Skip to main content

Fungal spore record of pastoralism on the NE Qinghai-Tibetan Plateau since the middle Holocene

Abstract

Pastoralism is considered a crucial factor in the eventual year-round occupation of high-altitude regions (>3000 m asl) of the Qinghai-Tibetan Plateau, and the northeastern Qinghai-Tibetan Plateau (NE-QTP) was an important corridor for early human occupation. We analyzed fossil fungal spore records for the last 8500 years from a high resolution aeolian section at Langgeri (LGR) on the NE-QTP Thirty-two fungal spore types were identified in the LGR section, including seven coprophilous types. We combined analysis of coprophilous fungal spores, Cyperaceae, Artemisia, and Hippophae pollen, and the charcoal >50 µm fraction to explore the timing and controls of pastoralism on the NE-QTP since the middle Holocene. Pastoralism commenced at LGR shortly before ca. 5.5 ka and gradually increased between ca. 5.5–3.5 ka, but markedly intensified after ca. 2.2 ka, with three periods of growth at ca. 2.1–1.9,1.4–1.2, and 0.6–0 ka, and a decline at ca. 1.1–0.6 ka. The timing of changes in pastoral activity on the NE-QTP based on the coprophilous fungal spore record is supported by regional archeology and historical documents. Technological and political developments, rather than climate change, played key roles in the long-term fluctuations of regional pastoralism on the NE-QTP in the late Holocene.

This is a preview of subscription content, access via your institution.

References

  1. Aldenderfer M, Zhang Y N. 2004. The prehistory of the Tibetan Plateau to the seventh century A.D.: Perspectives and research from China and the West since 1950. J World Prehistory, 18: 1–55

    Article  Google Scholar 

  2. Anderson R S, Homola R L, Davis R B, Jacobson G L. 1984. Fossil remains of the mycorrhizal fungal Glomus fasciculatum complex in postglacial lake sediments from Maine. Can J Bot, 62: 2325–2328

    Article  Google Scholar 

  3. Baker A G, Bhagwat S A, Willis K J. 2013. Do dung fungal spores make a good proxy for past distribution of large herbivores? Quat Sci Rev, 62: 21–31

    Article  Google Scholar 

  4. Baker A G, Cornelissen P, Bhagwat S A, Vera F W M, Willis K. 2016. Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores. Methods Ecol Evol, 7: 1273–1281

    Article  Google Scholar 

  5. Beall C M. 2001. Adaptations to altitude: A current assessment. Annu Rev Anthropol, 30: 423–456

    Article  Google Scholar 

  6. Betts A, Jia P W, Dodson J. 2014. The origins of wheat in China and potential pathways for its introduction: A review. Quat Int, 348: 158–168

    Article  Google Scholar 

  7. Blaauw M. 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol, 5: 512–518

    Article  Google Scholar 

  8. Blaauw M, Christen J A. 2013. Bacon Manual V2.2. http://chrono.qub.ac.uk/blaauw/bacon.html

  9. Blackford J J. 2000. Charcoal fragments in surface samples following a fire and the implications for interpretation of subfossil charcoal data. Palaeogeogr Palaeoclimatol Palaeoecol, 164: 33–42

    Article  Google Scholar 

  10. Blackford J J, Innes J B. 2006. Linking current environments and processes to fungal spore assemblages: Surface NPM data from woodland environments. Rev Palaeobot Palynol, 141: 179–187

    Article  Google Scholar 

  11. Brantingham P J, Gao X. 2006. Peopling of the northern Tibetan Plateau. World Archaeol, 38: 387–414

    Article  Google Scholar 

  12. Brantingham P J, Gao X, Madsen D B, Rhode D, Perreault C, van der Woerd J, Olsen J W. 2013. Late occupation of the high-elevation northern Tibetan Plateau based on cosmogenic, luminescence, and radiocarbon ages. Geoarchaeology, 28: 413–431

    Article  Google Scholar 

  13. Burney D A, Robinson G S, Burney L P. 2003. Sporormiella and the late Holocene extinctions in Madagascar. Proc Natl Acad Sci USA, 100: 10800–10805

    Article  Google Scholar 

  14. Chen F H, Dong G H, Zhang D J, Liu X Y, Jia X, An C B, Ma M M, Xie Y W, Barton L, Ren X Y, Zhao Z J, Wu X H, Jones M K. 2015. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science, 347: 248–250

