Skip to main content

Gold solubility in silicate melts and fluids: Advances from high-pressure and high-temperature experiments

Abstract

The solubility of Au in silicate melts and fluids governs the enrichment and migration of Au during the formation of magmatic-hydrothermal Au deposits. Large Au deposits require vast amounts of Au to migrate from the upper mantle-lower crust to the shallow crust, and high Au solubility in magma and hydrothermal fluid facilitates the formation of Au-rich magma and fluid in the crust and mantle source and efficient transport This paper reviews recent high-pressure and high-temperature experimental studies on Au species in magmas and hydrothermal fluids, the partitioning behavior of Au between silicate melts and fluids, and the effects of temperature, pressure, oxygen fugacity, sulfur fugacity, silicate melt composition, and volatiles (H2O, CO2, chlorine, and sulfur) on the solubility of Au in magma. We show that the solubility of Au in magma is largely controlled by the volatiles in the magma: the higher the content of reduced sulfur (S2− and HS) in the magma, the higher the solubility of Au. Under high-temperature, high-pressure, H2O-rich, and intermediate oxygen fugacity conditions, magma can dissolve more reduced sulfur species, thus enhancing the ability of the magma to transport Au. If the ore-forming elements of the Au deposits in the North China Craton originate from mantle-derived magmas and fluids, we can conclude, in terms of massive Au migration, that these deep Au-rich magmas might have been generated under H2O-rich and moderately oxidized conditions (S2− coexists with S6+). The big mantle wedge beneath East Asia was metasomatized by melts and fluids from the dehydration of the Early Cretaceous paleo-Pacific stagnant slab, which not only caused thinning of the North China Craton, but also created physicochemical conditions favorable for massive Au migration.

References

  1. Audétat A. 2019. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Econ Geol, 114: 1033–1056

    Article  Google Scholar 

  2. Audétat A, Simon A C. 2012. Magmatic controls on porphyry copper genesis. Soc Econ Geol Spec Publ, 16: 553–572

    Google Scholar 

  3. Audétat A, Lowenstern J B. 2014. Melt inclusions. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2 ed. 13: 143–173

  4. Baker D R, Moretti R. 2011. Modeling the solubility of sulfur in magmas: A 50-year old geochemical challenge. Rev Mineral Geochem, 73: 167–213

    Article  Google Scholar 

  5. Bell A S, Simon A, Guillong M. 2009. Experimental constraints on Pt, Pd and Au partitioning and fractionation in silicate melt -sulfide -oxide -aqueous fluid systems at 800°C, 150 MPa and variable sulfur fugacity. Geochim Cosmochim Acta, 73: 5778–5792

    Article  Google Scholar 

  6. Bell A S, Simon A, Guillong M. 2011. Gold solubility in oxidized and reduced, water-saturated mafic melt. Geochim Cosmochim Acta, 75: 1718–1732

    Article  Google Scholar 

  7. Binder B, Wenzel T, Keppler H. 2018. The partitioning of sulfur between multicomponent aqueous fluids and felsic melts. Contrib Mineral Petrol, 173: 18

    Article  Google Scholar 

  8. Bodnar R J, Lecumberri-Sanchez P, Moncada D, Steele-Macinnis M. 2014. Fluid inclusions in hydrothermal ore deposit. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2 ed. 119–142

  9. Borisov A, Palme H. 1996. Experimental determination of the solubility of Au in silicate melts. Mineral Petrol, 56: 297–312

    Article  Google Scholar 

  10. Botcharnikov R E, Linnen R L, Holtz F. 2010. Solubility of Au in Cl- and S-bearing hydrous silicate melts. Geochim Cosmochim Acta, 74: 2396–2411

    Article  Google Scholar 

  11. Botcharnikov R E, Linnen R L, Wilke M, Holtz F, Jugo P J, Berndt J. 2011. High gold concentrations in sulphide-bearing magma under oxidizing conditions. Nat Geosci, 4: 112–115

