Skip to main content
Log in

Co-evolution of paleo-environment and bio-precursors in a Permian alkaline lake, Mahu mega-oil province, Junggar Basin: Implications for oil sources

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The co-evolution of paleo-environment and bio-precursors in alkaline lakes is of significance to understand the extreme environment system and associated enigmatic hydrocarbon potential. Here we used organic petrology and biomarker geochemistry to investigate the bio-precursors in a Permian alkaline paleo-lake in the Mahu mega-oil province within about a hundred miles of the Mahu Sag, Junggar Basin, China, and its effect on oil generation and accumulation. In general, the bio-precursors in the alkaline lacustrine source rocks of the Fengcheng Formation were mainly bacteria and algae, with a low abundance of higher plants. Therefore, these source rocks were mainly prone to oil generation. Two distinctive hydrocarbon-generating bio-precursors—Dunaliella-like algae and cyanobacteria—were identified. In addition to fossil evidence for these bio-precursors, the former results in a high C28/C29 sterane ratio and β-carotane abundance, and the latter results in the formation of medium-chain monomethyl alkanes in terms of biomarkers. The nature of the bio-precursors varied with the sedimentary paleo-environment, and was controlled by the salinity and stratification of the lake. Dunaliella-type source rocks were deposited in the central area of the alkaline lake, and cyanobacteria-type source rocks were formed around the lake margins. The crude oils in different parts of the Mahu mega-oil province within about a hundred miles have different sources. The bio-precursors in the saline lacustrine source rocks were jointly controlled by the age and water salinity of the source rocks. The physiological synthesis of carotenoids and sterols by haloalkaliphilic green algae may have affected the evolution of ancient green algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-Amotz A, Polle J E W, Subba, Rao D V. 2009. The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology. Enfield: Science Publishers. 555

    Book  Google Scholar 

  • Bobrovskiy I, Hope J M, Golubkova E, Brocks J J. 2020. Food sources for the Ediacara biota communities. Nat Commun, 11: 9–14

    Article  Google Scholar 

  • Borowitzka M A, Borowitzka L J, Kessly D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J Appl Phycol, 2: 111–119

    Article  Google Scholar 

  • Brocks J J, Jarrett A J M, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T. 2017. The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548: 578–581

    Article  Google Scholar 

  • Cao J, Lei D W, Li Y W, Tang Y, Abulimit, Chang Q S, Wang T T. 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin (in Chinese). Acta Petrol Sin, 36: 781–790

    Google Scholar 

  • Cao J, Xia L, Wang T, Zhi D, Tang Y, Li W. 2020. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth-Sci Rev, 202: 103091

    Article  Google Scholar 

  • Cao J, Zhang Y, Hu W, Yao S, Wang X, Zhang Y, Tang Y. 2005. The Permian hybrid petroleum system in the northwest margin of the Junggar Basin, northwest China. Mar Pet Geol, 22: 331–349

    Article  Google Scholar 

  • Collister J W, Summons R E, Lichtfouse E, Hayes J M. 1992. An isotopic biogeochemical study of the Green River oil shale. Org Geochem, 19: 265–276

    Article  Google Scholar 

  • Damsté J S S, Muyzer G, Abbas B, Rampen S W, Masse G, Allard W G, Belt S T, Robert J M, Rowland S J, Moldowan J M, Barbanti S M, Fago F J, Denisevich P, Dahl J, Trindade L A F, Schouten S. 2004. The rise of the rhizosolenid diatoms. Science, 304: 584–587

    Article  Google Scholar 

  • Didyk B M, Simoneit B R T, Brassell S C, Eglinton G. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272: 216–222

    Article  Google Scholar 

  • Ding W, Hou D, Jiang L, Jiang Y, Wu P. 2020. High abundance of carotanes in the brackish-saline lacustrine sediments: A possible cyanobacteria source? Int J Coal Geol, 219: 103373

    Article  Google Scholar 

  • Francavilla M, Kamaterou P, Intini S, Monteleone M, Zabaniotou A. 2015. Cascading microalgae biorefinery: Fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Res, 11: 184–193

    Article  Google Scholar 

  • Francavilla M, Trotta P, Luque R. 2010. Phytosterols from Dunaliella tertiolecta and Dunaliella salina: A potentially novel industrial application. Bioresource Tech, 101: 4144–4150