    Article  Google Scholar 

  15. Chen F H, Wu D, Chen J H, Zhou A F, Yu J Q, Shen J, Wang S M, Huang X Z. 2016. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies. Quat Sci Rev, 154: 111–129

    Article  Google Scholar 

  16. Chen F H, Welker F, Shen C C, Bailey S E, Bergmann I, Davis S, Xia H, Wang H, Fischer R, Freidline S E, Yu T L, Skinner M M, Stelzer S, Dong G R, Fu Q M, Dong G H, Wang J, Zhang D J, Hublin J J. 2019. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569: 409–412

    Article  Google Scholar 

  17. Chen H H, Ge S B, Li G L. 1998. A tentative study of the cultural nature of Zongri Culture (in Chinese). Archaeology (Kaogu), 5: 15–26

    Google Scholar 

  18. Cheng B, Chen F H, Zhang J W. 2013. Palaeovegetational and palaeoenvironmental changes since the last deglacial in Gonghe Basin, northeast Tibetan Plateau. J Geogr Sci, 23: 136–146

    Article  Google Scholar 

  19. Clark J S. 1988. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quat Res, 30: 67–80

    Article  Google Scholar 

  20. Cugny C, Mazier F, Galop D. 2010. Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): The use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot, 19: 391–408

    Article  Google Scholar 

  21. Cui Y H, Zhang D Z, Du C S. 1999. General History of Qinghai (in Chinese). Xining: Qinghai People’s Publishing House

    Google Scholar 

  22. D’Alpoim Guedes J, Lu H L, Li Y X, Spengler R N, Wu X H, Aldenderfer M S. 2014. Moving agriculture onto the Tibetan Plateau: The archaeobotanical evidence. Archaeol Anthropol Sci, 6: 255–269

    Article  Google Scholar 

  23. D’Alpoim Guedes J, Lu H, Hein A M, Schmidt A H. 2015. Early evidence for the use of wheat and barley as staple crops on the margins of the Tibetan Plateau. Proc Natl Acad Sci USA, 112: 5625–5630

    Article  Google Scholar 

  24. Davis O K, Shafer D S. 2006. Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr Palaeoclimatol Palaeoecol, 237: 40–50

    Article  Google Scholar 

  25. Ding M Y, Wang T K, Ko A M S, Chen H H, Wang H, Dong G H, Lu H L, He W, Wangdue S, Yuan H B, He Y H, Cai L H, Chen Z J, Hou G L, Zhang D J, Zhang Z X, Cao P, Dai Q Y, Feng X T, Zhang M, Wang H R, Yang M, Fu Q M. 2020. Ancient mitogenomes show plateau populations from last 5200 years partially contributed to present-day Tibetans. Proc R Soc B, 287: 20192968

    Article  Google Scholar 

  26. Ding Z Y, Lu R J, Liu C, Duan C X. 2018. Temporal change characteristics of climatic and its relationships with atmospheric circulation patterns in Qinghai Lake Basin (in Chinese). Adv Earth Sci, 33: 281–292

    Google Scholar 

  27. Dodson J R, Li X, Zhou X, Zhao K, Sun N, Atahan P. 2013. Origin and spread of wheat in China. Quat Sci Rev, 72: 108–111

    Article  Google Scholar 

  28. Dodson J, Dodson E, Banati R, Li X Q, Atahan P, Hu S M, Middleton R J, Zhou X Y, Nan S. 2015. Oldest directly dated remains of sheep in China. Sci Rep, 4: 7170

    Article  Google Scholar 

  29. Dong G H, Jia X, An C B, Chen F H, Zhao Y, Tao S C, Ma M M. 2012. Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China. Quat Res, 77: 23–30

    Article  Google Scholar 

  30. Dong G H, Wang L, Cui Y F, Elston R, Chen F H. 2013. The spatiotemporal pattern of the Majiayao cultural evolution and its relation to climate change and variety of subsistence strategy during late Neolithic period in Gansu and Qinghai provinces, northwest China. Quat Int, 316: 155–161

