Skip to main content
Log in

The Mesoproterozoic Oxygenation Event

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The accumulation of oxygen is one of the most important characteristics that distinguish Earth from other planets in the solar system, which is also considered to be the key factor influencing the birth and evolution of complex life forms. The oxygenation process of the Earth surface has long been viewed to be episodic with two critical intervals occurring in the early Paleoproterozoic (2.45–2.10 Ga) and the late Neoproterozoic (0.80–0.54 Ga), with a 1.3-billion-year-long low oxygen period in between. Recently, increasing independent works carried out by different scientific teams in the Yanliao Basin, North China are demonstrating that the atmospheric oxygen concentrations had reached >4% PAL (present atmospheric levels) at least during 1.59–1.56, 1.44–1.43, and 1.40–1.36 Ga. These estimated values are higher than the previously recommended values of <0.1–1% PAL. Such a scenario discovered in the Yanliao Basin is consistent with the synchronously deposited strata in Australia and Siberia, pointing to a Mesoproterozoic oxygenation event (1.59–1.36 Ga) between the two major oxygenation intervals during the Proterozoic. This Mesoproterozoic oxygenation event is coupled with the break-up of the Columbia (Nuna) supercontinent, the formation of organic-rich shales and Fe-Mn deposits, and the early innovation of eukaryotic algae, indicating that the geological and biological co-evolutionary processes control the Earth surface system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcott L J, Mills B J W, Poulton S W. 2019. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science, 366: 1333–1337

    Article  Google Scholar 

  • Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297: 1137–1142

    Article  Google Scholar 

  • Arnold G L, Anbar A D, Barling J, Lyons T W. 2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304: 87–90

    Article  Google Scholar 

  • Babechuk M G, Kleinhanns I C, Schoenberg R. 2015. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol. Geobiology, 15: 30–50

    Article  Google Scholar 

  • Bao H, Cao X, Hayles J A. 2016. Triple oxygen isotopes: Fundamental relationships and applications. Annu Rev Earth Planet Sci, 44: 463–492

    Article  Google Scholar 

  • Bekker A, Slack J F, Planavsky N, Krapez B, Hofmann A, Konhauser K O, Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol, 105: 467–508

    Article  Google Scholar 

  • Bekker A, Planavsky N J, Krapez B, Rasmussen B, Hofmann A, Slack J F, Rouxel O J, Konhauser K O. 2014. Iron Formations: Their origins and implications for ancient seawater chemistry. In: Turekian K K, Holland H D, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier Science Ltd. 516–628

    Google Scholar 

  • Bennett W W, Canfield D E. 2020. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments. Earth-Sci Rev, 204: 103175

    Article  Google Scholar 

  • Berner R A, Vandenbrooks J M, Ward P D. 2007. Oxygen and evolution. Science, 316: 557–558

    Article  Google Scholar 

  • Brocks J J, Jarrett A J M, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T. 2017. The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548: 578–581

    Article  Google Scholar 

  • Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature, 396: 450–453

    Article  Google Scholar 

  • Canfield D E. 2004. The evolution of the Earth surface sulfur reservoir. Am J Sci, 304: 839–861

    Article  Google Scholar 

  • Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci, 33: 1–36

    Article  Google Scholar 

  • Canfield D E. 2014. Oxygen: A Four-Billion-Year History. Princeton: Princeton University Press

    Google Scholar 

  • Canfield D E, Bjerrum C J, Zhang S, Wang H, Wang X. 2020. The modern phosphorus cycle informs interpretations of Mesoproterozoic Era phosphorus dynamics. Earth-Sci Rev, 208: 103267

    Article  Google Scholar 

  • Canfield D E, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA, 106: 8123–8127

    Article  Google Scholar 

  • Canfield D E, Habicht K S, Thamdrup B. 2000. The Archean sulfur cycle and the early history of atmospheric oxygen. Science, 288: 658–661

    Article  Google Scholar 

  • Canfield D E, Poulton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, Strauss H. 2008. Ferruginous conditions dominated later neoproterozoic deep-water chemistry. Science, 321: 949–952

    Article  Google Scholar 

  • Canfield D E, Zhang S, Wang H, Wang X, Zhao W, Su J, Bjerrum C J, Haxen E R, Hammarlund E U. 2018a. A Mesoproterozoic iron formation. Proc Natl Acad Sci USA, 115: E3895–E3904

    Article  Google Scholar 

  • Canfield D E, van Zuilen M A, Nabhan S, Bjerrum C J, Zhang S, Wang H, Wang X. 2021. Petrographic carbon in ancient sediments constrains Proterozoic Era atmospheric oxygen levels. Proc Natl Acad Sci USA, 118: e2101544118

    Article  Google Scholar 

  • Canfield D E, Zhang S, Frank A B, Wang X, Wang H, Su J, Ye Y, Frei R. 2018b. Highly fractionated chromium isotopes in Mesoproterozoicaged shales and atmospheric oxygen. Nat Commun, 9: 2871

    Article  Google Scholar 

  • Cawood P A. 2020. Earth Matters: A tempo to our planet’s evolution. Geology, 48: 525–526

    Article  Google Scholar 

  • Chen X, Ling H F, Vance D, Shields-Zhou G A, Zhu M, Poulton S W, Och L M, Jiang S Y, Li D, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Commun, 6: 7142