    Article  Google Scholar 

  12. Brenan J M, Bennett N R, Zajacz Z. 2016. Experimental results on fractionation of the highly siderophile elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation. Rev Mineral Geochem, 81: 1–87

    Article  Google Scholar 

  13. Brugger J, Liu W, Etschmann B, Mei Y, Sherman D M, Testemale D. 2016. A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? Chem Geol, 447: 219–253

    Article  Google Scholar 

  14. Chen Y, Pirajno F, Li N, Guo D, Lai Y. 2009. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: Implications for ore genesis. Ore Geol Rev, 35: 245–261

    Article  Google Scholar 

  15. Colin A, Schmidt C, Pokrovski G S, Wilke M, Borisova A Y, Toplis M J. 2020. In situ determination of sulfur speciation and partitioning in aqueous fluid-silicate melt systems. Geochem Persp Let, Let: 31–35

  16. Fan H R, Hu F F, Wilde S A, Yang K F, Jin C W. 2011. The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: Fluid-inclusion and stable-isotope evidence for an origin from magmatic fluids. Int Geol Rev, 53: 25–45

    Article  Google Scholar 

  17. Fortin M A, Riddle J, Desjardins-Langlais Y, Baker D R. 2015. The effect of water on the sulfur concentration at sulfide saturation (SCSS) in natural melts. Geochim Cosmochim Acta, 160: 100–116

    Article  Google Scholar 

  18. Frost D J, McCammon C A. 2008. The redox state of Earth’s mantle. Annu Rev Earth Planet Sci, 36: 389–420

    Article  Google Scholar 

  19. Frank M R, Candela P A, Piccoli P M, Glascock M D. 2002. Gold solubility, speciation, and partitioning as a function of HCl in the brine-silicate melt-metallic gold system at 800°C and 100 MPa. Geochim Cosmochim Acta, 66: 3719–3732

    Article  Google Scholar 

  20. Goldfarb R J, Santosh M. 2014. The dilemma of the Jiaodong gold deposits: Are they unique? Geosci Front, 5: 139–153

    Article  Google Scholar 

  21. Groves D I, Santosh M. 2016. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geosci Front, 7: 409–417

    Article  Google Scholar 

  22. Hanley J J, Pettke T, Mungall J E, Spooner E T C. 2005. The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800°C: A laser ablation ICP-MS pilot study of synthetic fluid inclusions. Geochim Cosmochim Acta, 69: 2593–2611

    Article  Google Scholar 

  23. Heinrich C A, Candela P A. 2014. Fluids and ore formation in the Earth’s crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2 ed. 1–28

  24. von der Heyden B P. 2020. Shedding light on ore deposits: A review of synchrotron X-ray radiation use in ore geology research. Ore Geol Rev, 117: 103328

    Article  Google Scholar 

  25. Jégo S, Pichavant M, Mavrogenes J A. 2010. Controls on gold solubility in arc magmas: An experimental study at 1000°C and 4 kbar. Geochim Cosmochim Acta, 74: 2165–2189

    Article  Google Scholar 

  26. Jégo S, Pichavant M. 2012. Gold solubility in arc magmas: Experimental determination of the effect of sulfur at 1000°C and 0.4 GPa. Geochim Cosmochim Acta, 84: 560–592

    Article  Google Scholar 

  27. Jégo S, Nakamura M, Kimura J I, Iizuka Y, Chang Q, Zellmer G F. 2016. Is gold solubility subject to pressure variations in ascending arc magmas? Geochim Cosmochim Acta, 188: 224–243

    Article  Google Scholar 

  28. Jugo P J, Wilke M, Botcharnikov R E. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity. Geochim Cosmochim Acta, 74: 5926–5938

    Article  Google Scholar 

  29. Keppler H. 2013. Volatiles under high pressure. In: Karato S, ed. Physics and Chemistry of the Deep Earth. Hoboken: Wiley Blackwell. 3–37

    Google Scholar 

  30. Kiseeva E S, Fonseca R O C, Smythe D J. 2017. Chalcophile elements and sulfides in the upper mantle. Elements, 13: 111–116

