Skip to main content

East Asian paleoclimate change in the Weihe Basin (central China) since the middle Eocene revealed by clay mineral analysis

Abstract

Obtaining a continuous sedimentary record of Cenozoic East Asian paleoclimate change is key to understand the origin, evolution and driving mechanism of the East Asian monsoon and climate change. Based on the continuous Cenozoic fluvial and lacustrine sedimentary sequence in the Weihe Basin, central China, we carried out research on the content and crystal parameters of clay minerals. The paleoclimate change since the middle Eocene was reconstructed accordingly. The results show that smectite and illite are the dominant clay minerals in fluvial-lacustrine sediments of Weihe Basin. The crystallinity of illite, the chemical index of illite, the ratio of smectite to illite and chlorite decrease gradually, which indicates that chemical weathering in the Weihe River watershed stepwise weakened since the middle Eocene, under the background of a semi-arid and semi-humid climate. The formation of palygorskite may be affected by a weak diagenesis. In this case, the content of smectite and the illite crystallinity caused by the weathering in the corresponding period may be actually higher than that of the current, which indicates that the climate in the Weihe Basin region was relatively warm and humid from the middle Eocene to Pliocene. With the decrease of Cenozoic global temperature and the continuous accumulation of sediments, the intensity of chemical weathering in the Weihe Basin gradually weakened, and the East Asian monsoon climate gradually evolved until becoming dry in the Quaternary. Evidence from clay minerals also indicates that the aridification in the Weihe Basin from the late Eocene to the Oligocene may be a response to the global cooling event at the Eocene-Oligocene transition.

This is a preview of subscription content, access via your institution.

References

  1. An Z S. 2000. The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev, 19: 171–187

    Article  Google Scholar 

  2. Ao H, Dupont-Nivet G, Rohling E J, Zhang P, Ladant J B, Roberts A P, Licht A, Liu Q, Liu Z, Dekkers M J, Coxall H K, Jin Z, Huang C, Xiao G, Poulsen C J, Barbolini N, Meijer N, Sun Q, Qiang X, Yao J, An Z. 2020. Orbital climate variability on the northeastern Tibetan Plateau across the Eocene-Oligocene transition. Nat Commun, 11: 5249

    Article  Google Scholar 

  3. Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 76: 803

    Article  Google Scholar 

  4. Bjørlykke K. 1998. Clay mineral diagenesis in sedimentary basins—A key to the prediction of rock properties. Examples from the North Sea Basin. Clay Miner, 33: 15–34

    Article  Google Scholar 

  5. Bougeois L, Dupont-Nivet G, de Rafélis M, Tindall J C, Proust J N, Reichart G J, de Nooijer L J, Guo Z, Ormukov C. 2018. Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters. Earth Planet Sci Lett, 485: 99–110

    Article  Google Scholar 

  6. Caves Rugenstein J K, Chamberlain C P. 2018. The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective. Earth-Sci Rev, 185: 1129–1156

    Article  Google Scholar 

  7. Chamley H. 1989. Clay Sedimentology. New York: Springer. 623

    Book  Google Scholar 

  8. Clift P D, Wan S M, Blusztajn J. 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies. Earth-Sci Rev, 130: 86–102

    Article  Google Scholar 

  9. Deng Y P, Hong H L, Yin K, Xu Y M, Du J, Zhang K X. 2010. Clay mineralogy and its palaeoclimatic indicator of the Late Paleocene to Early Oligocene Sediments in Yongdeng Lanzhou Basin (in Chinese with English abstract). Geoscience, 24: 793–800

    Google Scholar 

  10. Ding Z L, Rutter N, Han J T, Liu T S. 1992. A coupled environmental system formed at about 2.5 Ma in East Asia. Palaeogeogr Palaeoclimatol Palaeoecol, 94: 223–242

    Article  Google Scholar 

  11. Ding Z L, Sun J M, Yang S L, Liu T S. 1998. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophys Res Lett, 25: 1225–1228

    Article  Google Scholar 

  12. Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai S, Fang X. 2007. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 445: 635–638

    Article  Google Scholar 

  13. Fang X, An Z, Clemens S C, Zan J, Shi Z, Yang S, Han W. 2020. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. Proc Natl Acad Sci USA, 117: 24729–24734