    Article  Google Scholar 

  • Chen X, Li M, Sperling E A, Zhang T, Zong K, Liu Y, Shen Y. 2020. Mesoproterozoic paleo-redox changes during 1500–1400 Ma in the Yanshan Basin, North China. Precambrian Res, 347: 105835

    Article  Google Scholar 

  • Chen X Y. 2020. The ocean chemistry changes during Meso- to Neoproterozoic. Dissertation for Doctoral Degree. Hefei: University of Science and Technology of China. 1–123

    Google Scholar 

  • Cloud P E. 1968. Atmospheric and hydrospheric evolution on the Primitive Earth: Both secular accretion and biological and geochemical processes have affected Earth’s volatile envelope. Science, 160: 729–736

    Article  Google Scholar 

  • Cole D B, Reinhard C T, Wang X, Gueguen B, Halverson G P, Gibson T, Hodgskiss M S W, McKenzie N R, Lyons T W, Planavsky N J. 2016. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 44: 555–558

    Article  Google Scholar 

  • Cole D B, Mills D B, Erwin D H, Sperling E A, Porter S M, Reinhard C T, Planavsky N J. 2020. On the co-evolution of surface oxygen levels and animals. Geobiology, 18: 260–281

    Article  Google Scholar 

  • Colwyn D A, Sheldon N D, Maynard J B, Gaines R, Hofmann A, Wang X, Gueguen B, Asael D, Reinhard C T, Planavsky N J. 2019. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic. Geobiology, 17: 579–593

    Article  Google Scholar 

  • Craig J, Biffi U, Galimberti R F, Ghori K A R, Gorter J D, Hakhoo N, Le Heron D P, Thurow J, Vecoli M. 2013. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks. Mar Pet Geol, 40: 1–47

    Article  Google Scholar 

  • Crockford P W, Hayles J A, Bao H, Planavsky N J, Bekker A, Fralick P W, Halverson G P, Bui T H, Peng Y, Wing B A. 2018. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature, 559: 613–616

    Article  Google Scholar 

  • Dahl T W, Hammarlund E U, Anbar A D, Bond D P G, Gill B C, Gordon G W, Knoll A H, Nielsen A T, Schovsbo N H, Canfield D E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Natl Acad Sci USA, 107: 17911–17915

    Article  Google Scholar 

  • Daines S J, Mills B J W, Lenton T M. 2017. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat Commun, 8: 14379

    Article  Google Scholar 

  • Diamond C W, Planavsky N J, Wang C, Lyons T W. 2018. What the ~1.4 Ga Xiamaling Formation can and cannot tell us about the mid-Proterozoic ocean. Geobiology, 16: 219–236

    Article  Google Scholar 

  • Du R L, Li P J, Wu Z S. 1979. Sinian sub-boundary in the western section of Yanshan Mountain. J Hebei Inst Geol, (4): 1–17

    Google Scholar 

  • Fang H, Tang D, Shi X, Lechte M, Shang M, Zhou X, Yu W. 2020. Manganese-rich deposits in the Mesoproterozoic Gaoyuzhuang Formation (ca. 1.58 Ga), North China Platform: Genesis and paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol, 559: 109966

    Article  Google Scholar 

  • Farquhar J, Peters M, Johnston D T, Strauss H, Masterson A, Wiechert U, Kaufman A J. 2007. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature, 449: 706–709

    Article  Google Scholar 

  • Fischer W W. 2016. Breathing room for early animals. Proc Natl Acad Sci USA, 113: 1686–1688

    Article  Google Scholar 

  • Frei R, Gaucher C, Poulton S W, Canfield D E. 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461: 250–253

    Article  Google Scholar 

  • Fu Y, Xu Z G, Pei H X, Jiang R. 2014. Study on metallogenic regularity of manganese ore deposits in China. Acta Geol Sin, 88: 2192–2207

    Google Scholar 

  • Gao Z Y, Wang H J, Feng J R, Luo Z, Zhang Y H, Li X H. 2020. Provenance and paleogeographic environment of the Middle Proterozoic Xiamaling formation in Yanliao Basin. Acta Geol Sin, 94, doi: https://doi.org/10.19762/j.cnki.dizhixuebao.2020289

  • Gilleaudeau G J, Frei R, Kaufman A J, Kah L C, Azmy K, Bartley J K, Chernyavskiy P, Knoll A H. 2016. Oxygenation of the mid-Proterozoic atmosphere: Clues from chromium isotopes in carbonates. Geochem Persp Let, 2: 178–187

    Article  Google Scholar 

  • Gilleaudeau G J, Romaniello S J, Luo G, Kaufman A J, Zhang F, Klaebe R M, Kah L C, Azmy K, Bartley J K, Zheng W, Knoll A H, Anbar A D. 2019. Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth Planet Sci Lett, 521: 150–157

    Article  Google Scholar 

  • Gilleaudeau G J, Sahoo S K, Ostrander C M, Owens J D, Poulton S W, Lyons T W, Anbar A D. 2020. Molybdenum isotope and trace metal signals in an iron-rich Mesoproterozoic ocean: A snapshot from the Vindhyan Basin, India. Precambrian Res, 343: 105718