    Article  Google Scholar 

  31. Dong G H, Ren L L, Jia X, Liu X Y, Dong S M, Li H M, Wang Z X, Xiao Y M, Chen F H. 2016. Chronology and subsistence strategy of Nuomuhong Culture in the Tibetan Plateau. Quat Int, 426: 42–49

    Article  Google Scholar 

  32. Dong G H, Yang Y S, Han J Y, Wang H, Chen F H. 2017. Exploring the history of cultural exchange in prehistoric Eurasia from the perspectives of crop diffusion and consumption. Sci China Earth Sci, 60: 1110–1123

    Article  Google Scholar 

  33. Doyen E, Etienne D. 2017. Ecological and human land-use indicator value of fungal spore morphotypes and assemblages. Veget Hist Archaeobot, 26: 357–367

    Article  Google Scholar 

  34. E C Y, Zhang J, Chen Z Y, Sun Y J, Zhao Y J, Li P, Sun M P, Shi Y K. 2019. High resolution OSL dating of aeolian activity at Qinghai Lake, Northeast Tibetan Plateau. Catena, 183: 104180

    Article  Google Scholar 

  35. Fægri K, Iversen J. 1989. Textbook of Pollen Analysis. 4th ed. Chichester: John Wiley and Sons

    Google Scholar 

  36. Feranec R S, Miller N G, Lothrop J C, Graham R W. 2011. The Sporormiella proxy and end-Pleistocene megafaunal extinction: A perspective. Quat Int, 245: 333–338

    Article  Google Scholar 

  37. Feeser I, O’Connell M. 2010. Late Holocene land-use and vegetation dynamics in an upland karst region based on pollen and coprophilous fungal spore analyses: An example from the Burren, western Ireland. Veget Hist Archaeobot, 19: 409–426

    Article  Google Scholar 

  38. Flad R K, Yuan J, Li S. 2007. Zooarchaeological evidence for animal domestication in northwest China. In: Madsen D B, Chen F H, Gao X, eds. Late Quaternary Climate Change and Human Adaptation in Arid China. Developments in Quaternary Science. Amsterdam: Elsevier. 167–203

    Chapter  Google Scholar 

  39. Gao D L, Xu S Z, 1990. Preliminary report on the excavations of Kayue culture at the site of Mobula in Huangyuan County, Qinghai Province (in Chinese). Archeology, 11: 1012–1016

    Google Scholar 

  40. Gao J Y, Hou G L, Wei H C, Chen Y C, E C Y, Chen X L, Lancuo Z M. 2020. Prehistoric human activity and its environmental background in Lake Donggi Cona basin, northeastern Tibetan Plateau. Holocene, 30: 657–671

    Article  Google Scholar 

  41. Gao X, Zhou Z Y, Guan Y. 2008. Human cultural remains and adaptation strategies in the Tibetan Plateau margin region in the late Pleistocene (in Chinese). Quat Sci, 28: 969–977

    Google Scholar 

  42. Ge S. 1979. Tomb no. 1 of the Majiayao-relic type, Hetaozhuang of Minhe County, Qinghai (in Chinese). Cult Relic, 9: 29–32

    Google Scholar 

  43. Gelorini V, Verbeken A, van Geel B, Cocquyt C, Verschuren D. 2011. Modern non-pollen palynomorphs from East African lake sediments. Rev Palaeobot Palynol, 164: 143–173

    Article  Google Scholar 

  44. Ghosh R, Paruya D K, Acharya K, Ghorai N, Bera S. 2017. How reliable are non-pollen palynomorphs in tracing vegetation changes and grazing activities? Study from the Darjeeling Himalaya, India. Palaeogeogr Palaeoclimatol Palaeoecol, 475: 23–40

    Article  Google Scholar 

  45. Gill J L, McLauchlan K K, Skibbe A M, Goring S, Zirbel G R, Williams J W. 2013. Linking abundances of the dung fungus Sporormiella to the density of bison: Implications for assessing grazing by megaherbivores in palaeorecords. J Ecol, 101: 1125–1136

    Article  Google Scholar 

  46. Goethals L, Verschuren D. 2020. Tracing ancient animal husbandry in tropical Africa using the fossil spore assemblages of coprophilous fungi: A validation study in western Uganda. Veget Hist Archaeobot, 29: 509–526

