Skip to main content

Slip rate of the seismogenic fault of the 2021 Maduo earthquake in western China inferred from GPS observations

Abstract

Seismic and field observations indicate that the Mw7.4 Maduo earthquake ruptured the Jiangcuo fault, which is a secondary fault ∼85 km south of the northern boundary of the Bayan Hor block in western China. The kinematic characteristics of the Jiangcuo fault can shed lights on the seismogenic mechanism of this earthquake. Slip rate is one of the key parameters to describe the kinematic features of a fault, which can also provide quantitative evidences for regional seismic hazard assessments. However, due to lack of effective observations, the slip rate of the Jiangcuo fault has not been studied quantitatively. In this study, we consider the interaction between the Jiangcuo fault and the eastern Kunlun fault, and estimate the slip rates of the two faults using the interseismic GPS observations across the seismogenic region. The inferred results show that the slip rates of the Jiangcuo fault and the Tuosuo Lake segment of the Kunlun fault are 1.2±0.8 and 5.4±0.3 mm a−1, respectively. Combining the slip rate with the average slip inferred from the coseismic slip model, the earthquake recurrence interval of the Jiangcuo fault is estimated to be 1800 +3700−700 years (1100–5500 years). Based on the results derived from previous studies, as well as calculations in this study, we infer that the slip rate of the Kunlun fault may decrease gradually from the Tuosuo Lake segment to the eastern tip. The Jiangcuo fault and its adjacent parallel secondary faults may have absorbed the relative motion of blocks together with the Kunlun fault.

This is a preview of subscription content, access via your institution.

References

  1. Burchfiel B C, Royden L H, van der Hilst R D, Hager B H, Chen Z, King R W, Li C, Lü J, Yao H, Kirby E. 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today, 18: 4–11

    Article  Google Scholar 

  2. Bao X, Song X, Eaton D W, Xu Y, Chen H. 2020. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy. Geophys Res Lett, 47: e2019GL085721

    Google Scholar 

  3. Duvall A R, Clark M K. 2010. Dissipation of fast strike-slip faulting within and beyond northeastern Tibet. Geology, 38: 223–226

    Article  Google Scholar 

  4. Diao F, Wang R, Wang Y, Xiong X, Walter T R. 2018. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake. Earth Planet Sci Lett, 495: 202–212

    Article  Google Scholar 

  5. Diao F, Xiong X, Wang R, Walter T R, Wang Y, Wang K. 2019. Slip rate variation along the Kunlun Fault (Tibet): Results from new GPS observations and a viscoelastic earthquake-cycle deformation model. Geophys Res Lett, 46: 2524–2533

    Article  Google Scholar 

  6. Deng Q D, Zhang P Z, Ran Y K, Yang X P, Min W, Chen L C. 2003. Basic characteristics of active tectonics of China. Sci China Ser D-Earth Sci, 46: 356–372

    Google Scholar 

  7. Guo J, Lin A, Maruyama T, Zheng J, Sun G. 2006. New constraints on recent large earthquakes along the Xidatan-Dongdatan segment of the Kunlun fault, western China. Bull Seismol Soc Am, 96: 48–58

    Article  Google Scholar 

  8. Guo J, Lin A, Sun G, Zheng J. 2007. Surface Ruptures Associated with the 1937 M7.5 Tuosuo Lake and the 1963 M7.0 Alake Lake Earthquakes and the Paleoseismicity along the Tuosuo Lake Segment of the Kunlun Fault, Northern Tibet. Bull Seismol Soc Am, 97: 474–496

    Article  Google Scholar 

  9. Kirby E, Harkins N, Wang E, Shi X, Fan C, Burbank D. 2007. Slip rate gradients along the eastern Kunlun fault. Tectonics, 26: TC2010

    Article  Google Scholar 

  10. Li C X, Xu X W, Wen X Z, Zheng R Z, Chen G H, Yang H, An Y F, Gao X. 2011. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault, north Tibetan Plateau. Sci China Earth Sci, 54: 1730–1745

    Article  Google Scholar 

  11. Laske G, Masters G, Ma Z, Pasyanos M. 2013. Update on CRUST1.0—A 1-degree global model of Earth’s crust. Geophys Res Abstracts, 15. Abstract EGU2013-2658

  12. Li H, Van der Woerd J, Tapponnier P, Klinger Y, Qi X, Yang J, Zhu Y. 2005. Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw∼7.9 Kokoxili earthquake. Earth Planet Sci Lett, 237: 285–299

    Article  Google Scholar 

  13. Liang M J, Yang Y, Du F, Gong Y, Sun W, Zhao M, He Q. 2020. Late Quaternary activity of the central segment of the Dari fault and restudy of the surface rupture zone of the 1947 M7¾ Dari earthquake, Qinghai (in Chinese). Seismol Geol, 42: 703–714