    Article  Google Scholar 

  • Glock N, Liebetrau V, Eisenhauer A. 2014. I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone: Analytical methodology and evaluation as a proxy for redox conditions. Biogeosciences, 11: 7077–7095

    Article  Google Scholar 

  • Guo H, Du Y, Kah L C, Huang J, Hu C, Huang H, Yu W. 2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution. Precambrian Res, 224: 169–183

    Article  Google Scholar 

  • Guo W L, Su W B. 2014. Geochemistry and implication to paleoclimate of the ~1.4 Ga ancient weathering crust in the North of the North China Craton. Geoscience, 28: 243–255

    Google Scholar 

  • Hammarlund E U, Flashman E, Mohlin S, Licausi F. 2020. Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science, 370: eaba3512

    Article  Google Scholar 

  • Hardisty D S, Lu Z, Bekker A, Diamond C W, Gill B C, Jiang G, Kah L C, Knoll A H, Loyd S J, Osburn M R, Planavsky N J, Wang C, Zhou X, Lyons T W. 2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet Sci Lett, 463: 159–170

    Article  Google Scholar 

  • Heard A W, Dauphas N, Guilbaud R, Rouxel O J, Butler I B, Nie N X, Bekker A. 2020. Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric oxygenation. Science, 370: 446–449

    Article  Google Scholar 

  • Hemingway J D, Olson H, Turchyn A V, Tipper E T, Bickle M J, Johnston D T. 2020. Triple oxygen isotope insight into terrestrial pyrite oxidation. Proc Natl Acad Sci USA, 117: 7650–7657

    Article  Google Scholar 

  • Holland H D. 1990. Origins of breathable air. Nature, 347: 17

    Article  Google Scholar 

  • Holland H D. 2006. The oxygenation of the atmosphere and oceans. Phil Trans R Soc B, 361: 903–915

    Article  Google Scholar 

  • Holland H D, Beukes N J. 1990. A paleoweathering profile from Griqualand West, South Africa: Evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. Am J Sci, 290-A: 1–34

    Google Scholar 

  • Holland H D, Feakes C R, Zbinden E A. 1989. The Flin Flon Paleosol and the composition of the atmosphere 1.8 BYBP. Am J Sci, 289: 362–389

    Article  Google Scholar 

  • Hu J, Li Z, Gong W, Hu G, Dong X. 2016. Meso-Neoproterozoic Stratigraphic and Tectonic Framework of the North China Craton. Singapore: Springer

    Book  Google Scholar 

  • Huang J, Liu X, He Y, Shen S, Hou Z, Li S, Li C, Yao L, Huang J. 2021. The oxygen cycle and a habitable Earth. Sci China Earth Sci, 64: 511–528

    Article  Google Scholar 

  • Huang X G. 1986. The evolutionary characteristic of lithofacies-palaeogeography of Sangshu’an period of the Gaoyuzhuang Formation in middle Yanshan range. Bull Tianjin Inst Geol Min Res, 13: 1–31

    Google Scholar 

  • Jin S, Guo H, Yu W C, Du Y S, Ma P F. 2020. Evolution of Yanliao aulacogen in the Paleo-Mesoproterozoic and its control on manganese deposit. J Palaeogeogr, 22: 841–854

    Google Scholar 

  • Johnson B R, Tostevin R, Gopon P, Wells J, Robinson S A, Tosca N J. 2020. Phosphorus burial in ferruginous SiO2-rich Mesoproterozoic sediments. Geology, 48: 92–96

    Article  Google Scholar 

  • Johnson C M, Beard B L, Roden E E. 2008. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu Rev Earth Planet Sci, 36: 457–493

    Article  Google Scholar 

  • Johnston D T, Farquhar J, Canfield D E. 2007. Sulfur isotope insights into microbial sulfate reduction: When microbes meet models. Geochim Cosmochim Acta, 71: 3929–3947

    Article  Google Scholar 

  • Karhu J A, Holland H D. 1996. Carbon isotopes and the rise of atmospheric oxygen. Geology, 24: 867–870

    Article  Google Scholar 

  • Kasting J F. 1993. Earth’s early atmosphere. Science, 259: 920–926

    Article  Google Scholar 

  • Knoll A H, Nowak M A. 2017. The timetable of evolution. Sci Adv, 3: e1603076

    Article  Google Scholar 

  • Krause A J, Mills B J W, Zhang S, Planavsky N J, Lenton T M, Poulton S W. 2018. Stepwise oxygenation of the Paleozoic atmosphere. Nat Commun, 9: 4081

    Article  Google Scholar 

  • Large R R, Halpin J A, Danyushevsky L V, Maslennikov V V, Bull S W, Long J A, Gregory D D, Lounejeva E, Lyons T W, Sack P J, McGoldrick P J, Calver C R. 2014. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Planet Sci Lett, 389: 209–220

    Article  Google Scholar 

  • Large R R, Mukherjee I, Gregory D, Steadman J, Corkrey R, Danyushevsky L V. 2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Miner Depos, 54: 485–506

    Article  Google Scholar 

  • Li C, Planavsky N J, Love G D, Reinhard C T, Hardisty D, Feng L, Bates S M, Huang J, Zhang Q, Chu X, Lyons T W. 2015. Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: Insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochim Cosmochim Acta, 150: 90–105