    Article  Google Scholar 

  • French K L, Birdwell J E, Vanden Berg M D. 2020. Biomarker similarities between the saline lacustrine Eocene Green River and the Paleoproterozoic Barney Creek Formations. Geochim Cosmochim Acta, 274: 228–245

    Article  Google Scholar 

  • GB/T 8899-2013. 2013. Determination of maceral group composition and minerals in coal (in Chinese). PCR National Standard

  • Grantham P J, Wakefield L L. 1988. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Org Geochem, 12: 61–73

    Article  Google Scholar 

  • Horsfield B, Curry D J, Bohacs K, Littke R, Rullkötter J, Schenk H J, Radke M, Schaefer R G, Carroll A R, Isaksen G, Witte E G. 1994. Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River Formation of the Washakie Basin, Wyoming, U.S.A. Org Geochem, 22: 415–440

    Article  Google Scholar 

  • Hosseini Tafreshi A, Shariati M. 2009. Dunaliella biotechnology: Methods and applications. J Appl MicroBiol, 107: 14–35

    Article  Google Scholar 

  • Huang B J, Wang Z F, Liang G. 2014. Natural gas source and migration-accumulation pattern in the central canyon, the deep water area, Qiongdongnan basin (in Chinese). China Offshore Oil Gas, 26: 8–13

    Google Scholar 

  • Huang W Y, Meinschein W G. 1979. Sterols as ecological indicators. Geochim Cosmochim Acta, 43: 739–745

    Article  Google Scholar 

  • Janouškovec J, Gavelis G S, Burki F, Dinh D, Bachvaroff T R, Gornik S G, Bright K J, Imanian B, Strom S L, Delwiche C F, Waller R F, Fensome R A, Leander B S, Rohwer F L, Saldarriaga J F. 2017. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci USA, 114: E171–E180

    Article  Google Scholar 

  • Jiang Z S, Fowler M G. 1986. Carotenoid-derived alkanes in oils from northwestern China. Org Geochem, 10: 831–839

    Article  Google Scholar 

  • Kelly A E, Love G D, Zumberge J E, Summons R E. 2011. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia. Org Geochem, 42: 640–654

    Article  Google Scholar 

  • Kodner R B, Pearson A, Summons R E, Knoll A H. 2008. Sterols in red and green algae: Quantification, phylogeny, and relevance for the interpretation of geologic steranes. Geobiology, 6: 411–420

    Article  Google Scholar 

  • Kuang L C, Tang Y, Lei D W, Chang Q S, Ouyang M, Hou L H, Liu D G. 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China (in Chinese). Pet Explor Develop, 39: 657–667

    Article  Google Scholar 

  • Lei D W, Chen G Q, Liu H L, Li X, Abulimit, Tao K Y, Cao J. 2017. Study on the forming conditions and exploration fields of the Mahu Giant Oil (Gas) Province, Junggar Basin (in Chinese). Acta Geol Sin, 91: 1604–1619

    Google Scholar 

  • Lim B L, Kawai H, Hori H, Osawa S. 1986. Molecular evolution of 5S ribosomal RNA from red and brown algae.. Jpn J Genet, 61: 169–176

    Article  Google Scholar 

  • Liu D G, Zhou L, Li S H, Ma W Y, Guo W J. 2020. Characteristics of source rocks and hydrocarbon generation models of Fengcheng formation in Mahu depression (in Chinese). Acta Sedimentol Sin, 38: 946–955

    Google Scholar 

  • Luo G, Hallmann C, Xie S, Ruan X, Summons R E. 2015. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation. Geochim Cosmochim Acta, 151: 150–167

    Article  Google Scholar 

  • McKirdy D M, Aldridge A K, Ypma P J M. 1983. A geochemical comparison of some crude oils from pre-Ordovician carbonate rocks. In: Bjoroy M, ed. Advances in Organic Geochemistry 1981. Chichester: Wiley. 99–107

    Google Scholar 

  • McKirdy D M, Kantsler A J, Emmett J K, Aldridge A K. 1984. Hydrocarbon genesis and organic facies in Cambrian carbonates of the Eastern Officer Basin, South Australia. In: Palacas J G, ed. Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks. Tulsa: American Association of Petroleum Geologists. 13–32

    Google Scholar 

  • Minowa T, Yokoyama S, Kishimoto M, Okakura T. 1995. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel, 74: 1735–1738

    Article  Google Scholar 

  • Moldowan J M, Seifert W K, Gallegos E J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bull, 69: 1255–1268 doi{https://doi.org/10.3389/fmars.2019.00049}.

