstract). Sediment Geol Tethyan Geol, 38: 70–76

    Google Scholar 

  • Barbolini N, Woutersen A, Dupont-Nivet G, Silvestro D, Tardif D, Coster P M C, Meijer N, Chang C, Zhang H X, Licht A, Rydin C, Koutsodendris A, Han F, Rohrmann A, Liu X J, Zhang Y, Donnadieu Y, Fluteau F, Ladant J B, Le Hir G, Hoorn C. 2020. Cenozoic evolution of the steppe-desert biome in Central Asia. Sci Adv, 6: eabb8227

    Article  Google Scholar 

  • Bosboom R, Dupont-Nivet G, Grothe A, Brinkhuis H, Villa G, Mandic O, Stoica M, Huang W, Yang W, Guo Z, Krijgsman W. 2014. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res, 26: 621–640

    Article  Google Scholar 

  • Chen H P, Sun J Q, Chen X L. 2014. Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. Int J Climatol, 34: 2730–2748

    Article  Google Scholar 

  • Chen Y S, Wu Y S, Xiao J Y. 1991. Pollen analysis of forest surface samples in Kunming area (in Chinese with English Abstract). Acta Bot Sin, 33: 855–862

    Google Scholar 

  • Cox P M. 2001. Description of the TRIFFID dynamic global vegetation model. Tech rep. Met Office Hadley Centre, Exeter, UK

    Google Scholar 

  • Dai J X. 1990. Climate in the Tibetan Plateau (in Chinese). Beijing: Meteorological Press. 366

    Google Scholar 

  • DeConto R M, Pollard D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421: 245–249

    Article  Google Scholar 

  • Deng T, Ding L. 2015. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl Sci Rev, 2: 417–437

    Article  Google Scholar 

  • Deng T, Wang X M, Wu F X, Wang Y, Li Q, Wang S Q, Hou S K. 2019b. Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob Planet Change, 174: 58–69

    Article  Google Scholar 

  • Deng T, Wu F X, Wang S Q, Su T, Zhou Z K. 2019a. Significant shift in the terrestrial ecosystem at the Paleogene/Neogene boundary in the Tibetan Plateau (in Chinese with English Abstract). Chin Sci Bull, 64: 2894–2906

    Article  Google Scholar 

  • Deng T, Wu F X, Zhou Z K, Su T. 2020. Tibetan Plateau: An evolutionary junction for the history of modern biodiversity. Sci China Earth Sci, 63: 172–187

    Article  Google Scholar 

  • Deng W Y D, Su T, Wappler T, Liu J, Li S F, Huang J, Tang H, Low S L, Wang T X, Xu H, Xu X T, Liu P, Zhou Z K. 2020. Sharp changes in plant diversity and plant-herbivore interactions during the Eocene-Oligocene transition on the southeastern Qinghai-Tibetan Plateau. Glob Planet Change, 194: 103293

    Article  Google Scholar 

  • Ding L, Spicer R A, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer T E V, Yue Y, Shukla A, Srivastava G, Khan M A, Bera S, Mehrotra R. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45: 215–218

    Article  Google Scholar 

  • Ding L, Xu Q, Yue Y H, Wang H Q, Cai F L, Li S. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth Planet Sci Lett, 392: 250–264

    Article  Google Scholar 

  • Ding Z L, Xiong S F. 2006. Numerical modeling in paleoclimate study: Progress and problems (in Chinese with English Abstract). Earth Sci Front, 13: 21–31

    Google Scholar 

  • Fang A M, Yan Z, Liu X H, Tao J R, Li J L, Pan Y S. 2005. The flora of the Liuqu Formation in south Tibet and its climatic implications (in Chinese with English Abstract). Acta Palaeontol Sin, 44: 435–445

    Google Scholar 

  • Farnsworth A, Lunt D J, Robinson S A, Valdes P J, Roberts W H G, Clift P D, Markwick P, Su T, Wrobel N, Bragg F, Kelland S J, Pancost R D. 2019. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci Adv, 5: eaax1697

    Article  Google Scholar 

  • Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nat Commun, 8: 14845

    Article  Google Scholar 

  • Harbert R S, Nixon K C. 2015. Climate reconstruction analysis using coexistence likelihood estimation (CRACLE): A method for the estimation of climate using vegetation. Am J Bot, 102: 1277–1289

    Article  Google Scholar 

  • He H Y, Sun J M, Li Q L, Zhu R X. 2012. New age determination of the Cenozoic Lunpola basin, central Tibet. Geol Mag, 149: 141–145