    Article  Google Scholar 

  • Li H K, Su W B, Zhou H Y, Geng J Z, Xiang Z Q, Cui Y R, Liu W C, Lu S N. 2011. The base age of the Changchengian System at the northern North China Craton Should be younger than 1670 Ma: Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyum County, Beijing. Earth Sci Front, 18: 108–120

    Google Scholar 

  • Li H K, Zhu S X, Xiang Z Q, Su W B, Lu S N, Zhou H Y, Geng J Z, Li S, Yang F J. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrol Sin, 26: 2131–2140

    Google Scholar 

  • Li Z H, Zhu X K. 2012. Geochemical features of Xuanlong type iron ore deposit in Hebei Province and their geological significances. Acta Petrol Sin, 28: 2903–2911

    Google Scholar 

  • Liu A Q, Tang D J, Shi X Y, Zhou L M, Zhou X Q, Shang M H, Li Y, Song H Y. 2019. Growth mechanisms and environmental implications of carbonate concretions from the ∼ 1.4 Ga Xiamaling Formation, North China. J Palaeogeogr, 8: 20

    Article  Google Scholar 

  • Liu A Q, Tang D J, Shi X Y, Zhou X Q, Zhou L, Shang M H, Li Y, Fang H. 2020. Mesoproterozoic oxygenated deep seawater recorded by early diagenetic carbonate concretions from the Member IV of the Xiamaling Formation, North China. Precambrian Res, 341: 105667

    Article  Google Scholar 

  • Liu H, Zartman R E, Ireland T R, Sun W D. 2019. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks. Proc Natl Acad Sci USA, 116: 18854–18859

    Article  Google Scholar 

  • Liu Z R. 2007. Research on the sequence stratigraphy and sedimentology of the Mesoproterozoic Gaoyuzhuang Formation in the Yanshan Region. Dissertation for Doctoral Degree. Beijing: China University of Geosciences (Beijing). 1–92

    Google Scholar 

  • Lu Z, Hoogakker B A A, Hillenbrand C D, Zhou X, Thomas E, Gutchess K M, Lu W, Jones L, Rickaby R E M. 2016. Oxygen depletion recorded in upper waters of the glacial Southern Ocean. Nat Commun, 7: 11146

    Article  Google Scholar 

  • Lu Z, Jenkyns H C, Rickaby R E M. 2010. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology, 38: 1107–1110

    Article  Google Scholar 

  • Luo G, Junium C K, Kump L R, Huang J, Li C, Feng Q, Shi X, Bai X, Xie S. 2014. Shallow stratification prevailed for ∼1700 to ∼1300 Ma ocean: Evidence from organic carbon isotopes in the North China Craton. Earth Planet Sci Lett, 400: 219–232

    Article  Google Scholar 

  • Luo G, Ono S, Huang J, Algeo T J, Li C, Zhou L, Robinson A, Lyons T W, Xie S. 2015. Decline in oceanic sulfate levels during the early Mesoproterozoic. Precambrian Res, 258: 36–47

    Article  Google Scholar 

  • Luo G, Ono S, Beukes N J, Wang D T, Xie S, Summons R E. 2016. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv, 2: e1600134

    Article  Google Scholar 

  • Luo J, Long X, Bowyer F T, Mills B J W, Li J, Xiong Y, Zhu X, Zhang K, Poulton S W. 2021. Pulsed oxygenation events drove progressive oxygenation of the early Mesoproterozoic ocean. Earth Planet Sci Lett, 559: 116754

    Article  Google Scholar 

  • Luo Q Y, Zhong N N, Zhu L, Wang Y N, Qin J, Qi L, Zhang Y, Ma Y. 2013. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, northern North China. Chin Sci Bull, 58: 1036–1047

    Article  Google Scholar 

  • Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315

    Article  Google Scholar 

  • Lyu D, Deng Y, Wang H, Zhang F, Ren R, Gao Z, Zhou C, Luo Z, Wang X, Bi L, Zhang S, Canfield D E. 2021. Using cyclostratigraphic evidence to define the unconformity caused by the Mesoproterozoic Qinyu Uplift in the North China Craton. J Asian Earth Sci, 206: 104608

    Article  Google Scholar 

  • Ma K, Hu S, Wang T, Zhang B, Qin S, Shi S, Wang K, Qingyu H. 2017. Sedimentary environments and mechanisms of organic matter enrichment in the Mesoproterozoic Hongshuizhuang Formation of northern China. Palaeogeogr Palaeoclimatol Palaeoecol, 475: 176–187

    Article  Google Scholar 

  • McFadden K A, Huang J, Chu X L, Jiang G Q, Kaufman A J, Zhou C M, Yuan X L, Xiao S H. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197–3202

    Article  Google Scholar 

  • Mei M, Yang F, Gao J, Meng Q. 2008. Glauconites formed in the high-energy shallow-marine environment of the Late Mesoproterozoic: Case study from Tieling Formation at Jixian Section in Tianjin, North China. Earth Sci Front, 15: 146–158

    Article  Google Scholar 

  • Mei M X. 2007. Sedimentary features and their implication for the depositional succession of non-stromatolitic carbonates, Mesoproterozoic Gaoyuzhuang Formation in Yanshan area of North China. Geoscience, 21: 45–56