    Article  Google Scholar 

  47. Graf M T, Chmura G L. 2006. Development of modern analogues for natural, mowed and grazed grasslands using pollen assemblages and coprophilous fungi. Rev Palaeobot Palynol, 141: 139–149

    Article  Google Scholar 

  48. Grimm E C. 2011 Tilia-graph program. Illinois State Museum: Springfield

    Google Scholar 

  49. Guérin G, Mercier N, Nathan R, Adamiec G, Lefrais Y. 2012. On the use of the infinite matrix assumption and associated concepts: A critical review. Radiat Meas, 47: 778–785

    Article  Google Scholar 

  50. Herzschuh U. 2007. Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau. J Biogeogr, 34: 1265–1273

    Article  Google Scholar 

  51. Hou G L, Wei H C, E C Y, Sun Y J. 2013. Human activities and environmental change in Holocene in the northeastern margin of Qinghai-Tibet Plateau: A case study of JXG2 relic site in Qinghai Lake (in Chinese). Acta Geograp Sin, 68: 380–388

    Google Scholar 

  52. Hou J Z, Huang Y S, Zhao J T, Liu Z H, Colman S, An Z S. 2016. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau. Geophys Res Lett, 43: 1323–1330

    Article  Google Scholar 

  53. Hou X. 2001. Vegetation Atlas of China. Beijing: Science Press

    Google Scholar 

  54. Huang X Z, Liu S S, Dong G H, Qiang M R, Bai Z J, Zhao Y, Chen F H. 2017. Early human impacts on vegetation on the northeastern Qinghai-Tibetan Plateau during the middle to late Holocene. Prog Phys Geogr, 41: 286–301

    Article  Google Scholar 

  55. Huang X Z, Zhang J, Storozum M, Liu S S, Gill J L, Xiang L X, Ren X X, Wang J L, Qiang M R, Chen F H, Grimm E C. 2020. Long-term herbivore population dynamics in the northeastern Qinghai-Tibetan Plateau and its implications for early human impacts. Rev Palaeobot Palynol, 275: 104171

    Article  Google Scholar 

  56. Jia X. 2012. Cultural evolution process and plant remains during Neolithic-Bronze Age in Northeastern Qinghai Province (in Chinese). Dissertation for Doctoral Degree. Lanzhou: Lanzhou University

    Google Scholar 

  57. Kruys A. 2015. New species of Preussia with 8-celled ascospores (Sporormiaceae, Pleosporales, Ascomycota). Phytotaxa, 234: 143–150

    Article  Google Scholar 

  58. Krug J C, Benny G L, Keller H W. 2004. Coprophilous fungi. In: Mueller G M, Bills G F, Foster M S, eds. Biodiversity of Fungi. Amsterdam: Elsevier. 468–499

    Google Scholar 

  59. Lai Z P, Zöller L, Fuchs M, Brückner H. 2008. Alpha efficiency determination for OSL of quartz extracted from Chinese loess. Radiat Meas, 43: 767–770

    Article  Google Scholar 

  60. Leipe C, Demske D, Tarasov P E, Wünnemann B, Riedel F. 2014. Potential of pollen and non-pollen palynomorph records from Tso Moriri (Trans-Himalaya, NW India) for reconstructing Holocene limnology and human-environmental interactions. Quat Int, 348: 113–129

    Article  Google Scholar 

  61. Li Y C, Bunting M J, Xu Q H, Jiang S X, Ding W, Hun L Y. 2011. Pollenvegetation-climate relationships in some desert and desert-steppe communities in northern China. Holocene, 21: 997–1010

    Article  Google Scholar 

  62. Liu H Y, Wang Y, Tian Y H, Zhu J J, Wang H Y. 2006. Climatic and anthropogenic control of surface pollen assemblages in East Asian steppes. Rev Palaeobot Palynol, 138: 281–289

    Article  Google Scholar 

  63. Liu X Q, Shen J, Wang S M, Yang X D, Tong G B, Zhang E L. 2002. A 16000-year pollen record of Qinghai Lake and its paleocli-mate and paleoenvironment. Chin Sci Bull, 47: 1931–1937

    Article  Google Scholar 

  64. Liu Z H, Henderson A C G, Huang Y S. 2006. Correction to “Alkenone-based reconstruction of late-Holocene surface temperature and salinity changes in Lake Qinghai, China”. Geophys Res Lett, 33: L13702