    Article  Google Scholar 

  14. Fang X, Galy A, Yang Y, Zhang W, Ye C, Song C. 2019. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology, 47: 992–996

    Article  Google Scholar 

  15. Fang X, Zan J, Appel E, Lu Y, Song C, Dai S, Tuo S. 2015. An Eocene-Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys J Int, 201: 78–89

    Article  Google Scholar 

  16. Frey M. 1970. Step from diagenesis to metamorphism in pelitic rocks during alpine orogenesis. Sedimentology, 15: 261–279

    Article  Google Scholar 

  17. Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163

    Article  Google Scholar 

  18. Guo Z T, Peng S Z. 2007. Clay mineral composition of the Tertiary Red Clay and the Quaternary loess-paleosols as well as its environmental implication. Quat Sci, 27: 277–285

    Google Scholar 

  19. Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. 2008. A major reorganization of Asian climate by the early Miocene. Clim Past, 4: 153–174

    Article  Google Scholar 

  20. Guo Z T. 2017. Loess Plateau attests to the onsets of monsoon and deserts (in Chinese). Sci Sin Terr, 47: 421–437

    Article  Google Scholar 

  21. Gylesjö S, Arnold E. 2006. Clay mineralogy of a red clay-loess sequence from Lingtai, the Chinese Loess Plateau. Glob Planet Change, 51: 181–194

    Article  Google Scholar 

  22. Hu B, Zhang C, Wu H, Hao Q, Guo Z. 2019. Clay mineralogy of an Eocene fluvial-lacustrine sequence in Xining Basin, Northwest China, and its paleoclimatic implications. Sci China Earth Sci, 62: 571–584

    Article  Google Scholar 

  23. Huang S J. 1990. Identification and diagenetic significance of interstratified illite-montmorillonite series. Lithofacies Palaeogeography, 5: 23–29

    Google Scholar 

  24. Ji J F, Chen J, Wang H T. 1997. Crystallinity of illite from the Luochuan loess-paleosol sequence, Shanxi province. Geol Rev, (5): 181–185

    Google Scholar 

  25. Jia L P, Zhang Y P, Huang W B, Tang Y J, Ji H X, You Y Z, Ding S Y, Huang X S. 1966. Symposium of the Field Conference on the Cenozoic Group of Lantian, Shaanxi Province. Beijing: Science Press. 311

    Google Scholar 

  26. Jiang H, Ding Z. 2008. A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China. Palaeogeogr Palaeoclimatol Palaeoecol, 265: 30–38

    Article  Google Scholar 

  27. Kaakinen A. 2005. A terrestrial sequence in Lantian—A window into the late Neogene palaeoenvironments of Northern China. Department of Earth Sciences. University of Helsinki

  28. Kaakinen A, Lunkka J P. 2003. Sedimentation of the Late Miocene Bahe Formation and its implications for stable environments adjacent to Qinling mountains in Shaanxi, China. J Asian Earth Sci, 22: 67–78

    Article  Google Scholar 

  29. Li X, Wei G, Shao L, Liu Y, Liang X, Jian Z, Sun M, Wang P. 2003. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in SE Asia. Earth Planet Sci Lett, 211: 207–220

    Article  Google Scholar 

  30. Li Y, Song Y, Zeng M, Lin W, Orozbaev R, Cheng L, Chen X, Halmurat T. 2018. Evaluating the paleoclimatic significance of clay mineral records from a late Pleistocene loess-paleosol section of the Ili Basin, Central Asia. Quat Res, 89: 660–673

    Article  Google Scholar 

  31. Li Z C, Li W H, Li Y X, Li Y H, Han W, Wen J H, Chen M, Qin Z. 2015. Sedimentary facies of the Cenozoic in Weihe Basin. J Palaeogeogr, 17: 529–540

    Google Scholar 

  32. Licht A, van Cappelle M, Abels H A, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C, Terry Jr D, Adriaens R, Boura A, Guo Z, Soe A N, Quade J, Dupont-Nivet G, Jaeger J J. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513: 501–506

    Article  Google Scholar 

  33. Liu J, Zhang P, Lease R O, Zheng D, Wan J, Wang W, Zhang H. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584: 281–296