    Google Scholar 

  • Meng Q R, Wei H H, Qu Y Q, Ma S X. 2011. Stratigraphic and sedimentary records of the rift to drift evolution of the northern North China craton at the Paleo- to Mesoproterozoic transition. Gondwana Res, 20: 205–218

    Article  Google Scholar 

  • Meyers S R, Malinverno A. 2018. Proterozoic Milankovitch cycles and the history of the solar system. Proc Natl Acad Sci USA, 115: 6363–6368

    Article  Google Scholar 

  • Miao L, Moczydłowska M, Zhu S, Zhu M. 2018. New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Res, 321: 172–198

    Article  Google Scholar 

  • Mills D B, Ward L M, Jones C A, Sweeten B, Forth M, Treusch A H, Canfield D E. 2014. Oxygen requirements of the earliest animals. Proc Natl Acad Sci USA, 111: 4168–4172

    Article  Google Scholar 

  • Mitchell R N, Kirscher U, Kunzmann M, Liu Y, Cox G M. 2020. Gulf of Nuna: Astrochronologic correlation of a Mesoproterozoic oceanic euxinic event. Geology, 49: 25–29

    Article  Google Scholar 

  • Moffett J W. 1990. Microbially mediated cerium oxidation in sea water. Nature, 345: 421–423

    Article  Google Scholar 

  • Nameroff T J, Balistrieri L S, Murray J W. 2002. Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochim Cosmochim Acta, 66: 1139–1158

    Article  Google Scholar 

  • Nameroff T J, Calvert S E, Murray J W. 2004. Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals. Paleoceanography, 19: PA1010

    Article  Google Scholar 

  • Niu S W. 1998. Confirmation of the genus Grypania (Megascopic alga) in Gaoyuzhuang Formation (1434 Ma) in Jixian (Tianjin) and its significance. Progress Precambrian Res, 21: 36–46

    Google Scholar 

  • Och L M, Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci Rev, 110: 26–57

    Article  Google Scholar 

  • Partin C A, Bekker A, Planavsky N J, Scott C T, Gill B C, Li C, Podkovyrov V, Maslov A, Konhauser K O, Lalonde S V, Love G D, Poulton S W, Lyons T W. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet Sci Lett, 369–370: 284–293

    Article  Google Scholar 

  • Pickard A. 2003. SHRIMP U-Pb zircon ages for the Palaeoproterozoic Kuruman Iron Formation, Northern Cape Province, South Africa: Evidence for simultaneous BIF deposition on Kaapvaal and Pilbara Cratons. Precambrian Res, 125: 275–315

    Article  Google Scholar 

  • Planavsky N J, McGoldrick P, Scott C T, Li C, Reinhard C T, Kelly A E, Chu X, Bekker A, Love G D, Lyons T W. 2011. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature, 477: 448–451

    Article  Google Scholar 

  • Planavsky N J, Reinhard C T, Wang X, Thomson D, McGoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyons T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346: 635–638

    Article  Google Scholar 

  • Planavsky N J, Reinhard C T, Isson T T, Ozaki K, Crockford P W. 2020. Large mass-independent oxygen isotope fractionations in mid-Proterozoic sediments: Evidence for a low-oxygen atmosphere? Astrobiology, 20: 628–636

    Article  Google Scholar 

  • Poulton S W, Canfield D E. 2005. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chem Geol, 214: 209–221

    Article  Google Scholar 

  • Qiao X F. 1976. Investigation on stratigraphy of the Qingbaikou Group of the Yenshan Mountains, North China. Sci Geol Sin, 3: 246–264

    Google Scholar 

  • Qu Y, Pan J, Ma S, Lei Z, Li L, Wu G. 2014. Geological characteristics and tectonic significance of unconformities in Mesoproterozoic successions in the northern margin of the North China Block. Geosci Front, 5: 127–138

    Article  Google Scholar 

  • Raiswell R, Canfield D E. 1998. Sources of iron for pyrite formation in marine sediments. Am J Sci, 298: 219–245

    Article  Google Scholar 

  • Reinhard C T, Raiswell R, Scott C, Anbar A D, Lyons T W. 2009. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science, 326: 713–716

    Article  Google Scholar 

  • Reinhard C T, Planavsky N J, Robbins L J, Partin C A, Gill B C, Lalonde S V, Bekker A, Konhauser K O, Lyons T W. 2013. Proterozoic ocean redox and biogeochemical stasis. Proc Natl Acad Sci USA, 110: 5357–5362

    Article  Google Scholar 

  • Riedman L A, Sadler P M. 2018. Global species richness record and biostratigraphic potential of early to middle Neoproterozoic eukaryote fossils. Precambrian Res, 319: 6–18

    Article  Google Scholar 

  • Rothman D H, Hayes J M, Summons R E. 2003. Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 100: 8124–8129

    Article  Google Scholar 

  • Roy S. 2006. Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth-Sci Rev, 77: 273–305

    Article  Google Scholar 

  • Rue E L, Smith G J, Cutter G A, Bruland K W. 1997. The response of trace element redox couples to suboxic conditions in the water column. Deep Sea Res Part I-Oceanogr Res Papers, 44: 113–134

    Article  Google Scholar 

  • Sahoo S K, Planavsky N J, Kendall B, Wang X, Shi X, Scott C, Anbar A D, Lyons T W, Jiang G. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546–549