    Article  Google Scholar 

  • Huang J, Su T, Li S F, Wu F X, Deng T, Zhou Z K. 2020. Pliocene flora and paleoenvironment of Zanda Basin, Tibet, China. Sci China Earth Sci, 63: 212–223

    Article  Google Scholar 

  • Jia L B, Su T, Huang Y J, Wu F X, Deng T, Zhou Z K. 2018. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: Implications for morphological evolution and biogeography. Jnl Sytematics Evol, 57: 94–104

    Article  Google Scholar 

  • Jiang H, Su T, Wong W O, Wu F X, Huang J, Shi G L. 2019. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J Asian Earth Sci, 175: 99–108

    Article  Google Scholar 

  • Jin J H, Liao W B, Wang B S, Peng S L. 2003. Global change in Cenozoic and evolution of flora in China (in Chinese with English Abstract). Guihaia, 23: 217–225

    Google Scholar 

  • Kocsis Á T, Raja N B. 2020. Chronosphere: Earth system history variables. GSA 2020 Connects Online

  • Kutzbach J E, Prell W L, Ruddiman W F. 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J Geol, 101: 177–190

    Article  Google Scholar 

  • Li J G, Zhang Y Y, Cai H W, Guo Z Y, Wan X Q. 2008. Cretaceous and Paleogene palynological successions at Zhongba. Acta Geol Sin, 82: 584–593

    Google Scholar 

  • Li J J, Wen S X, Zhang Q S, Wang F B, Zheng B X, Li B Y. 1979. Age, amplitude and form of the uplifting of the Qinghai-Tibet Plateau (in Chinese). Sci China, 6: 608–616

    Google Scholar 

  • Li S F, Mao L M, Spicer R A, Lebreton-Anberrée J, Su T, Sun M, Zhou Z K. 2015. Late Miocene vegetation dynamics under monsoonal climate in southwestern China. Palaeogeogr Palaeoclimatol Palaeoecol, 425: 14–40

    Article  Google Scholar 

  • Li S F, Valdes P J, Farnsworth A, Davies-Barnard T, Su T, Lunt D J, Spicer R A, Liu J, Deng W Y D, Huang J, Tang H, Ridgwell A, Chen L L, Zhou Z K. 2021. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci Adv, 7: eabc7741

    Article  Google Scholar 

  • Li W Y, Yao Z J. 1990. A study on the quantitative relationship between Pinus pollen in surface sample and Pinus vegetation (in Chinese). Acta Bot Sin, 32: 943–950

    Google Scholar 

  • Li W Y. 1991. Relationships between pollen and plant of the Abies fargesii forest and its succession in the Shennongjia Mountain (in Chinese with English Abstract). Acta Geograph Sin, 46: 186–194

    Google Scholar 

  • Liu J, Su T, Spicer R A, Tang H, Deng W Y D, Wu F X, Srivastava G, Spicer T, Van Do T, Deng T, Zhou Z K. 2019. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 524: 33–40

    Article  Google Scholar 

  • Liu X D, Dong B W. 2013. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chin Sci Bull, 58: 4277–4291

    Article  Google Scholar 

  • Liu X D. 1993. Application of Numerical Simulation to Paleoclimatic Research (in Chinese with English Abstract). Sci Geogr Sin, 13: 257–267, 296

    Google Scholar 

  • Liu Y S, Utescher T, Zhou Z K, Sun B N. 2011. The evolution of Miocene climates in North China: Preliminary results of quantitative reconstructions from plant fossil records. Palaeogeogr Palaeoclimatol Palaeoecol, 304: 308–317

    Article  Google Scholar 

  • Lü H Y, Wang S Y, Shen C M, Yang X D, Tong G B, Liu G B. 2004. Spatial pattern of modern Abies and Picea pollen in the Qinghai-Xizang Plateau (in Chinese with English Abstract). Quat Sci, 24: 39–49

    Google Scholar 

  • Lu J F, Zhang K X, Song B W, Xu Y D, Zhang J Y, Huang W, Zhang D L. 2020. Paleogene-Neogene Pollen and Climate Change in Dahonggou Region of Qaidam Basin (in Chinese with English Abstract). Geoscience, 34: 732–744

    Google Scholar 

  • Macdonald F A, Swanson-Hysell N L, Park Y, Lisiecki L, Jagoutz O. 2019. Arc-continent collisions in the tropics set Earth’s climate state. Science, 364: 181–184