    Google Scholar 

  14. Liu M, Stein S, Wang H. 2011. 2000 years of migrating earthquakes in North China: How earthquakes in midcontinents differ from those at plate boundaries. Lithosphere, 3: 128–132

    Article  Google Scholar 

  15. Li Y, Huang L, Ding R, Yang S, Liu L, Zhang S, Liu H. 2021. Coulomb stress changes associated with the M7.3 Maduo earthquake and implications for seismic hazards. Nat Hazards Res, https://doi.org/10.1016/j.nhres.2021.06.003

  16. Pan J, Bai M, Li C, Liu F, Li H, Liu D, Marie L C, Wu K, Wang P, Lu H, Chen P, Li C. 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) Ms7.4 earthquake. Acta Geol Sin, 95: 1655–1670

    Google Scholar 

  17. Reid H F. 1910. The mechanics of the earthquake in the California earthquake of 18 April 1906. Report, Carnegie Institute, Washington DC, 2

    Google Scholar 

  18. Shan B, Xiong X, Wang R, Zheng Y, Yadav R B S. 2015. Stress evolution and seismic hazard on the Maqin-Maqu segment of East Kunlun Fault zone from co-, post- and interseismic stress changes. Geophys J Int, 200: 244–253

    Article  Google Scholar 

  19. Savage J C, Burford R O. 1973. Geodetic determination of relative plate motion in central California. J Geophys Res, 78: 832–845

    Article  Google Scholar 

  20. Shen Z K, Sun J, Zhang P, Wan Y, Wang M, Bürgmann R, Zeng Y, Gan W, Liao H, Wang Q. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nat Geosci, 2: 718–724

    Article  Google Scholar 

  21. Tapponnier P, Molnar P. 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264: 319–324

    Article  Google Scholar 

  22. Tapponnier P, Xu Z, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671–1677

    Article  Google Scholar 

  23. Van der Woerd J, Tapponnier P, Ryerson F J, Meriaux A S, Meyer B, Gaudemer Y, Finkel R C, Caffee M W, Zhao G G, Xu Z Q. 2002. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophys J Int, 148: 356–388

    Article  Google Scholar 

  24. Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. Eos Trans AGU, 79: 579

    Article  Google Scholar 

  25. Wang W, Fang L, Wu J, Tu H, Chen L, Lai G, Zhang L. 2021. Aftershock sequence relocation of the 2021 Ms7.4 Maduo Earthquake, Qinghai, China. Sci China Earth Sci, 64, https://doi.org/10.1007/s11430-021-9803-3

  26. Wen X, Yi G, Xu X. 2007. Background and precursory seismicities along and surrounding the Kunlun fault before the Ms8.1, 2001, Kokoxili earthquake, China. J Asian Earth Sci, 30: 63–72

    Article  Google Scholar 

  27. Xiong X, Shan B, Zheng Y, Wang R. 2010. Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet. Tectonophysics, 482: 216–225

    Article  Google Scholar 

  28. Zhang P Z, Deng Q D, Zhang G M, Ma J, Gan W J, Min W, Mao F Y, Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Sci China Ser D-Earth Sci, 46(Suppl 2): 13–24

    Google Scholar 

  29. Zhang P Z, Wen X Z, Shen Z K, Chen J H. 2010. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annu Rev Earth Planet Sci, 38: 353–382

    Article  Google Scholar 

  30. Zhang P Z. 2013. Beware of slowly slipping faults. Nat Geosci, 6: 323–324

    Article  Google Scholar 

  31. Zhan Y, Liang M J, Sun X Y, Huang F P, Zhao L Q, Gong Y, Han J, Li C X, Zhang P Z, Zhang H P. 2021. Deep structure and seismogenic pattern of the 2021.5.22 Madoi (Qinghai) Ms7.4 earthquake (in Chinese). Chin J Geophys, 64: 2232–2252

    Google Scholar 

Download references

Acknowledgements

We thank the responsible editor and two anonymous reviewers for their insightful comments. The aftershock data used in this paper came from the China Earthquake Networks Center. The seismic rupture model was provided by Yong ZHANG from the Peking University. We thank Yashan FENG for carefully polishing the manuscript. The figures were drawn with the Generic Mapping Tools (GMT) (Wessel and Smith, 1998). This study was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC1500501 and 2017YFC1500305) and the National Natural Science Foundation of China (Grant Nos. 41674023 and 41304017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Faqi Diao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Diao, F., Fu, Y. et al. Slip rate of the seismogenic fault of the 2021 Maduo earthquake in western China inferred from GPS observations. Sci. China Earth Sci. 64, 1363–1370 (2021). https://doi.org/10.1007/s11430-021-9808-0

Download citation

Keywords

  • Maduo earthquake
  • Fault slip rate
  • Geodetic observation
  • Kunlun fault
  • Seismic hazard