Skip to main content
Log in

The role of earthquake-induced landslides in erosion and weathering from active mountain ranges: Progress and perspectives

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Earthquakes play a fundamental role in the evolution of Earth’s topography through co-seismic uplift and subsidence, as well as erosion through widespread landslides induced by ground motion. Earthquake-induced landslides can result in exceptional increases in the transfer of mass from landscapes, supplying sediment to rivers where impacts can last for decades or longer. Landslides can also erode vegetation and soils, in addition to exposing freshly ground rock mass, which can both result in regionally significant carbon transfers. Recent work has sought to quantify the fluxes, rates, and temporal patterns of the impacts on earth surface processes generated by these tectonic events. In this review, we focus on the impacts of earthquake-induced landslides on erosion and sediment flux, river water chemistry, and carbon export through the lens of the well-studied 2008 Wenchuan earthquake. We then discuss these themes in the context of works from the 1999 Taiwan Chi-Chi earthquake, 2015 Nepalese Gorkha earthquake, and New Zealand historical earthquakes, altogether highlighting an important role of earthquake-induced landslides in erosion and weathering along tectonically active mountain ranges. We suggest that more monitoring, geochemical tracing, paleo-records, and/or modelling studies are needed to compare the processes and fluxes of catchment erosion and weathering before and after earthquake events, which will help to deepen our understanding not only of the impacts of earthquake-induced landslides on earth surface processes, but also the linkage among high magnitude events, continental erosion and weathering, and the long-term global carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avouac J P. 2007. Dynamic processes in extensional and compressional settings-mountain building: From earthquakes to geological deformation. In: Watts A B, ed. Crustal and Lithosphere Dynamics. Treatise on Geophysics, 6: 377–439

  • Beaumont C, Fullsack P, Hamilton J. 1992. Erosional control of active compressional orogens. In: McClay K R, ed. Thrust Tectonics. New York: Chapman and Hall. 19–31

    Google Scholar 

  • Berhe A A, Harte J, Harden J W, Torn M S. 2007. The significance of the erosion-induced terrestrial carbon sink. Bioscience, 57: 337–346

    Article  Google Scholar 

  • Bluth G J S, Kump L R. 1994. Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta, 58: 2341–2359

    Article  Google Scholar 

  • Brantley S L, Holleran M E, Jin L, Bazilevskaya E. 2013. Probing deep weathering in the Shale Hills Critical Zone Observatory, Pennsylvania (USA): The hypothesis of nested chemical reaction fronts in the subsurface. Earth Surf Process Landforms, 38: 1280–1298

    Article  Google Scholar 

  • Calmels D, Galy A, Hovius N, Bickle M J, West A J, Chen M C, Chapman H. 2011. Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth Planet Sci Lett, 303: 48–58

    Article  Google Scholar 

  • Champagnac J D, Molnar P, Anderson R S, Sue C, Delacou B. 2007. Quaternary erosion-induced isostatic rebound in the western Alps. Geology, 35: 195–198

    Article  Google Scholar 

  • Chen W S, Chen Y G, Chang H C, Lee Y H, Lee J C. 2001. Palaeoseismic study of the Chelungpu fault in the Wanfung area. Western Pacific Earth Sci, 1: 499–506

    Google Scholar 

  • Chen R F, Chan Y C, Angelier J, Hu J C, Huang C, Chang K J, Shih T Y. 2005. Large earthquake-triggered landslides and mountain belt erosion: The Tsaoling case, Taiwan. Comptes Rendus Geosci, 337: 1164–1172

    Article  Google Scholar 

  • Chen H, Wu N, Yuan X, Gao Y, Zhu D. 2009. Aftermath of the Wenchuan earthquake. Front Ecol Environ, 7: 72

    Article  Google Scholar 

  • Chigira M, Yagi H. 2006. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan. Eng Geol, 82: 202–221

    Article  Google Scholar 

  • Chigira M, Wu X, Inokuchi T, Wang G. 2010. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology, 118: 225–238