    Article  Google Scholar 

  • Mosbrugger V, Utescher T. 1997. The coexistence approach—A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol, 134: 61–86

    Article  Google Scholar 

  • Popov S V, Rögl F, Rozanov A Y, Steininger F F, Shcherba I G, Kovac M. 2004. Lithological-Paleogeographic Maps of Parathys. 10 Maps Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg, 250: 1–46

    Google Scholar 

  • Pound M J, Salzmann U. 2017. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition. Sci Rep, 7: 43386

    Article  Google Scholar 

  • Quan C, Liu Y S C, Utescher T. 2012. Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeogr Palaeoclimatol Palaeoecol, 365–366: 302–311

    Article  Google Scholar 

  • Ramstein G, Fluteau F, Besse J, Joussaume S. 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386: 788–795

    Article  Google Scholar 

  • Raymo M E, Ruddiman W F. 1992. Tectonic forcing of Late Cenozoic climate. Nature, 359: 117–122

    Article  Google Scholar 

  • Reichgelt T, Kennedy E M, Conran J G, Mildenhall D C, Lee D E. 2015. The early Miocene paleolake Manuherikia: Vegetation heterogeneity and warm-temperate to subtropical climate in southern New Zealand. J Paleolimnol, 53: 349–365

    Article  Google Scholar 

  • Rögl F. 1997. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien, 99: 279–310

    Google Scholar 

  • Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677–681

    Article  Google Scholar 

  • Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054–1058

    Article  Google Scholar 

  • Scotese C R, Wright N. 2018. PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic

  • Scotese C R. 2016. PALEOMAP PaleoAtlas for GPlates and the PaleoData plotter program, PALEOMAP project

  • Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo S, Valdes P J, Wolfe J A, Kelley S P. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622–624

    Article  Google Scholar 

  • Spicer R A, Su T, Valdes P J, Farnsworth A, Wu F X, Shi G L, Spicer T E, Zhou Z K. 2020. Why ‘the uplift of the Tibetan Plateau’ is a myth. Natl Sci Rev, 8: nwaa091

    Article  Google Scholar 

  • Spicer R A. 2017. Tibet, the Himalaya, Asian monsoons and biodiversity—In what ways are they related? Plant Diversity, 39: 233–244

    Article  Google Scholar 

  • Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. 2019b. No high tibetan plateau until the neogene. Sci Adv, 5: eaav2189

    Article  Google Scholar 

  • Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. 2019a. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl Sci Rev, 6: 495–504

    Article  Google Scholar 

  • Su T, Spicer R A, Wu F X, Farnsworth A, Huang J, Del Rio C, Deng T, Ding L, Deng W Y D, Huang Y J, Hughes A, Jia L B, Jin J H, Li S F, Liang S Q, Liu J, Liu X Y, Sherlock S, Spicer T, Srivastava G, Tang H, Valdes P, Wang T X, Widdowson M, Wu M X, Xing Y W, Xu C L, Yang J, Zhang C, Zhang S T, Zhang X W, Zhao F, Zhou Z K. 2020. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proc Natl Acad Sci USA, 117: 32989–32995

    Article  Google Scholar 

  • Sun J M, Jiang M S. 2013. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau. Tectonophysics, 588: 27–38

    Article  Google Scholar 

  • Sun J M, Liu W G, Liu Z H, Fu B H. 2017. Effects of the uplift of the Tibetan Plateau and retreat of Neotethys Ocean on the stepwise aridification of mid-latitude Asian interior (in Chinese with English Abstract). Bull Chin Acad Sci, 26: 39–46

    Google Scholar 

  • Sun J M, Windley B F, Zhang Z L, Fu B H, Li S H. 2016. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene. J Asian Earth Sci, 116: 222–231

    Article  Google Scholar 

  • Sun J M, Xu Q H, Liu W M, Zhang Z Q, Xue L, Zhao P. 2014. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr Palaeoclimatol Palaeoecol, 399: 21–30

    Article  Google Scholar 

  • Sun J M, Zhang Z L, Cao M M, Windley B F, Tian S C, Sha J G, Abdulov S, Gadoev M, Oimahmadov I. 2020. Timing of seawater retreat from proto-Paratethys, sedimentary provenance, and tectonic rotations in the late Eocene-early Oligocene in the Tajik Basin, Central Asia. Palaeogeogr Palaeoclimatol Palaeoecol, 545: 109657

    Article  Google Scholar 

  • Sun J M. 2014. Case Study Based on Earth System Science Theory—Geomorphic, Environmental, and Climatic Effects of the Tectonic Uplift of the Tibetan Plateau (in Chinese with English Abstract). Acta Sci Nat Univ Sunyatseni, 53: 1–9