    Article  Google Scholar 

  31. Li J W, Bi S J, Selby D, Chen L, Vasconcelos P, Thiede D, Zhou M F, Zhao X F, Li Z K, Qiu H N. 2012a. Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth Planet Sci Lett, 349–350: 26–37

    Article  Google Scholar 

  32. Li J W, Li Z K, Zhou M F, Chen L, Bi S J, Deng X D, Qiu H N, Cohen B, Selby D, Zhao X F. 2012b. The Early Cretaceous Yangzhaiyu Lode gold deposit, North China Craton: A link between craton reactivation and gold veining. Econ Geol, 107: 43–79

    Article  Google Scholar 

  33. Li Y, Audétat A. 2013. Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: Implications for the formation of Au-rich magmas and crust-mantle differentiation. Geochim Cosmochim Acta, 118: 247–262

    Article  Google Scholar 

  34. Li Y, Feng L, Kiseeva E S, Gao Z, Guo H, Du Z, Wang F, Shi L. 2019. An essential role for sulfur in sulfide-silicate melt partitioning of gold and magmatic gold transport at subduction settings. Earth Planet Sci Lett, 528: 115850

    Article  Google Scholar 

  35. Liu W, Etschmann B, Testemale D, Hazemann J L, Rempel K, Müller H, Brugger J. 2014. Gold transport in hydrothermal fluids: Competition among the Cl, Br, HS and NH3(aq) ligands. Chem Geol, 376: 11–19

    Article  Google Scholar 

  36. Liu X, Matsukage K N, Li Y, Takahashi E, Suzuki T, Xiong X. 2018. Aqueous fluid connectivity in subducting oceanic crust at the mantle transition zone conditions. J Geophys Res-Solid Earth, 123: 6562–6573

    Google Scholar 

  37. Liu X, Matsukage K N, Nishihara Y, Suzuki T, Takahashi E. 2019. Stability of the hydrous phases of Al-rich phase D and Al-rich phase H in deep subducted oceanic crust. Am Miner, 104: 64–72

    Article  Google Scholar 

  38. Liu K, Zhang L, Guo X, Ni H. 2021. Effects of sulfide composition and melt H2O on sulfur content at sulfide saturation in basaltic melts. Chem Geol, 559: 119913

    Article  Google Scholar 

  39. Liu X, Xu T, Xiong X. 2020. High sulfur solubility in hydrous felsic magma at coexistence of sulfide and sulfate. Goldschmidt Conference, doi: https://doi.org/10.46427/gold2020.1615

  40. Loucks R R, Mavrogenes J A. 1999. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science, 284: 2159–2163

    Article  Google Scholar 

  41. Mao J, Goldfarb R, Zhang Z, Xu W, Qiu Y, Deng J. 2002. Gold deposits in the Xiaoqinling-Xiong’ershan region, Qinling Mountains, central China. Miner Depos, 37: 306–325

    Article  Google Scholar 

  42. Matjuschkin V, Blundy J D, Brooker R A. 2016. The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. Contrib Mineral Petrol, 171: 66

    Article  Google Scholar 

  43. Mungall J E. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30: 915–918

    Article  Google Scholar 

  44. Nash W M, Smythe D J, Wood B J. 2019. Compositional and temperature effects on sulfur speciation and solubility in silicate melts. Earth Planet Sci Lett, 507: 187–198

    Article  Google Scholar 

  45. Ni H. 2020. Properties and effects of supercritical geofluids (in Chinese with English abstract). Bull Mineral Petrol Geochem, 39: 443–447

    Google Scholar 

  46. Ni H, Zhang L, Xiong X, Mao Z, Wang J. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Sci Rev, 167: 62–71

    Article  Google Scholar 

  47. Pearson R G. 1963. Hard and soft acids and bases, HSAB, Fundamental principles. J Am Chem Soc, 85: 581–587

    Google Scholar 

  48. Pettke T, Oberli F, Audétat A, Guillong M, Simon A C, Hanley J J, Klemm L M. 2012. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geol Rev, 44: 10–38