    Article  Google Scholar 

  • Cook K L, Andermann C, Gimbert F, Adhikari B R, Hovius N. 2018. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science, 362: 53–57

    Article  Google Scholar 

  • Croissant T, Lague D, Steer P, Davy P. 2017. Rapid post-seismic landslide evacuation boosted by dynamic river width. Nat Geosci, 10: 680–684

    Article  Google Scholar 

  • Croissant T, Steer P, Lague D, Davy P, Jeandet L, Hilton R G. 2019. Seismic cycles, earthquakes, landslides and sediment fluxes: Linking tectonics to surface processes using a reduced-complexity model. Geomorphology, 339: 87–103

    Article  Google Scholar 

  • Dadson S J, Hovius N, Chen H, Dade W B, Hsieh M L, Willett S D, Hu J C, Horng M J, Chen M C, Stark C P, Lague D, Lin J C. 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426: 648–651

    Article  Google Scholar 

  • Dadson S J, Hovius N, Chen H, Dade W B, Lin J C, Hsu M L, Lin C W, Horng M J, Chen T C, Milliman J, Stark C P. 2004. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32: 733–736

    Article  Google Scholar 

  • Dahlquist M P, West A J. 2019. Initiation and runout of post-seismic debris flows: Insights from the 2015 Gorkha Earthquake. Geophys Res Lett, 46: 9658–9668

    Article  Google Scholar 

  • Dahlquist M P, West A J, Li G. 2018. Landslide-driven drainage divide migration. Geology, 46: 403–406

    Article  Google Scholar 

  • Densmore A L, Hetzel R, Ivy-Ochs S, Krugh W C, Dawers N, Kubik P. 2009. Spatial variations in catchment-averaged denudation rates from normal fault footwalls. Geology, 37: 1139–1142

    Article  Google Scholar 

  • DePaolo D J, Maher K, Christensen J N, McManus J. 2006. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984. Earth Planet Sci Lett, 248: 394–410

    Article  Google Scholar 

  • Ding H, Li Y, Ni S, Ma G, Shi Z, Zhao G, Yan L, Yan Z. 2014. Increased sediment discharge driven by heavy rainfall after Wenchuan earthquake: A case study in the upper reaches of the Min River, Sichuan, China. Quat Int, 333: 122–129

    Article  Google Scholar 

  • Egholm D L, Knudsen M F, Sandiford M. 2013. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. Nature, 498: 475–478

    Article  Google Scholar 

  • Emberson R, Hovius N, Galy A, Marc O. 2016. Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding. Nat Geosci, 9: 42–45

    Article  Google Scholar 

  • Emberson R, Galy A, Hovius N. 2018. Weathering of reactive mineral phases in landslides acts as a source of carbon dioxide in mountain belts. J Geophys Res-Earth Surf, 123: 2695–2713

    Article  Google Scholar 

  • Fan X, Domènech G, Scaringi G, Huang R, Xu Q, Hales T C, Dai L, Yang Q, Francis O. 2018. Spatio-temporal evolution of mass wasting after the 2008 Mw7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory. Landslides, 15: 2325–2341

    Article  Google Scholar 

  • Fan J, Jiang H, Shi W, Guo Q, Zhang S, Wei X, Xu H, Zhong N, Huang S, Chang X, Xiao J. 2020. A 450-year lacustrine record of recurrent seismic activities around the Fuyun fault, Altay Mountains, Northwest China. Quat Int, 558: 75–88

    Article  Google Scholar 

  • Fan X, Scaringi G, Korup O, West A J, van Westen C J, Tanyas H, Hovius N, Hales T C, Jibson R W, Allstadt K E, Zhang L, Evans S G, Xu C, Li G, Pei X, Xu Q, Huang R. 2019. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev Geophys, 57: 421–503

    Article  Google Scholar 

  • Ferrier K L, Huppert K L, Perron J T. 2013. Climatic control of bedrock river incision. Nature, 496: 206–209