    Article  Google Scholar 

  65. Lorenzo F R, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ge R L, McClain D A, Khan T M, Koul P A, Guchhait P, Salama M E, Xing J C, Semenza G L, Liberzon E, Wilson A, Simonson T S, Jorde L B, Kaelin W G, Koivunen P, Prchal J T. 2014. A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet, 46: 951–956

    Article  Google Scholar 

  66. Lundqvist N. 1972. Nordic Sordariaceaes. lat. Symbolae Botanicae Up-salienses, 20: 1–314

    Google Scholar 

  67. Lu D S, Lou H Y, Yuan K, Wang X J, Wang Y C, Zhang C, Lu Y, Yang X, Deng L, Zhou Y, Feng Q D, Hu Y, Ding A Q, Yang Y J, Li S L, Jin L, Guan Y Q, Su B, Kang L L, Xu S H. 2016. Ancestral origins and genetic history of Tibetan Highlanders. Am J Human Genets, 99: 580–594

    Article  Google Scholar 

  68. Lu H L. 2016. Colonization of the Tibetan Plateau, permanent settlement, and the spread of agriculture: Reflection on current debates on the prehistoric archeology of the Tibetan Plateau. Archaeol Res Asia, 5: 12–15

    Article  Google Scholar 

  69. Lu H Y, Wu N Q, Liu K B, Zhu L P, Yang X D, Yao T D, Wang L, Li Q, Liu X Q, Shen C M, Li X Q, Tong G B, Jiang H. 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quat Sci Rev, 30: 947–966

    Article  Google Scholar 

  70. Madsen D B, Ma H Z, Brantingham P J, Gao X, Rhode D, Zhang H Y, Olsen J W. 2006. The Late Upper Paleolithic occupation of the northern Tibetan Plateau margin. J Archaeol Sci, 33: 1433–1444

    Article  Google Scholar 

  71. Madsen D B, Perreault C, Rhode D, Sun Y J, Yi M J, Brunson K, Bran-tingham P J. 2017. Early foraging settlement of the Tibetan Plateau highlands. Archaeol Res Asia, 11: 15–26

    Article  Google Scholar 

  72. Mazier F, Galop D, Gaillard M J, Rendu C, Cugny C, Legaz A, Peyron O, Buttler A. 2009. Multidisciplinary approach to reconstructing local pastoral activities: An example from the Pyrenean Mountains (Pays Basque). Holocene, 19: 171–188

    Article  Google Scholar 

  73. Meyer M C, Aldenderfer M S, Wang Z, Hoffmann D L, Dahl J A, Degering D, Haas W R, Schlütz F. 2017. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science, 355: 64–67

    Article  Google Scholar 

  74. Miehe G, Miehe S, Kaiser K, Reudenbach C, Behrendes L, Duo L, Schlütz F. 2009. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeogr Palaeoclimatol Palaeoecol, 276: 130–147

    Article  Google Scholar 

  75. Miehe G, Bach K, Miehe S, Jürgen K, Yang Y P, Duo L, Co S, Wesche K. 2011. Alpine steppe plant communities of the Tibetan highlands. Appl Vegetation Sci, 14: 547–560

    Article  Google Scholar 

  76. Miehe G, Miehe S, Böhner J, Kaiser K, Hensen I, Madsen D B, Liu J Q, Opgenoorth L. 2014. How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quat Sci Rev, 86: 190–209

    Article  Google Scholar 

  77. Moore P D, Webb J A, Collinson M E. 1991. Pollen Analysis. 2nd ed. London: Blackwell Scientific

    Google Scholar 

  78. Orbay-Cerrato M E, Oswald W W, Doughty E D, Foster D R, Hall B R. 2017. Historic grazing in southern New England, USA, recorded by fungal spores in lake sediments. Veget Hist Archaeobot, 26: 159–165

    Article  Google Scholar 

  79. Patterson W A, Edwards K J, Maguire D J. 1987. Microscopic charcoal as a fossil indicator of fire. Quat Sci Rev, 6: 3–23

    Article  Google Scholar 

  80. Perrotti A G, van Asperen E N. 2019. Dung fungi as a proxy for mega-herbivores: Opportunities and limitations for archaeological applications. Veget Hist Archaeobot, 28: 93–104