    Google Scholar 

  • Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671–1677

    Article  Google Scholar 

  • Thompson R S, Anderson K H, Pelltier R T, Strickland L E, Bartlein P J, Shafer S L. 2012. Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique. Quaternary Sci Rev, 51: 18–39

    Article  Google Scholar 

  • Tierney J E, Poulsen C J, Montañez I P, Bhattacharya T, Feng R, Ford H L, Hönisch B, Inglis G N, Petersen S V, Sagoo N, Tabor C R, Thirumalai K, Zhu J, Burls N J, Foster G L, Goddéris Y, Huber B T, Ivany L C, Kirtland Turner S, Lunt D J, McElwain J C, Mills B J W, Otto-Bliesner B L, Ridgwell A, Zhang Y G. 2020. Past climates inform our future. Science, 370: eaay3701

    Article  Google Scholar 

  • Utescher T, Bruch A A, Erdei B, François L, Ivanov D, Jacques F M B, Kern A K, Liu Y S C, Mosbrugger V, Spicer R A. 2014. The Coexistence Approach—Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr Palaeoclimatol Palaeoecol, 410: 58–73

    Article  Google Scholar 

  • Valdes P J, Armstrong E, Badger M P S, Bradshaw C D, Bragg F, Crucifix M, Davies-Barnard T, Day J J, Farnsworth A, Gordon C, Hopcroft P O, Kennedy A T, Lord N S, Lunt D J, Marzocchi A, Parry L M, Pope V, Roberts W H G, Stone E J, Tourte G J L, Williams J H T. 2017. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci Model Dev, 10: 3715–3743

    Article  Google Scholar 

  • Valdes P J, Scotese C R, Lunt D J. 2021. Deep ocean temperatures through time. Clim Past, 17: 1483–1506

    Article  Google Scholar 

  • Wang C S, Dai J G, Zhao X X, Li Y L, Graham S A, He D F, Ran B, Meng J. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621: 1–43

    Article  Google Scholar 

  • Wang C S, Zhao X X, Liu Z F, Lippert P C, Graham S A, Coe R S, Yi H S, Zhu L D, Liu S, Li Y L. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 105: 4987–4992

    Article  Google Scholar 

  • Wang G C, Cao K, Zhang K X, Wang A, Liu C, Meng Y N, Xu Y D. 2011. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic. Sci China Earth Sci, 54: 29–44

    Article  Google Scholar 

  • Wang Q, Spicer R A, Yang J, Wang Y F, Li C S. 2013. The Eocene climate of China, the early elevation of the Tibetan Plateau and the onset of the Asian Monsoon. Glob Change Biol, 19: 3709–3728

    Article  Google Scholar 

  • Wang W M, Shu J W, Deng T. 2009. Neogene pollen floras in China with regional orientation and environment response (in Chinese with English Abstract). Acta Palaeontol Sin, 48: 175–184

    Google Scholar 

  • Wang X, Li Q, Takeuchi G T. 2016. Out of Tibet: An early sheep from the Pliocene of Tibet, Protovis himalayensis, genus and species nov. (Bovidae, Caprini), and origin of Ice Age mountain sheep. J Vertebrate Paleontol, 36: e1169190

    Article  Google Scholar 

  • Wang X M, Li Q, Xie G P, Saylor J E, Tseng Z J, Takeuchi G T, Deng T, Wang Y, Hou S K, Liu J, Zhang C F, Wang N, Wu F X. 2013. Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol, 374: 81–95

    Article  Google Scholar 

  • Wei L J, Liu X H, Li G W, Zhou X J. 2015. Paleogene palynological assemblages and paleoenvironmental analysis from Gyachala formation in the Gyangzi area, Southern Tibet, China (in Chinese with English Abstract). Acta Micropalaeontol Sin, 32: 255–268

    Google Scholar 

  • Wei L J, Liu X H, Yan F H, Mai X S, Li G W, Liu X B, Zhou X J. 2011. Palynological evidence sheds new light on the age of the Liuqu Conglomerates in Tibet and its geological significance. Sci China Earth Sci, 54: 901–911

    Article  Google Scholar 

  • Wen J, Zhang J Q, Nie Z L, Zhong Y, Sun H. 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front Genet, 5: 4

    Article  Google Scholar 

  • West C K, Greenwood D R, Reichgelt T, Lowe A J, Vachon J M, Basinger J F. 2020. Paleobotanical proxies for early Eocene climates and ecosystems in northern North America from middle to high latitudes. Clim Past, 16: 1387–1410