    Article  Google Scholar 

  • Fleischer R L. 1980. Isotopic disequilibrium of uranium: Alpha-recoil damage and preferential solution effects. Science, 207: 979–981

    Article  Google Scholar 

  • Fleischer R L. 1982. Alpha-recoil damage and solution effects in minerals: Uranium isotopic disequilibrium and radon release. Geochim Cosmochim Acta, 46: 2191–2201

    Article  Google Scholar 

  • France-Lanord C, Derry L A. 1997. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390: 65–67

    Article  Google Scholar 

  • Frith N V, Hilton R G, Howarth J D, Gröcke D R, Fitzsimons S J, Croissant T, Wang J, McClymont E L, Dahl J, Densmore A L. 2018. Carbon export from mountain forests enhanced by earthquake-triggered landslides over millennia. Nat Geosci, 11: 772–776

    Article  Google Scholar 

  • Fukuoka H, Sassa K, Scarascia-Mugnozza G. 1997. Distribution of landslides triggered by the 1995 Hyogo-ken Nanbu Earthquake and long runout mechanism of the Takarazuka Golf Course Landslide. J Phys Earth, 45: 83–90

    Article  Google Scholar 

  • Gallen S F, Clark M K, Godt J W. 2015. Coseismic landslides reveal near-surface rock strength in a high-relief, tectonically active setting. Geology, 43: 11–14

    Article  Google Scholar 

  • Galy V, Peucker-Ehrenbrink B, Eglinton T. 2015. Global carbon export from the terrestrial biosphere controlled by erosion. Nature, 521: 204–207

    Article  Google Scholar 

  • Garwood N C, Janos D P, Brokaw N. 1979. Earthquake-caused landslides: A major disturbance to tropical forests. Science, 205: 997–999

    Article  Google Scholar 

  • Gerrard J, Gardner R A M. 2000. Relationships between rainfall and landsliding in the Middle Hills, Nepal. Norw J Geol, 54: 74–81

    Google Scholar 

  • Godard V, Bourles D L, Spinabella F, Burbank D W, Bookhagen B, Fisher G B, Moulin A, Leanni L. 2014. Dominance of tectonics over climate in Himalayan denudation. Geology, 42: 243–246

    Article  Google Scholar 

  • Gorum T, Fan X, van Westen C J, Huang R Q, Xu Q, Tang C, Wang G. 2011. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology, 133: 152–167

    Article  Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D. 2009. Landslide volumes and landslide mobilization rates in Umbria, Central Italy. Earth Planet Sci Lett, 279: 222–229

    Article  Google Scholar 

  • Harp E L, Jibson R W. 1996. Landslides triggered by the 1994 Northridge, California, earthquake. Bull Seismol Soc Am, 86: S319–S332

    Google Scholar 

  • Hartmann J, Jansen N, Dürr H H, Kempe S, Köhler P. 2009. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? Glob Planet Change, 69: 185–194

    Article  Google Scholar 

  • Hikima K, Koketsu K. 2005. Rupture processes of the 2004 Chuetsu (mid-Niigata prefecture) earthquake, Japan: A series of events in a complex fault system. Geophys Res Lett, 32: L18303

    Article  Google Scholar 

  • Hilton R G, Galy A, Hovius N, Chen M C, Horng M J, Chen H. 2008a. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nat Geosci, 1: 759–762

    Article  Google Scholar 

  • Hilton R G, Galy A, Hovius N. 2008b. Riverine particulate organic carbon from an active mountain belt: Importance of landslides. Glob Biogeochem Cycle, 22: GB1017

    Article  Google Scholar 

  • Hilton R G, Meunier P, Hovius N, Bellingham P J, Galy A. 2011. Landslide impact on organic carbon cycling in a temperate montane forest. Earth Surf Process Landforms, 36: 1670–1679

    Article  Google Scholar 

  • Hilton R G, West A J. 2020. Mountains, erosion and the carbon cycle. Nat Rev Earth Environ, 1: 284–299