    Article  Google Scholar 

  81. Prescott J R, Hutton J T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat Meas, 23: 497–500

    Article  Google Scholar 

  82. Qi X B, Cui C Y, Peng Y, Zhang X M, Yang Z H, Zhong H, Zhang H, Xiang K, Cao X Y, Wang Y, Ou Z L B, Ba S, Ci W S B, Bian B, Gong G L Z, Wu T Y, Chen H, Shi H, Su B. 2013. Genetic evidence of Paleolithic colonization and Neolithic expansion of modern humans on the Tibetan Plateau. Mol Biol Evol, 30: 1761–1778

    Article  Google Scholar 

  83. Qinghai Province Cultural Relic Archeological Team, Hainan Zhou National Minority Museum. 1987. Shanpingtai Kayue cultural cemetery in Guide County, Qinghai Province (in Chinese). Archaeology, 2: 255–274

    Google Scholar 

  84. Qinghai Provincial Local Chronicles Committee. 1998. Qinghai Chronicles (in Chinese). Hefei: Huangshan Publishing House

    Google Scholar 

  85. Qiu Q, Wang L Z, Wang K, Yang Y Z, Ma T, Wang Z F, Zhang X, Ni Z Q, Hou F J, Long R J, Abbott R, Lenstra J, Liu J Q. 2015. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat Commun, 6: 10283

    Article  Google Scholar 

  86. Raper D, Bush M. 2009. A test of Sporormiella representation as a predictor of megaherbivore presence and abundance. Quat Res, 71: 490–496

    Article  Google Scholar 

  87. Ren L L, Dong G H, Liu F W, d’Alpoim-Guedes J, Flad R K, Ma M M, Li H M, Yang Y S, Liu Y J, Zhang D J, Li G L, Li J Y, Chen F H. 2020. Foraging and farming: Archaeobotanical and zooarchaeological evidence for Neolithic exchange on the Tibetan Plateau. Antiquity, 94: 637–652

    Article  Google Scholar 

  88. Rhode D, Zhang H Y, Madsen D B, Gao X, Brantingham J P, Ma H Z, Olsen J W. 2007a. Epipaleolithic/early Neolithic settlements at Qinghai Lake, western China. J Archaeol Sci, 34: 600–612

    Article  Google Scholar 

  89. Rhode D, Madsen D B, Brantingham J P, Dargye T. 2007b. Yaks, yak dung, and prehistoric human habitation of the Tibetan Plateau. In: Madsen D B, Chen F H, Gao X. eds. Developments in Quaternary Science. Amsterdam: Elsevier. 205–224

    Google Scholar 

  90. Richardson M J. 2001. Diversity and occurrence of coprophilous fungi. Mycol Res, 105: 387–402

    Article  Google Scholar 

  91. Schlütz F, Lehmkuhl F. 2009. Holocene climatic change and the nomadic Anthropocene in Eastern Tibet: Palynological and geomorphological results from the Nianbaoyeze Mountains. Quat Sci Rev, 28: 1449–1471

    Article  Google Scholar 

  92. Schlütz F, Shumilovskikh L S. 2017. Non-pollen palynomorphs notes: 1. Type HdV-368 (Podospora-type), descriptions of associated species, and the first key to related spore types. Rev Palaeobot Palynol, 239: 47–54

    Article  Google Scholar 

  93. Schofield J E, Edwards K. 2011. Grazing impacts and woodland management in Eriksfjord: Betula, coprophilous fungi and the Norse settlement of Greenland. Veget Hist Archaeobot, 20: 181–197

    Article  Google Scholar 

  94. Shen J, Liu X Q, Wang S M, Matsumoto R. 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat Int, 136: 131–140

    Article  Google Scholar 

  95. Shen X K, Wang J, Yao J T., Xia H, Wang Q Q, Ren X Y, Olaf J, Zhang D J. 2020. A study of lithic raw material exploitation strategies of prehistoric hunter gatherers in the Qinghai Lake Basin (in Chinese). Quat Sci, 40: 252–537

    Google Scholar 

  96. Stivrins N, Cerina A, Gałka M, Heinsalu A, Lõugas L, Veski S. 2019. Large herbivore population and vegetation dynamics 14,600-8,300 years ago in central Latvia, northeastern Europe. Rev Palaeobot Palynol, 266: 42–51