    Article  Google Scholar 

  • Scott C, Wing B A, Bekker A, Planavsky N J, Medvedev P, Bates S M, Yun M, Lyons T W. 2014. Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir. Earth Planet Sci Lett, 389: 95–104

    Article  Google Scholar 

  • Shang M, Tang D, Shi X, Zhou L, Zhou X, Song H, Jiang G. 2019. A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga. Earth Planet Sci Lett, 527: 115797

    Article  Google Scholar 

  • Shang M H. 2020. Redox evolution of the Mesoproterozoic Ocean indicated by carbonate-associated iodine abundance. Dissertation for Doctoral Degree. Beijing: China University of Geosciences (Beijing). 1–87

    Google Scholar 

  • Sheldon N D, Tabor N J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci Rev, 95: 1–52

    Article  Google Scholar 

  • Shen B, Xiao S, Kaufman A J, Bao H, Zhou C, Wang H. 2008. Stratification and mixing of a post-glacial Neoproterozoic ocean: Evidence from carbon and sulfur isotopes in a cap dolostone from northwest China. Earth Planet Sci Lett, 265: 209–228

    Article  Google Scholar 

  • Shi M, Feng Q L, Zhu S X. 2014. Biotic evolution and its relation with geological events in the Proterozoic Yanshan Basin, North China. Sci China Earth Sci, 57: 903–918

    Article  Google Scholar 

  • Siebert C, Nägler T F, von Blanckenburg F, Kramers J D. 2003. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett, 211: 159–171

    Article  Google Scholar 

  • Siebert C, Kramers J D, Meisel T, Morel P, Nägler T F. 2005. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim Cosmochim Acta, 69: 1787–1801

    Article  Google Scholar 

  • Song D F, Wang T G, Zhang M, Tang Y J, Chen Y. 2021. Organic geochemical characteristics and the geological significance of bitumen from Tieling Formation of Shuangdong Anticline in North Hebei Depression. J Yangtze Univ (Nat Sci Ed), 18: 1–10

    Google Scholar 

  • Sperling E A, Rooney A D, Hays L, Sergeev V N, Vorob’eva N G, Sergeeva N D, Selby D, Johnston D T, Knoll A H. 2014. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology, 12: 373–386

    Article  Google Scholar 

  • Sun L F, Tang D J, Zhou L M, Fang H, Wu M T, Guo H, Zhou X Q, Zou J N, Shi X Y. 2020. A pulsed oxygenation in shallow seawater recorded by the Mesoproterozoic Wumishan Formation, North China Platform. J Paleogeogr, 22: 1181–1196

    Google Scholar 

  • Sun W D. 2020. Oxygen frugacity of Earth. Geochimica, 49: 1–20

    Google Scholar 

  • Tang D J, Shi X Y, Jiang G Q, Wu T, Ma J B, Zhou X Q. 2018. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and environmental implications. Gondwana Res, 58: 1–15

    Article  Google Scholar 

  • Tang D, Ma J, Shi X, Lechte M, Zhou X. 2020. The formation of marine red beds and iron cycling on the Mesoproterozoic North China Platform. Am Miner, 105: 1412–1423

    Article  Google Scholar 

  • Tian H, Zhang J, Li H K, Su W B, Zhou H Y, Yang L G, Xiang Z Q, Geng J Z, Liu H, Zhu S X, Xu Z Q. 2015. Zircon LA-MC-ICPMS U-Pb dating of tuff from mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and its geological significance. Acta Geosci Sin, 36: 647–658

    Google Scholar 

  • Tian H, Li H K, Zhang J, Su W B, Liu H, Xiang Z Q, Zhong Y. 2020. SHRIMP U-Pb dating for zircons from the tuff bed of the Mesoproterozoic Gaoyuzhuang Formation in Jixian Section, Tianjin, and its constraints on the Mesoproterozoic bio-environmental events. Geol Surv Min Res, 43: 153–160

    Google Scholar 

  • Tomitani A, Knoll A H, Cavanaugh C M, Ohno T. 2006. The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA, 103: 5442–5447

    Article  Google Scholar 

  • Tosti F, Riding R. 2017. Fine-grained agglutinated elongate columnar stromatolites: Tieling Formation, ca 1420 Ma, North China. Sedimentology, 64: 871–902

    Article  Google Scholar 

  • Trendall A F. 1973. Precambrian iron-formations of Australia. Econ Geol, 68: 1023–1034

    Article  Google Scholar 

  • Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol, 232: 12–32

    Article  Google Scholar 

  • Wang H Z. 1985. Paleogeographic Atlas of China. Beijing: Map Press

    Google Scholar 

  • Wang T G, Zhong N N, Wang C J, Zhu Y X, Liu Y, Song D F. 2016. Source beds and oil entrapment-alteration histories of fossil-oil-reservoirs in the Xiamaling Formation basal sandstone, Jibei Depression. Petr Sci Bull, 1: 24–37

    Google Scholar 

  • Wang H J, Zhang S C, Wang X M, Zhang B M, Bian L Z, Bi L N. 2020. Hydrocarbon generation from bacterial biomass in ca. 1320 million years ago. IOP Conf Ser-Earth Environ Sci, 600: 012032

