Skip to main content
Log in

Mesozoic uplift of the Dabashan and Micangshan-Hannan Dome in the South Qinling orogenic belt

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The topographic evolution of continental orogens is important for understanding continental orogenic processes, geodynamic mechanisms, and climatic and environmental changes. The Qinling Orogen is a major orogenic belt in China, and its uplift history can provide insights into the tectonic configuration and geodynamics of China and East Asia. Previous studies have shown that the Dabashan and Micangshan-Hannan Dome (MHD) in the South Qinling orogenic belt were uplifted during the Mesozoic. However, the magnitude of the uplift remains unclear. In this study, using sedimentary records in the northern Sichuan Basin and lithospheric flexural modeling, we estimated the magnitude of Mesozoic uplift of the Dabashan and MHD, along with the effective elastic thickness (Te) of the Sichuan Basin. The Dabashan and MHD were uplifted by approximately 1220 and 880 m during the Middle Jurassic and Early Cretaceous, respectively. Therefore, we propose that the present-day elevation of the Dabashan and MHD is primarily the result of Mesozoic uplift. The differences in the duration and amount of uplift between different tectonic units indicate that the uplift processes and driving mechanisms in the South Qinling orogenic belt were different in the Mesozoic and Cenozoic. Mesozoic uplift was the result of convergence of the North China and South China blocks advanced from east to west, whereas Cenozoic uplift was driven by ongoing indentation of the Indian Plate into Eurasia from southwest to northeast. The lithospheric strength of the northern Sichuan Basin was weakened from the Middle Jurassic to Early Cretaceous, and Te decreased from 73 to 57 km. This may have been caused by the flexure-related bending stresses in the lithosphere that developed due to the large topographic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen P A, Allen J R. 2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. Hoboken: John Wiley & Sons. 551–554

    Google Scholar 

  • Argus D F, Gordon R G, DeMets C. 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem Geophys Geosyst, 12: Q11001

    Article  Google Scholar 

  • Arne D, Worley B, Wilson C, Chen S F, Foster D, Luo Z L, Liu S G, Dirks P. 1997. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau. Tectonophysics, 280: 239–256

    Article  Google Scholar 

  • Burchfiel B C, Chen Z, Liu Y, Royden L H. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. Int Geol Rev, 37: 661–735

    Article  Google Scholar 

  • Burov E B, Diament M. 1995. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J Geophys Res, 100: 3905–3927

    Article  Google Scholar 

  • Chang Y, Xu C H, Reiners P W. 2010. The exhumation evolution of the Micang Shan-Hannan uplift since Cretaceous: Evidence from apatite (U-Th)/He dating. Acta Geophys Sin, 53: 912–919

    Google Scholar 

  • Chen B, Chen C, Kaban M K, Du J, Liang Q, Thomas M. 2013. Variations of the effective elastic thickness over China and surroundings and their relation to the lithosphere dynamics. Earth Planet Sci Lett, 363: 61–72

    Article  Google Scholar 

  • Chen H, Hu J, Wu G, Shi W, Geng Y, Qu H. 2015. Apatite fission-track thermochronological constraints on the pattern of late Mesozoic-Cenozoic uplift and exhumation of the Qinling Orogen, central China. J Asian Earth Sci, 114: 649–673

    Article  Google Scholar 

  • Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28: 703

    Article  Google Scholar 

  • Curry M E, van der Beek P, Huismans R S, Wolf S G, Muñoz J A. 2019. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth Planet Sci Lett, 515: 26–37

    Article  Google Scholar 

  • Dong S W, Gao R, Yin A, Guo T L, Zhang Y Q, Hu J M, Li J H, Shi W, Li Q S. 2013. What drove continued continent-continent convergence after ocean closure? Insights from high-resolution seismic-reflection profiling across the Daba Shan in central China. Geology, 41: 671–674

    Article  Google Scholar 

  • Dong S W, Shi W, Zhang Y Q, Hu J M, Zhang Z Y, Li J H, Wu H L, Tian M, Chen, H. 2010. The tectonic stress field in the Dabashan orogen resulting from Late Mesozoic intra-continental orogeny (in Chinese). Acta Geosci Sin, 31: 769–780

    Google Scholar 

  • Dong Y P, Zhou M F, Zhang G W, Zhou D W, Liu L, Zhang Q. 2008. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: Implications for the tectonic evolution of the Qinling orogenic belt. J Asian Earth Sci, 32: 325–335

    Article  Google Scholar 

  • England P, Molnar P. 1990. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18: 1173