    Article  Google Scholar 

  97. Sun Y J, Lai Z P, Madsen D, Hou G L. 2012. Luminescence dating of a hearth from the archaeological site of Jiangxigou in the Qinghai Lake area of the northeastern Qinghai-Tibetan Plateau. Quat Geochronol, 12: 107–110

    Article  Google Scholar 

  98. Trail F. 2007. Fungal cannons: Explosive spore discharge in the Asco-mycota. FEMS MicroBiol Lett, 276: 12–18

    Article  Google Scholar 

  99. van Asperen E N. 2017. Fungal diversity on dung of tropical animals in temperate environments: Implications for reconstructing past mega-faunal populations. Fungal Ecol, 28: 25–32

    Article  Google Scholar 

  100. van Geel B. 1978. A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol, 25: 1–120

    Article  Google Scholar 

  101. van Geel B, Coope G R, Hammen T. 1989. Palaeoecology and stratigraphy of the lateglacial type section at Usselo (the Netherlands). Rev Pa-laeobot Palynol, 60: 25–129

    Article  Google Scholar 

  102. van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, van Reenen G, Hakbijl T. 2003. Environmental reconstruction of a Roman Period settlement site in Uitgeest (the Netherlands), with special reference to coprophilous fungi. J Archaeol Sci, 30: 873–883

    Article  Google Scholar 

  103. van Geel B, Aptroot A. 2006. Fossil ascomycetes in Quaternary deposits. Nova Hedwig, 82: 313–329

    Article  Google Scholar 

  104. van Geel B, Gelorini V, Lyaruu A, Aptroot A, Rucina S, Marchant R, Sinninghe Damsté J S, Verschuren D. 2011. Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev Palaeobot Palynol, 164: 174–190

    Article  Google Scholar 

  105. van Geel B, Zazula G, Schweger C. 2007. Spores of coprophilous fungi from under the Dawson tephra (25,300 14C years BP), Yukon Territory, northwestern Canada. Palaeogeogr Palaeoclimatol Palaeoecol, 252: 481–485

    Article  Google Scholar 

  106. Wang J, Xia H, Yao J, Shen X, Cheng T, Wang Q, Zhang D. 2020. Subsistence strategies of prehistoric hunter-gatherers on the Tibetan Plateau during the Last Deglaciation. Sci China Earth Sci, 63: 395–404

    Article  Google Scholar 

  107. Wang Y. 1987. Compilation of Qinghai Local Chronicles (in Chinese). Xining: Qinghai People’s Publishing House

    Google Scholar 

  108. Wei H C, Ma H Z, Zheng Z, Pan A D, Huang K Y. 2011. Modern pollen assemblages of surface samples and their relationships to vegetation and climate in the northeastern Qinghai-Tibetan Plateau, China. Rev Palaeobot Palynol, 163: 237–246

    Article  Google Scholar 

  109. Wei H C, Yuan Q, Xu Q H, Qin Z J, Wang L Q, Fan Q S, Shan F S. 2018. Assessing the impact of human activities on surface pollen assemblages in Qinghai Lake Basin, China. J Quat Sci, 33: 702–712

    Article  Google Scholar 

  110. Wei H C, Hou G L, Fan Q S, Madsen D B, Qin Z J, Du Y S, Sun Y J, Gao J Y, Shan F S. 2020a. Using coprophilous fungi to reconstruct the history of pastoralism in the Qinghai Lake Basin, Northeastern Qinghai-Tibetan Plateau. Prog Phys Geogr, 44: 70–93

    Article  Google Scholar 

  111. Wei H C, E. C Y, Zhang J, Sun Y J, Li Q K, Hou G L, Duan R L. 2020b. Climate change and anthropogenic activities in Qinghai Lake basin over the last 8,500 years derived from pollen and charcoal records in an aeolian section. Catena, 193: 104616

    Article  Google Scholar 

  112. Wood J R, Wilmshurst J M. 2012. Wetland soil moisture complicates the use of Sporormiella to trace past herbivore populations. J Quat Sci, 27: 254–259