    Article  Google Scholar 

  • Hovius N, Meunier P, Lin C W, Chen H, Chen Y G, Dadson S, Horng M J, Lines M. 2011. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet Sci Lett, 304: 347–355

    Article  Google Scholar 

  • Hovius N, Stark C P, Chu H-T, Lin J-C. 2000. Supply and removal of sediment in a landslide-dominated mountain belt: Central range, Taiwan. J Geol, 108: 73–89

    Article  Google Scholar 

  • Howarth J D, Fitzsimons S J, Norris R J, Jacobsen G E. 2012. Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine fault, New Zealand. Geology, 40: 1091–1094

    Article  Google Scholar 

  • Huang M Y F, Montgomery D R. 2012. Fluvial response to rapid episodic erosion by earthquake and typhoons, Tachia River, central Taiwan. Geomorphology, 175–176: 126–138

    Article  Google Scholar 

  • Jacobson A D, Blum J D, Chamberlain C P, Craw D, Koons P O. 2003. Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochim Cosmochim Acta, 67: 29–46

    Article  Google Scholar 

  • Jibson R W, Harp E L, Schulz W, Keefer D K. 2006. Large rock avalanches triggered by the M7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Eng Geol, 83: 144–160

    Article  Google Scholar 

  • Jin Z, Wang J, Li G, Zhang F. 2018. Prolonged impacts of large earthquakes on erosion, weathering and the carbon cycle across the Longmen Shan orogen (in Chinese with English abstract). Quat Sci, 38: 261–272

    Google Scholar 

  • Jin Z, West A J, Zhang F, An Z, Hilton R G, Yu J, Wang J, Li G, Deng L, Wang X. 2016. Seismically enhanced solute fluxes in the Yangtze River headwaters following the A.D. 2008 Wenchuan earthquake. Geology, 44: 47–50

    Article  Google Scholar 

  • Keefer D K. 1984. Landslides caused by earthquakes. Geol Soc Am Bull, 95: 406–421

    Article  Google Scholar 

  • Keefer D K. 1994. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology, 10: 265–284

    Article  Google Scholar 

  • Keefer D K. 2002. Investigating landslides caused by earthquakes—a historical review. Surveys Geophys, 23: 473–510

    Article  Google Scholar 

  • Kigoshi K. 1971. Alpha-recoil thorium-234: Dissolution into water and the uranium-234/uranium-238 disequilibrium in nature. Science, 173: 47–48

    Article  Google Scholar 

  • Koi T, Hotta N, Ishigaki I, Matuzaki N, Uchiyama Y, Suzuki M. 2008. Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed: The Tanzawa region, Japan. Geomorphology, 101: 692–702

    Article  Google Scholar 

  • Korup O, Montgomery D R. 2008. Tibetan plateau river incision inhibited by glacial stabilization of the Tsangpo gorge. Nature, 455: 786–789

    Article  Google Scholar 

  • Korup O, Montgomery D R, Hewitt K. 2010. Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes. Proc Natl Acad Sci USA, 107: 5317–5322

    Article  Google Scholar 

  • Larsen I J, Montgomery D R, Korup O. 2010. Landslide erosion controlled by hillslope material. Nat Geosci, 3: 247–251

    Article  Google Scholar 

  • Lebedeva M I, Brantley S L. 2017. Weathering and erosion of fractured bedrock systems. Earth Surf Process Landforms, 42: 2090–2108

    Article  Google Scholar 

  • Li L, Chen J, Chen T, Chen Y, Hedding D W, Li G, Li L, Li T, Robinson L F, West A J, Wu W, You C F, Zhao L, Li G. 2018. Weathering dynamics reflected by the response of riverine uranium isotope disequilibrium to changes in denudation rate. Earth Planet Sci Lett, 500: 136–144

    Article  Google Scholar 

  • Li G, West A J, Densmore A L, Jin Z, Parker R N, Hilton R G. 2014. Seismic mountain building: Landslides associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake volume balance. Geochem Geophys Geosyst, 15: 833–844