    Article  Google Scholar 

  49. Pokrovski G S, Tagirov B R, Schott J, Hazemann J L, Proux O. 2009. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling. Geochim Cosmochim Acta, 73: 5406–5427

    Article  Google Scholar 

  50. Pokrovski G S, Dubrovinsky L S. 2011. The S3 ion is stable in geological fluids at elevated temperatures and pressures. Science, 331: 1052–1054

    Article  Google Scholar 

  51. Pokrovski G S, Borisova A Y, Bychkov A Y. 2013. Speciation and transport of metals and metalloids in geological vapors. Rev Mineral Geochem, 76: 165–218

    Article  Google Scholar 

  52. Pokrovski G S, Kokh M A, Guillaume D, Borisova A Y, Gisquet P, Hazemann J L, Lahera E, Del Net W, Proux O, Testemale D, Haigis V, Jonchière R, Seitsonen A P, Ferlat G, Vuilleumier R, Saitta A M, Boiron M C, Dubessy J. 2015. Sulfur radical species form gold deposits on Earth. Proc Natl Acad Sci USA, 112: 13484–13489

    Article  Google Scholar 

  53. Richards J P. 2013. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat Geosci, 6: 911–916

    Article  Google Scholar 

  54. Richards J P. 2015. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233: 27–45

    Article  Google Scholar 

  55. Seo J H, Guillong M, Heinrich C A. 2009. The role of sulfur in the formation of magmatic-hydrothermal copper-gold deposits. Earth Planet Sci Lett, 282: 323–328

    Article  Google Scholar 

  56. Seward T M. 1973. Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim Cosmochim Acta, 37: 379–399

    Article  Google Scholar 

  57. Seward T M, Williamsjones A E, Migdisov A A. 2014. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2 ed. 29–57

  58. Simon A C, Pettke T, Candela P A, Piccoli P M, Heinrich C A. 2003. Experimental determination of Au solubility in rhyolite melt and magnetite: Constraints on magmatic Au budgets. Am Miner, 88: 1644–1651

    Article  Google Scholar 

  59. Simon A C, Frank M R, Pettke T, Candela P A, Piccoli P M, Heinrich C A. 2005. Gold partitioning in melt-vapor-brine systems. Geochim Cosmochim Acta, 69: 3321–3335

    Article  Google Scholar 

  60. Simon A C, Pettke T, Candela P A, Piccoli P M, Heinrich C A. 2007. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages. Geochim Cosmochim Acta, 71: 1764–1782

    Article  Google Scholar 

  61. Smythe D J, Wood B J, Kiseeva E S. 2017. The S content of silicate melts at sulfide saturation: New experiments and a model incorporating the effects of sulfide composition. Am Miner, 102: 795–803

    Article  Google Scholar 

  62. Sullivan N A, Zajacz Z, Brenan J M. 2018. The solubility of Pd and Au in hydrous intermediate silicate melts: The effect of oxygen fugacity and the addition of Cl and S. Geochim Cosmochim Acta, 231: 15–29

    Article  Google Scholar 

  63. Sun W, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 262: 533–542

    Article  Google Scholar 

  64. Sun X, Zhang Y, Xiong D, Sun W, Shi G, Zhai W, Wang S. 2009. Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China. Ore Geol Rev, 36: 235–249

    Article  Google Scholar 

  65. Walshe J L, Cleverley J S. 2009. Gold deposits: Where, when and why. Elements, 5: 288

    Article  Google Scholar 

  66. Wang J, Xiong X, Chen Y, Huang F. 2020. Redox processes in subduction zones: Progress and prospect. Sci China Earth Sci, 63: 1952–1968

    Article  Google Scholar 

  67. Wang J, Xiong X, Takahashi E, Zhang L, Li L, Liu X. 2019. Oxidation state of arc mantle revealed by partitioning of V, Sc, and Ti between mantle minerals and basaltic melts. J Geophys Res-Solid Earth, 124: 4617–4638