    Article  Google Scholar 

  • Wang H Y, Zhang Z H, Li C, Algeo T J, Cheng M, Wang W. 2020. Spatiotemporal redox heterogeneity and transient marine shelf oxygenation in the Mesoproterozoic ocean. Geochim Cosmochim Acta, 270: 201–217

    Article  Google Scholar 

  • Wang J, Xiong X, Chen Y, Huang F. 2020. Redox processes in subduction zones: Progress and prospect. Sci China Earth Sci, 63: 1952–1968

    Article  Google Scholar 

  • Wang X M, Zhang S C, Wang H J, Bjerrum C J, Hammarlund E U, Haxen E R, Su J, Wang Y, Canfield D E. 2017. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. Am J Sci, 317: 861–900

    Article  Google Scholar 

  • Wei W, Frei R, Klaebe R, Tang D, Wei G Y, Li D, Tian L L, Huang F, Ling H F. 2021. A transient swing to higher oxygen levels in the atmosphere and oceans at ~1.4 Ga. Precambrian Res, 354: 106058

    Article  Google Scholar 

  • Wu H, Zhang S, Li Z, Li H, Dong J. 2005. New paleomagnetic results from the Yangzhuang Formation of the Jixian System, North China, and tectonic implications. Chin Sci Bull, 50: 1483

    Article  Google Scholar 

  • Yang B, Smith T M, Collins A S, Munson T J, Schoemaker B, Nicholls D, Cox G, Farkas J, Glorie S. 2018. Spatial and temporal variation in detrital zircon age provenance of the hydrocarbon-bearing upper Roper Group, Beetaloo Sub-basin, Northern Territory, Australia. Precambrian Res, 304: 140–155

    Article  Google Scholar 

  • Yang J D, Zhao F H, Qin S F, Zou Y, Song C G, Sun Y X. 2020. Geochemical characteristics and geological significance of carbonate rocks in the Middle Mesoproterozoic Yangzhuang Formation of northern margin of North China Craton. Nat Gas Geosci, 31: 268–281

    Google Scholar 

  • Yang X Q, Zhang Z H, Santosh M, Duan S G, Liang T. 2018. Anoxic to suboxic Mesoproterozoic ocean: Evidence from iron isotope and geochemistry of siderite in the Banded Iron Formations from North Qilian, NW China. Precambrian Res, 307: 115–124

    Article  Google Scholar 

  • Ye Y, Wang H, Wang X, Zhai L, Wu C, Canfield D E, Zhang S. 2020. Tracking the evolution of seawater Mo isotopes through the Ediacaran-Cambrian transition. Precambrian Res, 350: 105929

    Article  Google Scholar 

  • Ye Y, Wang H, Zhai L, Wang X, Wu C, Zhang S. 2018. Contrasting Mo-U enrichments of the basal Datangpo Formation in South China: Implications for the Cryogenian interglacial ocean redox. Precambrian Res, 315: 66–74

    Article  Google Scholar 

  • Ye Y, Zhang S, Wang H, Wang X, Tan C, Li M, Wu C, Canfield D E. 2021. Black shale Mo isotope record reveals dynamic ocean redox during the Mesoproterozoic Era. Geochem Persp Lett, 18: 16–21

    Article  Google Scholar 

  • Zhai M G, Hu B, Peng P, Zhao T P. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Sci Front, 21: 100–119

    Google Scholar 

  • Zhai M G. 2019. Tectonic evolution of the north China. J Geomech, 25: 722–745

    Google Scholar 

  • Zhang F L, Wang H J, Zhang S C, Deng S W, Ye Y T, Deng Y, Wang X M, Lyu D, Lu Y Z, Lyu Y T. 2021a. Evolution of Proterozoic eukaryotic algae and environmental constraints. Acta Geol Sin, 95: 1334–1355

    Google Scholar 

  • Zhang F L, Wang H J, Ye Y T, Deng Y, Lyu Y T, Wang X M, Yu Z C, Lyu D, Lu Y Z, Zhou C M, Bi L N, Deng S H, Zhang S C, Canfield D E. 2021b. The environmental context of carbonaceous compressions and implications for organism preservation 1.40 Ga and 0.63 Ga. Palaeogeogr Palaeoclimatol Palaeoecol, 573: 110449

    Article  Google Scholar 

  • Zhang K, Zhu X, Wood R A, Shi Y, Gao Z, Poulton S W. 2018. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nat Geosci, 11: 345–350

    Article  Google Scholar 

  • Zhang S C, Su J, Ma S H, Wang H J, Wang X M, He K, Wang H T, Canfield D E. 2021. Eukaryotic red and green algae populated the tropical ocean 1400 million years ago. Precambrian Res, 357: 106166

    Article  Google Scholar 

  • Zhang S C, Zhang B M, Bian L Z, Jin Z J, Wang D R, Chen J F. 2007. The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago. Sci China Ser D, 50: 527–535

    Article  Google Scholar 

  • Zhang S C, Wang X M, Hammarlund E U, Wang H J, Costa M M, Bjerrum C J, Connelly J N, Zhang B M, Bian L Z, Canfield D E. 2015. Orbital forcing of climate 1.4 billion years ago. Proc Natl Acad Sci USA, 112: E1406–E1413