    Article  Google Scholar 

  • Li G, West A J, Densmore A L, Hammond D E, Jin Z, Zhang F, Wang J, Hilton R G. 2016. Connectivity of earthquake-triggered landslides with the fluvial network: Implications for landslide sediment transport after the 2008 Wenchuan earthquake. J Geophys Res-Earth Surf, 121: 703–724

    Article  Google Scholar 

  • Li G, West A J, Densmore A L, Jin Z, Zhang F, Wang J, Clark M, Hilton R G. 2017a. Earthquakes drive focused denudation along a tectonically active mountain front. Earth Planet Sci Lett, 472: 253–265

    Article  Google Scholar 

  • Li G, West A J, Densmore A L, Jin Z, Zhang F, Wang J, Hilton R G. 2017b. Distribution of earthquake-triggered landslides across landscapes: Towards understanding erosional agency and cascading hazards. In: Li Y, ed. Fault-Zone Guided Wave, Ground Motion, Landslide and Earthquake Forecast. Berlin, Boston: De Gruyter. 160–190

    Google Scholar 

  • Lin G W, Chen H, Hovius N, Horng M J, Dadson S, Meunier P, Lines M. 2008. Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surf Process Landforms, 33: 1354–1373

    Article  Google Scholar 

  • Lin G W, Chen H, Shih T Y, Lin S. 2012. Various links between landslide debris and sediment flux during earthquake and rainstorm events. J Asian Earth Sci, 54–55: 41–48

    Article  Google Scholar 

  • Liu-Zeng J, Wen L, Oskin M, Zeng L. 2011. Focused modern denudation of the Longmen Shan margin, eastern Tibetan Plateau. Geochem Geophys Geosyst, 12: Q11007

    Article  Google Scholar 

  • Lyons W B, Carey A E, Hicks D M, Nezat C A. 2005. Chemical weathering in high-sediment-yielding watersheds, New Zealand. J Geophys Res, 110: F01008

    Google Scholar 

  • Ma L, Chabaux F, Pelt E, Blaes E, Jin L, Brantley S L. 2010. Regolith production rates calculated with uranium-series isotopes at Susque-hanna/Shale Hills Critical Zone Observatory. Earth Planet Sci Lett, 297: 211–225

    Article  Google Scholar 

  • Ma L, Teng F Z, Jin L, Ke S, Yang W, Gu H O, Brantley S L. 2015. Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation. Chem Geol, 397: 37–50

    Article  Google Scholar 

  • Maher K, Chamberlain C P. 2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 343: 1502–1504

    Article  Google Scholar 

  • Malamud B D, Turcotte D L, Guzzetti F, Reichenbach P. 2004. Landslides, earthquakes, and erosion. Earth Planet Sci Lett, 229: 45–59

    Article  Google Scholar 

  • Marc O, Behling R, Andermann C, Turowski J M, Illien L, Roessner S, Hovius N. 2019. Long-term erosion of the Nepal Himalayas by bedrock landsliding: The role of monsoons, earthquakes and giant landslides. Earth Surf Dynam, 7: 107–128

    Article  Google Scholar 

  • Marc O, Hovius N, Meunier P, Uchida T, Hayashi S. 2015. Transient changes of landslide rates after earthquakes. Geology, 43: 883–886

    Article  Google Scholar 

  • Marc O, Hovius N, Meunier P, Gorum T, Uchida T. 2016. A seismologically consistent expression for the total area and volume of earthquake-triggered landsliding. J Geophys Res-Earth Surf, 121: 640–663

    Article  Google Scholar 

  • Märki L, Lupker M, Gallen S, Gajurel A, Haghipour N, Schide K, France-Lanord C, Lave J, Morin G, Eglinton T. 2018. Controls of earthquake-triggered landslides on riverine sediment and organic carbon export in the Central Himalaya. EGU General Assembly Conference Abstracts, 20: EGU2018–4337

    Google Scholar 

  • Meunier P, Hovius N, Haines A J. 2007. Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophys Res Lett, 34: L20408