    Article  Google Scholar 

  68. Wang Z, Cheng H, Zong K, Geng X, Liu Y, Yang J, Wu F, Becker H, Foley S, Wang C Y. 2020. Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China Craton. Geology, 48: 169–173

    Article  Google Scholar 

  69. Wang Z, Xu Z, Cheng H, Zou Y, Guo J, Liu Y, Yang J, Zong K, Xiong L, Hu Z. 2021. Precambrian metamorphic crustal basement cannot provide much gold to form giant gold deposits in the Jiaodong Peninsula, China. Precambrian Res, 354: 106045

    Article  Google Scholar 

  70. Williams-Jones A E, Bowell R J, Migdisov A A. 2009. Gold in solution. Elements, 5: 281–287

    Article  Google Scholar 

  71. Wood B J, Kiseeva E S, Matzen A K. 2013. Garnet in the Earth’s mantle. Elements, 9: 421–426

    Article  Google Scholar 

  72. Xiong X L, Liu X C, Zhu Z M, Li Y, Xiao W S, Song M S, Zhang S, Wu J H. 2011. Adakitic rocks and destruction of the North China Craton: Evidence from experimental petrology and geochemistry. Sci China Earth Sci, 54: 858–870

    Article  Google Scholar 

  73. Xiong X, Liu X, Li L, Wang J, Chen W, Ruan M, Xu T, Sun Z, Huang F, Li J, Zhang L. 2020. The partitioning behavior of trace elements in subduction zones: Advances and prospects. Sci China Earth Sci, 63: 1938–1951

    Article  Google Scholar 

  74. Xu Y, Li H, Hong L, Ma L, Ma Q, Sun M. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Sci China Earth Sci, 61: 869–886

    Article  Google Scholar 

  75. Yang J H, Wu F Y, Wilde S A. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol Rev, 23: 125–152

    Article  Google Scholar 

  76. Zajacz Z, Seo J H, Candela P A, Piccoli P M, Heinrich C A, Guillong M. 2010. Alkali metals control the release of gold from volatile-rich magmas. Earth Planet Sci Lett, 297: 50–56

    Article  Google Scholar 

  77. Zajacz Z, Candela P A, Piccoli P M, Wälle M, Sanchez-Valle C. 2012. Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation. Geochim Cosmochim Acta, 91: 140–159

    Article  Google Scholar 

  78. Zajacz Z, Candela P A, Piccoli P M, Sanchez-Valle C, Wälle M. 2013. Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas. Geochim Cosmochim Acta, 112: 288–304

    Article  Google Scholar 

  79. Zajacz Z, Tsay A. 2019. An accurate model to predict sulfur concentration at anhydrite saturation in silicate melts. Geochim Cosmochim Acta, 261: 288–304

    Article  Google Scholar 

  80. Zheng Y, Mao J, Chen Y, Sun W, Ni P, Yang X. 2019. Hydrothermal ore deposits in collisional orogens. Sci Bull, 64: 205–212

    Article  Google Scholar 

  81. Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587

    Article  Google Scholar 

  82. Zhu R X, Fan H R, Li J W, Meng Q R, Li S R, Zeng Q D. 2015. Decratonic gold deposits. Sci China Earth Sci, 58: 1523–1537

    Article  Google Scholar 

Download references

Acknowledgements

We thank three anonymous reviewers and the responsible editor for their constructive comments and Changming Xing for discussion. This work was supported by the National Key Research and Development Project of China (Grant No. 2016YFC0600104), the National Natural Science Foundation of China (Grant No. 41573053) and the Youth Innovation Promotion Association CAS (Grant No. 2019344).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xingcheng Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xu, T., Xiong, X. et al. Gold solubility in silicate melts and fluids: Advances from high-pressure and high-temperature experiments. Sci. China Earth Sci. 64, 1481–1491 (2021). https://doi.org/10.1007/s11430-020-9788-0

Download citation

Keywords

  • Magmatic-hydrothermal gold deposits
  • Gold solubility
  • Sulfur solubility
  • Volatiles
  • High-pressure and high-temperature experiments