    Article  Google Scholar 

  • Enkelmann E, Ratschbacher L, Jonckheere R, Nestler R, Fleischer M, Gloaguen R, Hacker B R, Zhang Y Q, Ma Y S. 2006. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin? Geol Soc Am Bull, 118: 651–671

    Article  Google Scholar 

  • Gao M, Fan M, Moucha R. 2016. Southwestward weakening of Wyoming lithosphere during the Laramide orogeny. J Geophys Res-Solid Earth, 121: 6219–6234

    Article  Google Scholar 

  • Gilder S, Courtillot V. 1997. Timing of the north-South China collision from new middle to late Mesozoic paleomagnetic data from the North China Block. J Geophys Res, 102: 17713–17727

    Article  Google Scholar 

  • Godard V, Pik R, Lavé J, Cattin R, Tibari B, de Sigoyer J, Pubellier M, Zhu J. 2009. Late Cenozoic evolution of the central Longmen Shan, eastern Tibet: Insight from (U-Th)/He thermochronometry. Tectonics, 28: TC5009

    Article  Google Scholar 

  • Guo Z W, Deng K L, Han Y H. 1996. The Formation and Development of Sichuan Basin. Beijing: Geological Publishing House. 200

    Google Scholar 

  • Hao M, Li Y, Wang Q, Zhuang W, Qu W. 2021. Present-day crustal deformation within the western Qinling Mountains and its kinematic implications. Surv Geophys, 42: 1–19

    Article  Google Scholar 

  • Harrison T M, Copeland P, Kidd W S F, Yin A N. 1992. Raising tibet. Science, 255: 1663–1670

    Article  Google Scholar 

  • Hetényi M, Hetbenyi M I. 1946. Beams on Elastic Foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering. Ann Arbor MI: University of Michigan Press

    Google Scholar 

  • Hu F, Ducea M N, Liu S, Chapman J B. 2017. Quantifying crustal thickness in continental collisional belts: Global perspective and a geologic application. Sci Rep, 7: 7058

    Article  Google Scholar 

  • Hu J, Chen H, Qu H, Wu G, Yang J, Zhang Z. 2012. Mesozoic deformations of the Dabashan in the southern Qinling orogen, central China. J Asian Earth Sci, 47: 171–184

    Article  Google Scholar 

  • Hu S, Raza A, Min K, Kohn B P, Reiners P W, Ketcham R A, Wang J, Gleadow A J W. 2006. Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the north China craton through the Qinling orogen into the Yangtze craton, central China. Tectonics, 25: TC6009

    Article  Google Scholar 

  • Huang K, Opdyke N D. 1991. Paleomagnetism of Jurassic rocks from southwestern Sichuan and the timing of the closure of the Qinling Suture. Tectonophysics, 200: 299–316

    Article  Google Scholar 

  • Jiang X, Jin Y. 2005. Mapping the deep lithospheric structure beneath the eastern margin of the Tibetan Plateau from gravity anomalies. J Geophys Res, 110: B07407

    Google Scholar 

  • Li J, Zhang Y, Dong S, Shi W, Li H. 2010. Apatite fission track thermochronologic constraint on Late Mesozoic uplifting of the Fenghuangshan basement uplift (in Chinese). Chin J Geol, 45: 969–986

    Google Scholar 

  • Jordan T E. 1981. Thrust loads and foreland basin evolution, Cretaceous, Western United States. AAPG Bull, 65: 2506–2520

    Google Scholar 

  • Kirby E, Reiners P W, Krol M A, Whipple K X, Hodges K V, Farley K A, Tang W, Chen Z. 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics, 21: 1–1–1–20

    Article  Google Scholar 

  • Li J, Dong S, Yin A, Zhang Y, Shi W. 2015. Mesozoic tectonic evolution of the Daba Shan Thrust Belt in the southern Qinling orogen, central China: Constraints from surface geology and reflection seismology. Tectonics, 34: 1545–1575

    Article  Google Scholar 

  • Li Y D, Zheng Y, Xiong X, Hu X Y. 2013. Lithospheric effective elastic thickness and its anisotropy in the northeast Qinghai-Tibet plateau (in Chinese). Chin J Geophys 56: 1132–1145

    Google Scholar 

  • Li Y, Allen P A, Densmore A L, Xu Q. 2003. Evolution of the Longmen Shan foreland basin (western Sichuan China) during the Late Triassic Indosinian orogeny. Basin Res, 15: 117–138

    Article  Google Scholar 

  • Li Y, He D, Li D, Wen Z, Mei Q, Li C, Sun Y. 2016. Detrital zircon U-Pb geochronology and provenance of Lower Cretaceous sediments: Constraints for the northwestern Sichuan pro-foreland basin. Palaeogeogr Palaeoclimatol Palaeoecol, 453: 52–72