    Article  Google Scholar 

  • Mohr C H, Manga M, Wang C, Kirchner J W, Bronstert A. 2015. Shaking water out of soil. Geology, 43: 207–210

    Article  Google Scholar 

  • Molnar P, Anderson R S, Anderson S P. 2007. Tectonics, fracturing of rock, and erosion. J Geophys Res, 112: F03014

    Google Scholar 

  • Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature, 346: 29–34

    Article  Google Scholar 

  • Montgomery D R, Manga M. 2003. Streamflow and water well responses to earthquakes. Science, 300: 2047–2049

    Article  Google Scholar 

  • Murphy B P, Johnson J P L, Gasparini N M, Sklar L S. 2016. Chemical weathering as a mechanism for the climatic control of bedrock river incision. Nature, 532: 223–227

    Article  Google Scholar 

  • Parker R N, Densmore A L, Rosser N J, de Michele M, Li Y, Huang R, Whadcoat S, Petley D N. 2011. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat Geosci, 4: 449–452

    Article  Google Scholar 

  • Pearce A J, Watson A J. 1986. Effects of earthquake-induced landslides on sediment budget and transport over a 50-yr period. Geology, 14: 52–55

    Article  Google Scholar 

  • Pelt E, Chabaux F, Innocent C, Navarre-Sitchler A K, Sak P B, Brantley S L. 2008. Uranium-thorium chronometry of weathering rinds: Rock alteration rate and paleo-isotopic record of weathering fluids. Earth Planet Sci Lett, 276: 98–105

    Article  Google Scholar 

  • Petley D N, Hearn G J, Hart A, Rosser N J, Dunning S A, Oven K, Mitchell W A. 2007. Trends in landslide occurrence in Nepal. Nat Hazards, 43: 23–44

    Article  Google Scholar 

  • Peucker-Ehrenbrink B, Ravizza G, Hofmann A W. 1995. The marine 187Os/186Os record of the past 80 million years. Earth Planet Sci Lett, 130: 155–167

    Article  Google Scholar 

  • Raymo M E, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117–122

    Article  Google Scholar 

  • Raymo M E, Ruddiman W F, Froelich P N. 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16: 649–653

    Article  Google Scholar 

  • Ren Z, Zhang Z, Yin J. 2017. Erosion associated with seismically-induced landslides in the middle Longmen Shan region, eastern Tibetan Plateau, China. Remote Sens, 9: 864

    Article  Google Scholar 

  • Restrepo C, Walker L R, Shiels A B, Bussmann R, Claessens L, Fisch S, Lozano P, Negi G, Paolini L, Poveda G, Ramos-Scharrón C, Richter M, Velázquez E. 2009. Landsliding and its multiscale influence on mountainscapes. Bioscience, 59: 685–698

    Article  Google Scholar 

  • Roback K, Clark M K, West A J, Zekkos D, Li G, Gallen S F, Chamlagain D, Godt J W. 2018. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology, 301: 121–138

    Article  Google Scholar 

  • Robinson T R, Davies T R H. 2013. Review Article: Potential geomorphic consequences of a future great (Mw=8.0+) Alpine Fault earthquake, South Island, New Zealand. Nat Hazards Earth Syst Sci, 13: 2279–2299

    Article  Google Scholar 

  • Rojstaczer S, Wolf S, Michel R. 1995. Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature, 373: 237–239

    Article  Google Scholar 

  • Romans B W, Castelltort S, Covault J A, Fildani A, Walsh J P. 2016. Environmental signal propagation in sedimentary systems across timescales. Earth-Sci Rev, 153: 7–29

    Article  Google Scholar 

  • Ruddiman W F. 1997. Tectonic Uplift and Climate Change. New York: Plenum Press. 239–365, 399–515

    Book  Google Scholar 

  • Sato H P, Hasegawa H, Fujiwara S, Tobita M, Koarai M, Une H, Iwahashi J. 2007. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides, 4: 113–122