    Article  Google Scholar 

  34. Liu T, Ding Z. 1998. Chinese loess and the paleomonsoon. Annu Rev Earth Planet Sci, 26: 111–145

    Article  Google Scholar 

  35. Liu Y, Song C, Meng Q, He P, Yang R, Huang R, Chen S, Wang D, Xing Z. 2020. Paleoclimate change since the Miocene inferred from clay-mineral records of the Jiuquan Basin, NW China. Palaeogeogr Palaeoclimatol Palaeoecol, 550: 109730

    Article  Google Scholar 

  36. Liu Z, Hong H, Wang C, Han W, Yin K, Ji K, Fang Q, Algeo T. 2019. Oligocene-Miocene (28–13 Ma) climato-tectonic evolution of the northeastern Qinghai-Tibetan Plateau evidenced by mineralogical and geochemical records of the Xunhua Basin. Palaeogeogr Palaeoclimatol Palaeoecol, 514: 98–108

    Article  Google Scholar 

  37. Liu Z, Zhao Y, Colin C, Stattegger K, Wiesner M G, Huh C A, Zhang Y, Li X, Sompongchaiyakul P, You C F, Huang C Y, Liu J T, Siringan F P, Le K P, Sathiamurthy E, Hantoro W S, Liu J, Tuo S, Zhao S, Zhou S, He Z, Wang Y, Bunsomboonsakul S, Li Y. 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Sci Rev, 153: 238–273

    Article  Google Scholar 

  38. Long L Q, Fang X M, Miao Y F, Bai Y, Wang Y L. 2011. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin. Chin Sci Bull, 56: 1221–1231

    Article  Google Scholar 

  39. Lu H Y. 2015. Driving force behind global cooling in the Cenozoic: An ongoing mystery. Sci Bull, 60: 2091–2095

    Article  Google Scholar 

  40. Lu H Y, Guo Z T. 2014. Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review. Sci China Earth Sci, 57: 70–79

    Article  Google Scholar 

  41. Lu H Y, Wang X Y, Li L P. 2010. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. Geol Soc Lond Spec Publ, 342: 29–44

    Article  Google Scholar 

  42. Lu H Y, Wang X Y, Wang Y, Zhang X J, Yi S W, Wang X Y, Stevens T, Kurbanov R, Marković S B. 2021. Chinese loess and the Asian monsoon: What we know and what remains unknown. Quat Int, https://doi.org/10.1016/j.quaint.2021.04.027

  43. Lu H Y, Zhang H Z, Wang Y C, Zhao L, Wang H L, Sun W F, Zhang H Y. 2018. Cenozoic depositional sequence in the Weihe Basin (Central China): A long-term record of Asian monsoon precipitation from the greenhouse to icehouse Earth. Quat Sci, 38: 1057–1067

    Google Scholar 

  44. Ma Y, Fan M, Lu Y, Liu H, Zhang S, Liu X. 2019. Stable isotope record of middle Eocene summer monsoon and its instability in eastern China. Glob Planet Change, 175: 103–112

    Article  Google Scholar 

  45. Meng Q R. 2017. Origin of the Qinling Mountains (in Chinese). Sci Sin Terr, 47: 412–420

    Article  Google Scholar 

  46. Miao Y F, Fang X M, Song Z C, Wu F L, Han W X, Dai S, Song C H. 2008. Late Eocene pollen records and palaeoenvironmental changes in northern Tibetan Plateau. Sci China Ser D-Earth Sci, 51: 1089–1098

    Article  Google Scholar 

  47. Miao Y, Herrmann M, Wu F, Yan X, Yang S. 2012. What controlled Mid-Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci Rev, 112: 155–172

    Article  Google Scholar 

  48. Pagani M, Huber M, Liu Z, Bohaty S M, Henderiks J, Sijp W, Krishnan S, DeConto R M. 2011. The role of carbon dioxide during the onset of Antarctic glaciation. Science, 334: 1261–1264

    Article  Google Scholar 

  49. Pearson P N, Foster G L, Wade B S. 2009. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature, 461: 1110–1113

    Article  Google Scholar 

  50. Petschick R. 2000. MacDiff 4.2.2: A software of calculating concentration of minerals for XRD data. Online: http://servermac.geologie.un-frank-furt.de/Rainer.html