    Article  Google Scholar 

  • Li Z W. 2006. Meso-Cenozoic evolution of Dabashan foreland basin—Thrust belt, central China. Dissertation for Doctoral Degree. Chengdu: Chengdu University of Technology. 1–246

    Google Scholar 

  • Liu J, Zhang P, Lease R O, Zheng D, Wan J, Wang W, Zhang H. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584: 281–296

    Article  Google Scholar 

  • Liu S, Nummedal D, Gurnis M. 2014. Dynamic versus flexural controls of Late Cretaceous Western Interior Basin, USA. Earth Planet Sci Lett, 389: 221–229

    Article  Google Scholar 

  • Liu S, Steel R, Zhang G. 2005. Mesozoic sedimentary basin development and tectonic implication, northern Yangtze Block, eastern China: Record of continent-continent collision. J Asian Earth Sci, 25: 9–27

    Article  Google Scholar 

  • Liu S, Yang Y, Deng B, Zhong Y, Wen L, Sun W, Li Z, Jansa L, Li J, Song J, Zhang X, Peng H. 2021. Tectonic evolution of the Sichuan Basin, Southwest China. Earth-Sci Rev, 213: 103470

    Article  Google Scholar 

  • Mao X, Wang Q, Liu S, Xu M, Wang L. 2012. Effective elastic thickness and mechanical anisotropy of South China and surrounding regions. Tectonophysics, 550–553: 47–56

    Article  Google Scholar 

  • Mattauer M, Matte P, Malavieille J, Tapponnier P, Maluski H, Qin X Z, Lun L Y, Qin T Y. 1985. Tectonics of the Qinling belt: Build-up and evolution of eastern Asia. Nature, 317: 496–500

    Article  Google Scholar 

  • Meng Q R, Wang E, Hu J M. 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block. Geol Soc Am Bull, 117: 396–410

    Article  Google Scholar 

  • Meng Q R, Zhang G W. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27: 123–126

    Article  Google Scholar 

  • Meng Q R. 2017. Origin of the Qinling Mountains (in Chinese). Sci China Earth Sci, 47: 412–420

    Google Scholar 

  • Li Q, Gao R, Wang H, Zhang J, Li P, Lu Z, Guan Y, Hou H. 2011. Lithospsheric structure of northeastern Sichuan-Dabashan basin-range system and top-deep deformation coupling (in Chinese). Acta Petrol Sin, 27: 612–620

    Google Scholar 

  • Ratschbacher L, Hacker B R, Calvert A, Webb L E, Grimmer J C, McWilliams M O, Ireland T, Dong S, Hu J. 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366: 1–53

    Article  Google Scholar 

  • Richardson N J, Densmore A L, Seward D, Fowler A, Wipf M, Ellis M A, Yong L, Zhang Y. 2008. Extraordinary denudation in the Sichuan Basin: Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. J Geophys Res, 113: B04409

    Google Scholar 

  • Royden L H, Burchfiel B C, King R W, Wang E, Chen Z, Shen F, Liu Y. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276: 788–790

    Article  Google Scholar 

  • Saylor J E, Rudolph K W, Sundell K E, van Wijk J. 2020. Laramide orogenesis driven by Late Cretaceous weakening of the North American lithosphere. J Geophys Res-Solid Earth, 125: e2020JB019570

    Article  Google Scholar 

  • Sclater J G, Christie P A F. 1980. Continental stretching: An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea Basin. J Geophys Res, 85: 3711–3739

    Article  Google Scholar 

  • Shi W, Zhang Y, Dong S, Hu J, Wiesinger M, Ratschbacher L, Jonckheere R, Li J, Tian M, Chen H, Wu G, Ma L, Li H. 2012. Intra-continental Dabashan orocline, southwestern Qinling, Central China. J Asian Earth Sci, 46: 20–38

    Article  Google Scholar 

  • Shen C, Mei L, Xu Z, Tang J, Tian P. 2007. Fission track thermochronology evidence for Mesozoic-Cenozoic uplifting of Daba Mountain, central China (in Chinese). Acta Petrol Sin, 23: 2901–2910

    Google Scholar 

  • Shen Z K, Lü J, Wang M, Bürgmann R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J Geophys Res, 110: B11409

    Google Scholar 

  • Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G, Jingsui Y. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671–1677

    Article  Google Scholar 

  • Tian Y T, Zhu C Q, Xu M, Rao S, Hu S B. 2010. Exhumation history of the Micangshan-Hannan Dome since Cretaceous and its tectonic significance: Evidences from apatite fission track analysis (in Chinese). Chin J Geophys, 53: 920–930