    Article  Google Scholar 

  113. Xiang K, Ouzhuluobu K, Peng Y, Yang Z H, Zhang X M, Cui C Y, Zhang H, Li M, Zhang Y F, Bianba Y, Gonggalanzi Y, Basang Y, Ci-wangsangbu Y, Wu T Y, Chen H, Shi H, Qi X B, Su B. 2013. Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Mol Biol Evol, 30: 1889–1898

    Article  Google Scholar 

  114. Xie D J. 2002. Prehistoric Archaeology of Gansu Province and Qinghai Province (in Chinese). Bejing: Cultural Relics Press

    Google Scholar 

  115. Yang Y S, Ren L L, Dong G H, Cui Y, Liu R, Chen G, Wang H, Wilkin S, Chen F H. 2019. Economic Change in the prehistoric Hexi Corridor (4800-2200 BP), North-West China. Archaeometry, 61: 957–976

    Article  Google Scholar 

  116. Yuan J. 2015. Zooarchaeology of China (in Chinese). Beijing: Cultural Relics Press

    Google Scholar 

  117. Zhang D D, Li S H. 2017. Comment on “Permanent human occupation of the central Tibetan Plateau in the early Holocene”. Science, 357: 9231

    Article  Google Scholar 

  118. Zhang D J, Zhang N M, Wang J, Ha B B, Dong G H, Chen F H. 2017. Comment on “Permanent human occupation of the central Tibetan Plateau in the early Holocene”. Science, 357: 8273

    Article  Google Scholar 

  119. Zhang X L, Ha B B, Wang S J, Chen Z J, Ge J Y, Long H, He W, Da W, Nian X M, Yi M J, Zhou X Y, Zhang P Q, Jin Y S, Bar-Yosef O, Olsen J W, Gao X. 2018. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science, 362: 1049–1051

    Article  Google Scholar 

  120. Zhang Y, Kong Z, Yang Z, Wang L, Duan X. 2017. Surface pollen distribution from alpine vegetation in eastern Tibet, China. Sci Rep, 7: 586

    Article  Google Scholar 

  121. Zhao M, Kong Q P, Wang H W, Peng M S, Xie X D, Wang W Z, Jiayang W Z, Duan J G, Cai M C, Zhao S N, Cidanpingcuo S N, Tu Y Q, Wu S F, Yao Y G, Bandelt H J, Zhang Y P. 2009. Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau. Proc Natl Acad Sci USA, 106: 21230–21235

    Article  Google Scholar 

  122. Zhao Y X, Yang J, Lv F H, Hu X J, Xie X L, Zhang M, Li W R, Liu M J, Wang Y T, Li J Q, Liu Y G, Ren Y L, Wang F, Eer H H, Kantanen J, Lenstra J A, Han J L, Li M H. 2017. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Mol Biol Evol, 34: 2380–2395

    Article  Google Scholar 

  123. Zhao Y, Yu Z C, Zhao W W. 2011. Holocene vegetation and climate histories in the eastern Tibetan Plateau: Controls by insolation-driven temperature or monsoon-derived precipitation changes? Quat Sci Rev, 30: 1173–1184

    Article  Google Scholar 

  124. Zhao Y, Liu H Y, Li F R, Huang X Z, Sun J H, Zhao W W, Herzschuh U, Tang Y. 2012. Application and limitations of the Artemisia/Chenopo-diaceae pollen ratio in arid and semi-arid China. Holocene, 22: 1385–1392

    Article  Google Scholar 

  125. Zheng D. 1996. Study of physical geographical system of Tibetan Plateau. Sci China Ser D-Earth Sci, 39: 410–417

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers and the responsible editor for their constructive comments and suggestions, which substantially improved the manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 41877455), the Science and Technology Innovation Platform Project of Qinghai Province (Grant No. 2020-ZJ-T06), the Open Foundation of State Key Laboratory of Paleobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS; Grant No. 183123), and the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0805).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Haicheng Wei or Chongyi E.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, H., E, C., Duan, R. et al. Fungal spore record of pastoralism on the NE Qinghai-Tibetan Plateau since the middle Holocene. Sci. China Earth Sci. 64, 1318–1331 (2021). https://doi.org/10.1007/s11430-020-9787-4

Download citation

Keywords

  • Coprophilous fungal spores
  • Pastoralism
  • Qinghai Lake basin
  • Holocene
  • Qinghai-Tibetan Plateau