    Google Scholar 

  • Zhang S C, Wang X M, Wang H J, Bjerrum C J, Hammarlund E U, Costa M M, Connelly J N, Zhang B M, Su J, Canfield D E. 2016. Sufficient oxygen for animal respiration 1,400 million years ago. Proc Natl Acad Sci USA, 113: 1731–1736

    Article  Google Scholar 

  • Zhang S C, Wang X M, Wang H J, Hammarlund E U, Su J, Wang Y, Canfield D E. 2017. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels. Biogeosciences, 14: 2133–2149

    Article  Google Scholar 

  • Zhang S C, Wang X M, Wang H J, Bjerrum C J, Hammarlund E U, Haxen E R, Wen H J, Ye Y T, Canfield D E. 2019. Paleoenvironmental proxies and what the Xiamaling Formation tells us about the mid-Proterozoic ocean. Geobiology, 17: 225–246

    Article  Google Scholar 

  • Zhang S H, Li Z X, Evans D A D, Wu H C, Li H Y, Dong J. 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth Planet Sci Lett, 353–354: 145–155

    Article  Google Scholar 

  • Zhang S H, Zhao Y, Ye H, Hu J M, Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Craton. Acta Petrol Sin, 29: 2481–2490

    Google Scholar 

  • Zhang S H, Zhao Y, Li X H, Ernst R E, Yang Z Y. 2017. The 1.33–1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth Planet Sci Lett, 465: 112–125

    Article  Google Scholar 

  • Zhang K, Zhu X K. 2013a. Basic geological characteristics of the sideriterich strata in the Xiamaling Formation, Jixian County. Acta Petrol Mineral, 32: 529–537

    Google Scholar 

  • Zhang K, Zhu X K. 2013b. Genesis of Siderites in the Xiamaling Formation of Jixian Section and Its Paleoceanic Significance. Acta Geol Sin, 87: 1430–1438

    Google Scholar 

  • Zhao C L, Li R F, Zhou J S. 1997. Petroleum Geology and Sedimentology of the Meso- Neo-Proterozoic in North China. Beijing: Geology Press

    Google Scholar 

  • Zhao W, Hu S, Wang Z, Zhang S, Wang T. 2018. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China. Pet Explor Dev, 45: 1–14

    Article  Google Scholar 

  • Zhao W, Wang X, Hu S, Zhang S, Wang H, Guan S, Ye Y, Ren R, Wang T. 2019. Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China. Sci China Earth Sci, 62: 909–934

    Article  Google Scholar 

  • Zhu S, Zhu M, Knoll A H, Yin Z, Zhao F, Sun S, Qu Y, Shi M, Liu H. 2016. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nat Commun, 7: 11500

    Article  Google Scholar 

  • Zhu S X, Du R L. 1980. Study of stromatolites in the Xiamaling Formation at Zhuolu and Xiahuayuan districts in Northwest Hebei Province. Symposium of stratigraphic paleontology, 8: 62–74

    Google Scholar 

  • Zhu X K, Zhang Y, Zhang F F, Gao Z F, Dong A G, Bao C, Guo Y L, Yan B, Liu H. 2013. Discovery of Siderite Concretes in Mesoproterozoic Xiamaling Formation, Jixian Section. Geol Rev, 59: 816–822

    Google Scholar 

  • Zhu X, Wang S, Su W, Zhao T, Pang L, Zhai M. 2020. Zircon U-Pb geochronology of tuffite beds in the Baishugou Formation: Constraints on the revision of Ectasian System at the southern margin of the North China Craton. Sci China Earth Sci, 63: 1817–1830

    Article  Google Scholar 

  • Zhu Y S, Yang J H, Wang H, Wu F Y. 2020. Mesoproterozoic (~1.32 Ga) modification of lithospheric mantle beneath the North China Craton caused by break-up of the Columbia supercontinent. Precambrian Res, 342: 105674

    Article  Google Scholar 

  • Zou Y, Liu D, Zhao F, Kuang H, Song C, Sun Y, Zhou R, Cheng J. 2020. Reconstruction of nearshore chemical conditions in the Mesoproterozoic: Evidence from red and grey beds of the Yangzhuang Formation, North China Craton. Int Geol Rev, 62: 1433–1449

    Article  Google Scholar 

  • Zumberge J A, Rocher D, Love G D. 2019. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid-Neoproterozoic marine communities. Geobiology, 18: 326–347

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate Professor Donald E Canfield at the University of Southern Denmark for his great help in research and paper writing, and Dr. Yan Deng, Yuke Liu, and Yitong Lyu at the Research Institute of Petroleum Exploration and Development for their help in the graphing and text revision. Thanks also go to Genming Luo, Wei Wei, and an anonymous reviewer for their valuable suggestions on the revision. This work was supported by the Strategic Priority Science and Technology Program of Chinese Academy of Sciences (Class A) (Grant No. XDA14010101), the National Key Research and Development Program (Grant No. 2017YFC0603101), and the National Natural Science Foundation of China (Grant Nos. 41872125, 41530317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, H., Wang, X. et al. The Mesoproterozoic Oxygenation Event. Sci. China Earth Sci. 64, 2043–2068 (2021). https://doi.org/10.1007/s11430-020-9825-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9825-x

Keywords

Navigation