    Article  Google Scholar 

  • Westerhold T, Marwan N, Drury A J, Liebrand D, Agnini C, Anagnostou E, Barnet J S K, Bohaty S M, De Vleeschouwer D, Florindo F, Frederichs T, Hodell D A, Holbourn A E, Kroon D, Lauretano V, Littler K, Lourens L J, Lyle M, Pälike H, Röhl U, Tian J, Wilkens R H, Wilson P A, Zachos J C. 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369: 1383–1387

    Article  Google Scholar 

  • Willard D A, Donders T H, Reichgelt T, Greenwood D R, Sangiorgi F, Peterse F, Nierop K G J, Frieling J, Schouten S, Sluijs A. 2019. Arctic vegetation, temperature, and hydrology during Early Eocene transient global warming events. Glob Planet Change, 178: 139–152

    Article  Google Scholar 

  • Wu F X, Miao D S, Chang M M, Shi G L, Wang N. 2017. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci Rep, 7: 878

    Article  Google Scholar 

  • Wu Z H, Wu Z H, Ye P S, Hu D G, Peng H. 2006. Late Cenozoic environmental evolution of the Qinghai-Tibet Plateau as indicated by the evolution of sporopollen assemblages (in Chinese with English Abstract). Geol China, 33: 973–974

    Google Scholar 

  • Xiong Z Y, Liu X H, Ding L, Farnsworth A, Spicer R A, Xu Q, Valdes P, He S L, Zeng D, Wang C, Li Z Y, Guo X D, Su T, Zhao C Y, Wang H Q, Yue Y H. 2022. The rise and demise of the Paleogene Central Tibetan Valley. Sci Adv, 8: Eabj0944

    Article  Google Scholar 

  • Xu Q H, Li Y C, Yang X L, Zheng Z H. 2007. Quantitative relationship between pollen and vegetation in northern China. Sci China Ser D-Earth Sci, 50: 582–599

    Article  Google Scholar 

  • Yao T D, Chen F H, Cui P, Ma Y M, Xu B Q, Zhu L P, Zhang F, Wang W C, Ai L K, Yang X X. 2017. From Tibetan plateau to third pole and pan-third pole (in Chinese with English Abstract). Bull Chin Acad Sci, 32: 924–931

    Google Scholar 

  • Yao Z J. 1989. Surface pollen analysis in Zhongtiao Mountain (in Chinese). Geogr Res, 44: 469–4778

    Google Scholar 

  • Zhang R, Jiang D B, Ramstein G, Zhang Z S, Lippert P C, Yu E T. 2018. Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: A modeling study. Earth Planet Sci Lett, 484: 295–308

    Article  Google Scholar 

  • Zhang Z S, Wang H J, Guo Z T, Jiang D B. 2007. Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China. Earth Planet Sci Lett, 257: 622–634

    Article  Google Scholar 

  • Zheng W P, Man W M, Sun Y, Liang Y H. 2019. Short commentary on CMIP6 Paleoclimate Modelling Intercomparison Project Phase 4 (PMIP4) (in Chinese with English Abstract). Clim Change Res, 15: 510–518

    Google Scholar 

  • Zhou Z K, Huang J, Ding W N. 2017. The impact of major geological events on Chinese flora (in Chinese with English Abstract). Biodivers Sci, 25: 123–135

    Article  Google Scholar 

Download references

Acknowledgements

We thank all members from the Paleoecology Research Group (PRG) at the Xishuangbanna Tropical Botanical Garden (XTBG) for fossil collecting, Dr. Weiyudong Deng for cartographic advice, and Ping Liu, Jiangbo Meng, Hongyan Zhou, Liuyue Cui, Yajun Gao, Lijuan Cui for helping with data collection. We are also grateful to two reviewers for their constructive advice. This work was supported by the Basic Science Center for Tibetan Plateau Earth System (Grant No. 41988101), the Yunnan Province Natural Science Foundation (Grant No. 2019FB061), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP; Grant No. 2019QZKK0705), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB26000000), and the National Natural Science Foundation of China (Grant No. 41772026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shufeng Li or Tao Su.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, S., Farnsworth, A. et al. The Paleogene to Neogene climate evolution and driving factors on the Qinghai-Tibetan Plateau. Sci. China Earth Sci. 65, 1339–1352 (2022). https://doi.org/10.1007/s11430-021-9932-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9932-2

Keywords

Navigation