  51. Qiang X, An Z, Song Y, Chang H, Sun Y, Liu W, Ao H, Dong J, Fu C, Wu F, Lu F, Cai Y, Zhou W, Cao J, Xu X, Ai L. 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci China Earth Sci, 54: 136–144

    Article  Google Scholar 

  52. Quan C, Liu Y S C, Utescher T. 2012a. Paleogene temperature gradient, seasonal variation and climate evolution of northeast China. Palaeogeogr Palaeoclimatol Palaeoecol, 313–314: 150–161

    Article  Google Scholar 

  53. Quan C, Liu Y S C, Utescher T. 2012b. Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeogr Palaeoclimatol Palaeoecol, 365–366: 302–311

    Article  Google Scholar 

  54. Quan C, Liu Y S, Utescher T. 2011. Paleogene evolution of precipitation in Northeastern China supporting the Middle Eocene intensification of the East Asian monsoon. Palaios, 26: 743–753

    Article  Google Scholar 

  55. Quan C, Liu Z, Utescher T, Jin J, Shu J, Li Y, Liu Y S C. 2014. Revisiting the Paleogene climate pattern of East Asia: A synthetic review. Earth-Sci Rev, 139: 213–230

    Article  Google Scholar 

  56. Reynolds R C. 1980. Interstratified clay minerals. London: In: Brindley G W, Brown G, eds. Mineralogical Society. Elsevier. 249–303

  57. Roe G H, Ding Q, Battisti D S, Molnar P, Clark M K, Garzione C N. 2016. A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50 Ma. J Geophys Res-Atmos, 121: 5453–5470

    Article  Google Scholar 

  58. Singer A. 1980. The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Sci Rev, 15: 303–326

    Article  Google Scholar 

  59. Singer A, Galan E. 2011. Developments in Palygorskite-Sepiolite Research, Volume 3. Elsevier. 520

  60. Song B, Zhang K, Lu J, Wang C, Xu Y, Greenough J. 2013. The middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift. Can J Earth Sci, 50: 183–196

    Article  Google Scholar 

  61. Song B, Zhang K, Zhang L, Ji J, Hong H, Wei Y, Xu Y, Algeo T J, Wang C. 2018. Qaidam Basin paleosols reflect climate and weathering intensity on the northeastern Tibetan Plateau during the Early Eocene Climatic Optimum. Palaeogeogr Palaeoclimatol Palaeoecol, 512: 6–22

    Article  Google Scholar 

  62. Spicer R A, Yang J, Herman A B, Kodrul T, Maslova N, Spicer T E V, Aleksandrova G, Jin J. 2016. Asian Eocene monsoons as revealed by leaf architectural signatures. Earth Planet Sci Lett, 449: 61–68

    Article  Google Scholar 

  63. Sun D H, Shaw J, An Z S, Cheng M Y, Yue L P. 1998. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic Eolian sediments from the Chinese Loess Plateau. Geophys Res Lett, 25: 85–88

    Article  Google Scholar 

  64. Sun J, Ni X, Bi S, Wu W, Ye J, Meng J, Windley B F. 2014. Synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in Asia. Sci Rep, 4: 7463

    Article  Google Scholar 

  65. Sun W F, Lu H Y, Wang Y C, Feng H, Wang H L, Li Y X, Wu G H, Li S Y, Jiang P X. 2017. Deposits and Palaeoenvironmental Record of the Eocene Honghe Formation in Lantian, Weihe Basin, Central China. Geol J China Univ, 23: 533–544

    Google Scholar 

  66. Sun X, Wang P. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 222: 181–222

    Article  Google Scholar 

  67. Tierney J E, Poulsen C J, Montañez I P, Bhattacharya T, Feng R, Ford H L, Hönisch B, Inglis G N, Petersen S V, Sagoo N, Tabor C R, Thirumalai K, Zhu J, Burls N J, Foster G L, Goddéris Y, Huber B T, Ivany L C, Kirtland Turner S, Lunt D J, McElwain J C, Mills B J W, Otto-Bliesner B L, Ridgwell A, Zhang Y G. 2020. Past climates inform our future. Science, 370: eaay3701