    Google Scholar 

  • Müller M N. 2019. On the genesis and function of coccolithophore calcification. Front Mar Sci, 6: 1–5

    Article  Google Scholar 

  • Murphy S M T J, McCormick A, Eglinton G. 1967. Perhydro-β-carotene in the Green River Shale. Science, 157: 1040–1042

    Article  Google Scholar 

  • Pehr K, Love G D, Kuznetsov A, Podkovyrov V, Junium C K, Shumlyanskyy L, Sokur T, Bekker A. 2018. Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica. Nat Commun, 9: 1

    Article  Google Scholar 

  • Peters K E, Cassa M R. 1994. Applied source rock geochemistry. In: Magoon L B, Dow W G, eds. The Petroleum System from Source to Trap: American Association of Petroleum Geologists Memoir 60. Tulsa: American Association of Petroleum Geologists. 99–117

    Google Scholar 

  • Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide. 2nd ed. Cambridge: Cambridge University Press. 700

    Google Scholar 

  • Rohrssen M, Love G D, Fischer W, Finnegan S, Fike D A. 2013. Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnantian glaciation. Geology, 41: 127–130

    Article  Google Scholar 

  • Ruble T E, Lewan M D, Paul Philp R. 2003. New insights on the Green River petroleum system in the Uinta basin from hydrous-pyrolysis experiments: Reply. AAPG Bull, 87: 1535–1541

    Article  Google Scholar 

  • Schwark L, Empt P. 2006. Sterane biomarkers as indicators of palaeozoic algal evolution and extinction events. Palaeogeogr Palaeoclimatol Palaeoecol, 240: 225–236

    Article  Google Scholar 

  • Shang X, Moczydlowska M, Liu P, Liu L. 2018. Organic composition and diagenetic mineralization of microfossils in the Ediacaran Doushantuo chert nodule by Raman and petrographic analyses. Precambrian Res, 314: 145–159

    Article  Google Scholar 

  • Shanmugam G. 1985. Significance of Coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland basin, Australia. AAPG Bull, 69: 1241–1254

    Google Scholar 

  • Shiea J, Brassell S C, Ward D M. 1990. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments?. Org Geochem, 15: 223–231

    Article  Google Scholar 

  • Shu Y C, Hu G, Pang Q, Hu C W, Xia Q S, Tan X C. 2021. Characteristics of source rocks of salt lake facies in Qaidam Basin:taking upper member of Xiaganchaigou Formation in Yingxi region as an example (in Chinese). Fault-Block Oil Gas Field, 28: 179–186

    Google Scholar 

  • Tang Y, Cao J, He W J, Shan X, Liu Y, Zhao K B. 2021. Development tendency of geological theory of total petroleum system: insights from the discovery of Mahu Large Oil Province (in Chinese). Xinjiang Pet Geol, 42: 1–9

    Google Scholar 

  • Tao K, Cao J, Chen X, Nueraili Z, Hu W, Shi C. 2019. Deep hydrocarbons in the northwestern Junggar Basin (NW China): Geochemistry, origin, and implications for the oil vs. gas generation potential of post-mature saline lacustrine source rocks. Mar Pet Geol, 109: 623–640

    Article  Google Scholar 

  • ten Haven H L, de Leeuw J W, Sinninghe Damste J S, Schenck P A, Palmer S E, Zumberge J E. 1988. Application of biological markers in the recognition of palaeohypersaline environments. Geol Soc Lond Spec Publ, 40: 123–130

    Article  Google Scholar 

  • Volkman J K. 2003. Sterols in microorganisms. Appl Microbiol Biotechnol, 60: 495–506

    Article  Google Scholar 

  • Wang F Y, Bian L Z, Zhang S C, Zhang B M, Liang D G. 2001. Two types of hydrocarbon-generating bio-precursors in the Ordovician marine source rocks in the Tarim Basin (in Chinese). Sci China Ser D-Earth Sci, 31: 96–102