    Article  Google Scholar 

  • Schwanghart W, Bernhardt A, Stolle A, Hoelzmann P, Adhikari B R, Andermann C, Tofelde S, Merchel S, Rugel G, Fort M, Korup O. 2016. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya. Science, 351: 147–150

    Article  Google Scholar 

  • Shin T C, Teng T L. 2001. An overview of the 1999 Chi-Chi, Taiwan, earthquake. Bull Seismol Soc Am, 91: 895–913

    Article  Google Scholar 

  • Skelton A, Andrén M, Kristmannsdóttir H, Stockmann G, Mörth C M, Sveinbjörnsdóttir Á, Jónsson S, Sturkell E, Guðrúnardóttir H R, Hjartarson H, Siegmund H, Kockum I. 2014. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat Geosci, 7: 752–756

    Article  Google Scholar 

  • Shi Z, Wang G, Manga M, Wang C Y. 2015. Continental-scale water-level response to a large earthquake. Geofluids, 15: 310–320

    Article  Google Scholar 

  • Steer P, Simoes M, Cattin R, Shyu J B H. 2014. Erosion influences the seismicity of active thrust faults. Nat Commun, 5: 5564

    Article  Google Scholar 

  • Stevens C, McCaffrey R, Silver E A, Sombo Z, English P, van der Kevie J. 1998. Mid-crustal detachment and ramp faulting in the Markham Valley, Papua New Guinea. Geology, 26: 847–850

    Article  Google Scholar 

  • Suzuki W, Aoi S, Sekiguchi H. 2010. Rupture process of the 2008 Iwate-Miyagi Nairiku, Japan, earthquake derived from near-source strongmotion records. Bull Seismol Soc Am, 100: 256–266

    Article  Google Scholar 

  • Teng F Z, Li W Y, Rudnick R L, Gardner L R. 2010. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth Planet Sci Lett, 300: 63–71

    Article  Google Scholar 

  • Teng F Z, Wang S, Moynier F. 2019. Tracing the formation and differentiation of the Earth by non-traditional stable isotopes. Sci China Earth Sci, 62: 1702–1715

    Article  Google Scholar 

  • Torres M A, West A J, Li G. 2014. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature, 507: 346–349

    Article  Google Scholar 

  • Vanmaercke M, Ardizzone F, Rossi M, Guzzetti F. 2017. Exploring the effects of seismicity on landslides and catchment sediment yield: An Italian case study. Geomorphology, 278: 171–183

    Article  Google Scholar 

  • Vigier N, Burton K W, Gislason S R, Rogers N W, Duchene S, Thomas L, Hodge E, Schaefer B. 2006. The relationship between riverine U-series disequilibria and erosion rates in a basaltic terrain. Earth Planet Sci Lett, 249: 258–273

    Article  Google Scholar 

  • Wang J, Jin Z, Hilton R G, Zhang F, Densmore A L, Li G, West A J. 2015. Controls on fluvial evacuation of sediment from earthquake-triggered landslides. Geology, 43: 115–118

    Article  Google Scholar 

  • Wang J, Jin Z, Hilton R G, Zhang F, Li G, Densmore A L, Gröcke D R, Xu X, West A J. 2016. Earthquake-triggered increase in biospheric carbon export from a mountain belt. Geology, 44: 471–474

    Article  Google Scholar 

  • Wang J, Hilton R G, Jin Z, Zhang F, Densmore A L, Gröcke D R, Xu X, Li G, West A J. 2019. The isotopic composition and fluxes of particulate organic carbon exported from the eastern margin of the Tibetan Plateau. Geochim Cosmochim Acta, 252: 1–15

    Article  Google Scholar 

  • Wang J, Howarth J D, McClymont E L, Densmore A L, Fitzsimons S J, Croissant T, Gröcke D R, West M D, Harvey E L, Frith N V, Garnett M H, Hilton R G. 2020. Long-term patterns of hillslope erosion by earthquake-induced landslides shape mountain landscapes. Sci Adv, 6: eaaz6446

