Skip to main content
Log in

3D finite-element modeling of Earth induced electromagnetic field and its potential applications for geomagnetic satellites

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The accumulated large amount of satellite magnetic data strengthen our capability of resolving the electrical conductivity of Earth’s mantle. To invert these satellite magnetic data, accurate and efficient forward modeling solvers are needed. In this study, a new finite-element based forward modeling solver is developed to accurately and efficiently compute the induced electromagnetic field for a realistic 3D Earth. Firstly, the nodal-based finite element method with linear shape function on tetrahedral grid is used to assemble the final system of linear equations for the magnetic vector potential and electric scalar potential. The FGMRES solver with algebraic multigrid (AMG) preconditioner is used to quickly solve for the final system of linear equations. The weighted moving least-square method is employed to accurately recover the electromagnetic field from the numerical solutions of magnetic vector and electric scalar potentials. Furthermore, a local mesh refinement technique is employed to improve the accuracy of estimated electromagnetic field. At the end, two synthetic models are used to verify the accuracy and efficiency of our newly developed forward modeling solver. A realistic 3D Earth model is used to simulate the induced magnetic field at 450 and 200 km altitudes which are the planned flying altitudes of Macau’s geomagnetic satellites. The simulation indicates that (1) amplitude of the mantle-induced magnetic field can reach 10–30 nT at 450 km altitude, which is 10–30% of the primary magnetic field. The induced magnetic field at 200 km altitude has larger amplitudes. These mantle-induced magnetic fields can be measured by Macau geomagnetic satellites; (2) amplitude of the ocean-induced magnetic field can reach 5–30 nT at satellite altitudes, which needs to be carefully considered in the interpretation of satellite magnetic data. We are confident that our newly developed forward modeling solver will become a key tool for interpreting satellite magnetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amestoy P R, Duff I S, L’Excellent J Y, Koster J. 2001. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl, 23: 15–11

    Article  Google Scholar 

  • Backus G, Parker R, Constable C. 1996. Foundations of Geomagnetism. Cambridge: Cambridge University Press

    Google Scholar 

  • Badea E A, Everett M E, Newman G A, Biro O. 2001. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics, 66: 786–799

    Article  Google Scholar 

  • Balay S, Abhyankar S, Adams M F, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp W D, Karpeyev D, Kaushik D, Knepley M G, May D A, McInnes L C, Mills R T, Munson T, Rupp K, Sanan P, Smith B F, Zampini S, Zhang H, Zhang H. 2019. PETSc Users Manual Version 3.12

  • Banks R J. 1969. Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys J Int, 17: 457–487

    Article  Google Scholar 

  • Bin Zubair Syed H, Farquharson C, MacLachlan S. 2020. Block preconditioning techniques for geophysical electromagnetics. SIAM J Sci Comput, 42: B696–B721

    Article  Google Scholar 

  • Cai H, Xiong B, Zhdanov M. 2015. Three-dimensional marine controlled-source electromagnetic modelling in anisotropic medium using finite element method (in Chinese). Chin J Geophys, 58: 2839–2850

    Google Scholar 

  • Chen C, Kruglyakov M, Kuvshinov A. 2020. A new method for accurate and efficient modeling of the local ocean induction effects. Application to long-period responses from island geomagnetic observatories. Geophys Res Lett, 47: e86351

    Google Scholar 

  • Everett M E, Constable S, Constable C G. 2003. Effects of near-surface conductance on global satellite induction responses. Geophys J Int, 153: 277–286

    Article  Google Scholar 

  • Everett M E, Schultz A. 1995. Geomagnetic induction in eccentrically nested spheres. Phys Earth Planet Inter, 92: 189–198

    Article  Google Scholar 

  • Everett M E, Schultz A. 1996. Geomagnetic induction in a heterogenous sphere: Azimuthally symmetric test computations and the response of an undulating 660-km discontinuity. J Geophys Res, 101: 2765–2783

    Article  Google Scholar 

  • Geuzaine C, Remacle J F. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Engng, 79: 1309–1331

    Article  Google Scholar 

  • Grayver A V, Bürg M. 2014. Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method. Geophys J Int, 198: 110–125

    Article  Google Scholar 

  • Grayver A V, Schnepf N R, Kuvshinov A V, Sabaka T J, Manoj C, Olsen N. 2016. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary. Sci Adv, 2: e1600798

    Article  Google Scholar 

  • Grayver A V, van Driel M, Kuvshinov A V. 2019. Three-dimensional magnetotelluric modelling in spherical Earth. Geophys J Int, 217: 532–557