    Article  Google Scholar 

  68. Velde B, Meunier A. 2008. The Origin of Clay Minerals in Soils and Weathered Rocks. Berlin, Heidelberg: Springer. 406

    Book  Google Scholar 

  69. Wan S, Li A, Clift P D, Stuut J B W. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 561–582

    Article  Google Scholar 

  70. Wang B, Zheng H, He Z, Wang P, Kaakinen A, Zhou X. 2014. Middle Miocene eolian sediments on the southern Chinese Loess Plateau dated by magnetostratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol, 411: 257–266

    Article  Google Scholar 

  71. Wang C, Adriaens R, Hong H, Elsen J, Vandenberghe N, Lourens L J, Gingerich P D, Abels H A. 2017. Clay mineralogical constraints on weathering in response to early Eocene hyperthermal events in the Bighorn Basin, Wyoming (Western Interior, USA). Geol Soc Am Bull, 129: 997–1011

    Article  Google Scholar 

  72. Wang C, Hong H, Li Z, Liang G, Xie J, Song B, Song E, Zhang K. 2013a. Climatic and tectonic evolution in the North Qaidam since the Cenozoic: Evidence from sedimentology and mineralogy. J Earth Sci, 24: 314–327

    Article  Google Scholar 

  73. Wang C, Hong H, Li Z, Yin K, Xie J, Liang G, Song B, Song E, Zhang K. 2013b. The Eocene-Oligocene climate transition in the Tarim Basin, Northwest China: Evidence from clay mineralogy. Appl Clay Sci, 74: 10–19

    Article  Google Scholar 

  74. Wang D, Lu S, Han S, Sun X, Quan C. 2013. Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics. J Asian Earth Sci, 62: 776–787

    Article  Google Scholar 

  75. Wang H, Lu H, Zhao L, Zhang H, Lei F, Wang Y. 2019. Asian monsoon rainfall variation during the Pliocene forced by global temperature change. Nat Commun, 10: 5272

    Article  Google Scholar 

  76. Wang X, Lu H, Ji J, Wang X, Zhao J, Huang B, Li Z. 2006. Origin of the Red Earth sequence on the northeastern Tibetan Plateau and its implications for regional aridity since the middle Miocene. Sci China Ser D-Earth Sci, 49: 505–517

    Article  Google Scholar 

  77. Wang X X, Wang T, Zhang C L. 2015. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution. Sci China Earth Sci, 58: 1497–1512

    Article  Google Scholar 

  78. Wang Y, Lu H, Wang K, Wang Y, Li Y, Clemens S, Lv H, Huang Z, Wang H, Hu X, Lu F, Zhang H. 2020. Combined high- and low-latitude forcing of East Asian monsoon precipitation variability in the Pliocene warm period. Sci Adv, 6: eabc2414

    Article  Google Scholar 

  79. Weaver C E. 1989. Clays, Muds, and Shales. Amsterdam: Elsevier Science. 785

    Google Scholar 

  80. Wei G, Li X H, Liu Y, Shao L, Liang X. 2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography, 21: PA4214

    Article  Google Scholar 

  81. Westerhold T, Marwan N, Drury A J, Liebrand D, Agnini C, Anagnostou E, Barnet J S K, Bohaty S M, De Vleeschouwer D, Florindo F, Frederichs T, Hodell D A, Holbourn A E, Kroon D, Lauretano V, Littler K, Lourens L J, Lyle M, Pälike H, Röhl U, Tian J, Wilkens R H, Wilson P A, Zachos J C. 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369: 1383–1387

    Article  Google Scholar 

  82. Xiao G Q, Abels H A, Yao Z Q, Dupont-Nivet G, Hilgen F J. 2010. Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China). Clim Past, 6: 501–513

    Article  Google Scholar 

  83. Xue X X. 1981. An Early Pleistocene mammalian fauna and its stratigraphy of the River You, Weinan, Shensi (in Chinese). Vertebr Palasiat, 19: 35–44

    Google Scholar 

  84. Yang R, Yang Y, Fang X, Ruan X, Galy A, Ye C, Meng Q, Han W. 2019. Late Miocene intensified tectonic uplift and climatic aridification on the Northeastern Tibetan Plateau: Evidence from clay mineralogical and geochemical records in the Xining Basin. Geochem Geophys Geosyst, 20: 829–851