    Google Scholar 

  • Wang X J, Wang T T, Cao J. 2018. Basic Characteristics and highly efficient hydrocarbon generation of alkaline-lacustrine source rocks in Fengcheng Formation of Mahu Sag (in Chinese). Xinjiang Pet Geol, 37: 9–15

    Google Scholar 

  • Wang X L, Kang S F. 1999. Analysis of crude origin in hinterland and slope of northwestern margin, Junggar Basin (in Chinese). Xinjiang Pet Geol, 20: 108–112

    Google Scholar 

  • Warren J K. 2016. Halotolerant life in feast or famine: Organic sources of hydrocarbons and fixers of metals. In: Hardie L A, Lowenstein T K, eds. Evaporites. Cham: Springer International Publishing. 833–958

    Google Scholar 

  • Wei W Y, Qu R T, Yang X T, Chen S W, Zhao D J, Qiu K Q, Yao Y Q. 2020. Micropaleontological sequence from the Shahejie Formation of the Kl16-1 block in the Bohai Bay and its significance (in Chinese). Acta Micropalaeontol Sin, 37: 328–338

    Google Scholar 

  • Xia L, Cao J, Hu W, Zhi D, Tang Y, Li E, He W. 2021a. Coupling of paleoenvironment and biogeochemistry of deep-time alkaline lakes: A lipid biomarker perspective. Earth-Sci Rev, 213: 103499

    Article  Google Scholar 

  • Xia L, Cao J, Lee C, Stüeken E E, Zhi D, Love G D. 2021b. A new constraint on the antiquity of ancient haloalkaliphilic green algae that flourished in a ca. 300 Ma Paleozoic lake. Geobiology, 19: 147–161

    Article  Google Scholar 

  • Xia L, Cao J, Stüeken E E, Zhi D, Wang T, Li W. 2020. Unsynchronized evolution of salinity and pH of a Permian alkaline lake influenced by hydrothermal fluids: A multi-proxy geochemical study. Chem Geol, 541: 119581

    Article  Google Scholar 

  • Xu L, Chang Q S, Feng L L, Zhang N, Liu H. 2019. The reservoir characteristics and control factors of shale oil in Permian Fengcheng formation of Mahu sag, Junggar Basin (in Chinese). China Petrol Explor, 24: 649–660

    Google Scholar 

  • Yang H B, Chen L, Kong Y H. 2004. A novel classification of structural units in Junggar Basin (in Chinese). Xinjiang Pet Geol, 25: 686–688

    Google Scholar 

  • Zelazny A M, Shaish A, Pick U. 1995. Plasma membrane sterols are essential for sensing osmotic changes in the halotolerant alga Dunaliella. Plant Physiol, 109: 1395–1403

    Article  Google Scholar 

  • Zhang Y X, Xu C. 2019. Characteristics and generation potential of Paleogene hydrocarbon organisms in the Dongpu Sag (in Chinese). Geol J China Univ, 25: 813–822

    Google Scholar 

  • Zhang Y Y, Li W, Tang W B. 2018. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu Sag (in Chinese). Xinjiang Pet Geol, 39: 48–54

    Google Scholar 

  • Zhi D M, Cao J, Xiang B L, Qin Z J, Wang T T. 2016. Fengcheng alkaline lacustrine source rocks of Lower Permian in Mahu Sag in Junggar Basin: Hydrocarbon generation mechanism and petroleum resources reestimation (in Chinese). Xinjiang Pet Geol, 37: 499–506

    Google Scholar 

  • Zhi D M, Tang Y, He W J, Guo X G, Zheng M L, Huang L L. 2021. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar Basin (in Chinese). Petrol Explor Dev, 48: 38–51

    Article  Google Scholar 

  • Zhu H C, Ouyang S, Zhan J Z, Wang Z. 2005. Comparison of Permian palynological assemblages from the Junggar and Tarim Basins and their phytoprovincial significance. Rev Palaeobot Palynol, 136: 181–207

    Article  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their insightful comments in improving our manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 41830425) and a PetroChina Major Science and Technology Project (Grant No. 2019E-2602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Cao, J., Bian, L. et al. Co-evolution of paleo-environment and bio-precursors in a Permian alkaline lake, Mahu mega-oil province, Junggar Basin: Implications for oil sources. Sci. China Earth Sci. 65, 462–476 (2022). https://doi.org/10.1007/s11430-021-9861-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9861-4

Keywords

Navigation