    Google Scholar 

  • Tian Y, Kohn B P, Zhu C, Xu M, Hu S, Gleadow A J W. 2012. Post-orogenic evolution of the Mesozoic Micang Shan Foreland Basin system, central China. Basin Res, 24: 70–90

    Article  Google Scholar 

  • Turcotte D L, Schubert G. 2014. Geodynamics. Cambridge: Cambridge University Press. 133–161

    Book  Google Scholar 

  • Wang B, Zheng H B, Wang P, He Z. 2013. The Cenozoic strata and depositional evolution of Weihe Basin: Progresses and problems (in Chinese). Advn Earth Sci, 28: 1126–1135

    Google Scholar 

  • Wang E, Meng Q, Clark Burchfiel B, Zhang G. 2003. Mesozoic large-scale lateral extrusion, rotation, and uplift of the Tongbai-Dabie Shan belt in east China. Geology, 31: 307–310

    Article  Google Scholar 

  • Wang M, Hubbard J, Plesch A, Shaw J H, Wang L. 2016. Three-dimensional seismic velocity structure in the Sichuan basin, China. J Geophys Res-Solid Earth, 121: 1007–1022

    Article  Google Scholar 

  • Watts A B, Burov E B. 2003. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth Planet Sci Lett, 213: 113–131

    Article  Google Scholar 

  • Watts A B. 2001. Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press

    Google Scholar 

  • Xie Y, Li Y, Xiong X. 2020. Dynamic mechanisms controlling the topography of Longmenshan Area. Sci China Earth Sci, 63: 121–131

    Article  Google Scholar 

  • Xu C H, Zhou Z Y, Chang Y, Guillot F. 2010. Genesis of Daba arcuate structural belt related to adjacent basement upheavals: Constraints from fission-track and (U-Th)/He thermochronology. Sci China Earth Sci, 53: 1634–1646

    Article  Google Scholar 

  • Yang Z, Ratschbacher L, Jonckheere R, Enkelmann E, Dong Y, Shen C, Wiesinger M, Zhang Q. 2013. Late-stage foreland growth of China’s largest orogens (Qinling, Tibet): Evidence from the Hannan-Micang crystalline massifs and the northern Sichuan Basin, central China. Lithosphere, 5: 420–437

    Article  Google Scholar 

  • Yang Z, Shen C, Ratschbacher L, Enkelmann E, Jonckheere R, Wauschkuhn B, Dong Y. 2017. Sichuan Basin and beyond: Eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan. J Geophys Res-Solid Earth, 122: 4712–4740

    Article  Google Scholar 

  • Yin G, Lu Y, Zhao H, Li W, Li L, Guo S. 2001. The tectonic uplift of the Hua Shan in the Cenozoic. Chin Sci Bull, 46: 1665–1668

    Article  Google Scholar 

  • Yuan W, Dong J, Shicheng W, Carter A. 2006. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China. J Asian Earth Sci, 27: 847–856

    Article  Google Scholar 

  • Zhang G, Meng Q, Yu Z, Yu Z P, Sun Y, Zhou D, Guo A L. 1996. Orogenesis and dynamics of the Qinling orogeny. Sci China Ser D-Earth Sci, 39: 225–234

    Google Scholar 

  • Zhang G, Zhang B, Yuan X, Xiao Q. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press. 1–855

    Google Scholar 

  • Zhang K J. 1997. North and South China collision along the eastern and southern North China margins. Tectonophysics, 270: 145–156

    Article  Google Scholar 

  • Zhang P Z, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P, Wang Q, Niu Z, Sun J, Wu J, Sun H, You X. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32: 809–812

    Article  Google Scholar 

  • Zhao X, Coe R S. 1987. Palaeomagnetic constraints on the collision and rotation of North and South China. Nature, 327: 141–144

    Article  Google Scholar 

  • Zheng D, Zhang P Z, Wan J, Yuan D, Li C, Yin G, Zhang G, Wang Z, Min W, Chen J. 2006. Rapid exhumation at ∼8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planet Sci Lett, 248: 198–208

    Article  Google Scholar 

Download references

Acknowledgements

We thank the responsible editor and two anonymous reviewers for their thorough reviews, insightful comments and constructive suggestions that lead to a substantial revision and great improvement of the manuscript. Most figures were prepared with GMT. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41731072, 41574095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xiong, X. & Feng, Y. Mesozoic uplift of the Dabashan and Micangshan-Hannan Dome in the South Qinling orogenic belt. Sci. China Earth Sci. 65, 426–436 (2022). https://doi.org/10.1007/s11430-021-9863-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9863-6

Keywords

Navigation