    Article  Google Scholar 

  85. Ye C, Yang Y, Fang X, Hong H, Wang C, Yang R, Zhang W. 2018. Chlorite chemical composition change in response to the Eocene-Oligocene climate transition on the northeastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 512: 23–32

    Article  Google Scholar 

  86. Yue L P, Heller F, Qiu Z X, Zhang L, Xie G P, Qiu Z D, Zhang Y X. 2000. Magnetostratigraphy and paleoenvironmental record of Tertiary deposits of Lanzhou Basin. Chin Sci Bull, 45: 1998–2002

    Article  Google Scholar 

  87. Zachos J C, Dickens G R, Zeebe R E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279–283

    Article  Google Scholar 

  88. Zhang C, Guo Z. 2014. Clay mineral changes across the Eocene-Oligocene transition in the sedimentary sequence at Xining occurred prior to global cooling. Palaeogeogr Palaeoclimatol Palaeoecol, 411: 18–29

    Article  Google Scholar 

  89. Zhang G W, Zhang B R, Yuan X C, Xiao Q H. 2001. Qinling Orogenic Belt and Continental Dynamics (in Chinese). Beijing: Science Press. 863

    Google Scholar 

  90. Zhang J, Xie G P, Li J J, Song C H, Zhao Z J. 2011. Mammal fossils and ecological environment features of the Neogene from Qin’an area, Gansu Province. Quat Sci, 2011, 31: 614–621

    Google Scholar 

  91. Zhang R, Kravchinsky V A, Yue L. 2012. Link between global cooling and mammalian transformation across the Eocene-Oligocene boundary in the continental interior of Asia. Int J Earth Sci-Geol Rundsch, 101: 2193–2200

    Article  Google Scholar 

  92. Zhang Y P, Huang W B, Tang Y J, Ji H X, You Y Z, Tong Y S, Ding S Y, Huang X S, Zheng J J. 1978. Cenozoic of the Lantian Region, Shaanxi Province. Beijing: Science Press. 60

    Google Scholar 

  93. Zhao L, Lu H Y, Tang L Y. 2018. Cenozic palynological records and vegetation evolution in the Weihe Basin, centra China. Quat Sci, 38: 1083–1093

    Google Scholar 

  94. Zhao L, Lu H, Wang H, Meadows M, Ma C, Tang L, Lei F, Zhang H. 2020. Vegetation dynamics in response to evolution of the Asian Monsoon in a warm world: Pollen evidence from the Weihe Basin, central China. Glob Planet Change, 193: 103269

    Article  Google Scholar 

  95. Zheng H, An Z, Shaw J. 1992. New contributions to Chinese Plio-Pleistocene magnetostratigraphy. Phys Earth Planet Inter, 70: 146–153

    Article  Google Scholar 

  96. Zhu M, Ding Z L, Wang X, Chen Z L, Jiang H C, Dong X X, Ji J L, Tang Z H, Luo P. 2010. High-resolution carbon isotope record for the Paleocene-Eocene thermal maximum from the Nanyang Basin, Central China. Chin Sci Bull, 55: 2400–2405

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jiangli PANG, Dr. Yali ZHOU, Dr. Hanlin WANG, Dr. Hongyan ZHANG, Dr. Rong HU, Dr. Lin ZHAO, Fang LEI, Zihan HUANG, Qinmian XU, Jingjing WANG, Yao CHEN, Chenghong LIANG, Fan YANG, Xiaoyi DONG, Xiaochun YU, Shaolei HU, Jing HE, Xin GAO et al. for their help with field work and laboratory testing. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41888101, 41690111, 41991320 & 41920104005).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huayu Lu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyu, H., Lu, H., Wang, Y. et al. East Asian paleoclimate change in the Weihe Basin (central China) since the middle Eocene revealed by clay mineral analysis. Sci. China Earth Sci. 64, 1285–1304 (2021). https://doi.org/10.1007/s11430-020-9799-6

Download citation

Keywords

  • Cenozoic epoch
  • Weihe Basin
  • Clay mineral
  • Paleoclimate
  • East Asian moonsoon