    Article  Google Scholar 

  • Wang W, Godard V, Liu-Zeng J, Scherler D, Xu C, Zhang J, Xie K, Bellier O, Ansberque C, de Sigoyer J, ASTER Team. 2017. Perturbation of fluvial sediment fluxes following the 2008 Wenchuan earthquake. Earth Surf Process Landforms, 42: 2611–2622

    Article  Google Scholar 

  • West A J. 2012. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology, 40: 811–814

    Article  Google Scholar 

  • West A J, Galy A, Bickle M. 2005. Tectonic and climatic controls on silicate weathering. Earth Planet Sci Lett, 235: 211–228

    Article  Google Scholar 

  • West A J, Hetzel R, Li G, Jin Z, Zhang F, Hilton R G, Densmore A L. 2014. Dilution of 10Be in detrital quartz by earthquake-induced landslides: Implications for determining denudation rates and potential to provide insights into landslide sediment dynamics. Earth Planet Sci Lett, 396: 143–153

    Article  Google Scholar 

  • Whipple K X, Forte A M, DiBiase R A, Gasparini N M, Ouimet W B. 2017. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. J Geophys Res-Earth Surf, 122: 248–273

    Article  Google Scholar 

  • White A F, Blum A E. 1995. Effects of climate on chemical_ weathering in watersheds. Geochim Cosmochim Acta, 59: 1729–1747

    Article  Google Scholar 

  • Willenbring J K, von Blanckenburg F. 2010. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature, 465: 211–214

    Article  Google Scholar 

  • Willett S D. 1999. Orogeny and orography: The effects of erosion on the structure of mountain belts. J Geophys Res, 104: 28957–28981

    Article  Google Scholar 

  • Willett S D, McCoy S W, Perron J T, Goren L, Chen C Y. 2014. Dynamic reorganization of river basins. Science, 343: 1248765

    Article  Google Scholar 

  • Willett S D, Slingerland R, Hovius N. 2001. Uplift, shortening, and steady state topography in active mountain belts. Am J Sci, 301: 455–485

    Article  Google Scholar 

  • Wimpenny J, Colla C A, Yin Q Z, Rustad J R, Casey W H. 2014. Investigating the behaviour of Mg isotopes during the formation of clay minerals. Geochim Cosmochim Acta, 128: 178–194

    Article  Google Scholar 

  • Wu C C, Kuo Y H. 1999. Typhoons affecting Taiwan: Current understanding and future challenges. Bull Am Meteorol Soc, 80: 67–80

    Article  Google Scholar 

  • Xue L, Li H B, Brodsky E E, Xu Z Q, Kano Y, Wang H, Mori J J, Si J L, Pei J L, Zhang W, Yang G, Sun Z M, Huang Y. 2013. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science, 340: 1555–1559

    Article  Google Scholar 

  • Yanites B J, Tucker G E, Mueller K J, Chen Y G. 2010. How rivers react to large earthquakes: Evidence from central Taiwan. Geology, 38: 639–642

    Article  Google Scholar 

  • Zhang F, Jin Z, West A J, An Z, Hilton R G, Wang J, Li G, Densmore A L, Yu J, Qiang X, Sun Y, Li L, Gou L, Xu Y, Xu X, Liu X, Pan Y, You C F. 2019. Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake. Sci Adv, 5: eaav7110

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Laifeng LI and Dr. Long-Fei GOU for their help and discussions during manuscript preparation. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41991322 and 41930864), the Key Research Program of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-DQC033) to Zhangdong JIN, and Chinese Academy of Sciences Fellowships for Young International Scientists to both A. Joshua WEST and Robert G. HILTON.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangdong Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Hilton, R.G., West, A.J. et al. The role of earthquake-induced landslides in erosion and weathering from active mountain ranges: Progress and perspectives. Sci. China Earth Sci. 64, 2069–2082 (2021). https://doi.org/10.1007/s11430-021-9832-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9832-3

Keywords

Navigation