    Article  Google Scholar 

  • Greff-Lefftz M, Métivier L, Panet I, Caron L, Pajot-Métivier G, Bouman J. 2016. Joint analysis of GOCE gravity gradients data of gravitational potential and of gravity with seismological and geodynamic observations to infer mantle properties. Geophys J Int, 205: 257–283

    Article  Google Scholar 

  • Han Q, Hu X, Peng R. 2020. Spherical magnetotelluric modeling based on non-uniform source (in Chinese). Chin J Geophys, 63: 3154–3166

    Google Scholar 

  • Henson V E, Yang U M. 2002. BoomerAMG: A parallel algebraic multi-grid solver and preconditioner. Appl Numer Math, 41: 155–177

    Article  Google Scholar 

  • Hiptmair R, Xu J. 2007. Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J Numer Anal, 45: 2483–2509

    Article  Google Scholar 

  • Jin J M. 2014. The Finite Element Method in Electromagnetics. 3rd ed. Hoboken: Wiley-IEEE Press

    Google Scholar 

  • Keast P. 1986. Moderate-degree tetrahedral quadrature formulas. Comput Methods Appl Mech Eng, 55: 339–348

    Article  Google Scholar 

  • Kelbert A, Egbert G D, Schultz A. 2008. Non-linear conjugate gradient inversion for global EM induction: Resolution studies. Geophys J Int, 173: 365–381

    Article  Google Scholar 

  • Kelbert A, Kuvshinov A, Velimsky J, Koyama T, Ribaudo J, Sun J, Martinec Z, Weiss C J. 2014. Global 3-D electromagnetic forward modelling: A benchmark study. Geophys J Int, 197: 785–814

    Article  Google Scholar 

  • Kelbert A, Schultz A, Egbert G. 2009. Global electromagnetic induction constraints on transition-zone water content variations. Nature, 460: 1003–1006

    Article  Google Scholar 

  • Koldan J, Puzyrev V, de la Puente J, Houzeaux G, Cela J M. 2014. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics. Geophys J Int, 197: 1442–1458

    Article  Google Scholar 

  • Koyama T, Khan A, Kuvshinov A. 2014. Three-dimensional electrical conductivity structure beneath Australia from inversion of geomagnetic observatory data: Evidence for lateral variations in transition-zone temperature, water content and melt. Geophys J Int, 196: 1330–1350

    Article  Google Scholar 

  • Kuvshinov A V. 2008. 3-D global induction in the oceans and solid Earth: Recent progress in modeling magnetic and electric fields from sources of magnetospheric, ionospheric and oceanic origin. Surv Geophys, 29: 139–186

    Article  Google Scholar 

  • Kuvshinov A, Semenov A. 2012. Global 3-D imaging of mantle electrical conductivity based on inversion of observatory C-responses-I. An approach and its verification. Geophys J Int, 189: 1335–1352

    Article  Google Scholar 

  • Li J, Weng A, Li S, Li D, Li S, Yang Y, Tang Y, Zhang Y. 2018. 3-D forward method for geomagnetic depth sounding based on finite difference method in spherical coordinate (in Chinese). J Jilin Univ-Earth Sci Ed, 48: 411–419

    Google Scholar 

  • Li S, Weng A, Zhang Y, Li J, Yang Y, Tang Y, Zou Z, Li C. 2019. 3-D inversion for global geomagnetic depth sounding (in Chinese). Chin J Geophys, 62: 1908–1920

    Google Scholar 

  • Luo W, Wang X, Wang K, Zhang G, Li D. 2019. Three-dimensional forward modeling of the magnetotelluric method in spherical coordinates (in Chinese). Chin J Geophys, 62: 3885–3897

    Google Scholar 

  • Martinec Z. 1998. Geomagnetic induction in multiple eccentrically nested spheres. Geophys J Int, 132: 96–110

    Article  Google Scholar 

  • Martinec Z. 1999. Spectral-finite element approach to three-dimensional electromagnetic induction in a spherical earth. Geophys J Int, 136: 229–250

    Article  Google Scholar 

  • Olsen N. 2007. Natural sources for electromagnetic induction studies. In: Gubbins D, Herrero-Bervera E, eds. Encyclopedia of Geomagnetism and Paleomagnetism. Dordrecht: Springer Netherlands. 696–700

    Chapter  Google Scholar 

  • Ribaudo J T, Constable C G, Parker R L. 2012. Scripted finite element tools for global electromagnetic induction studies. Geophys J Int, 188: 435–446

    Article  Google Scholar 

  • Romanowicz B. 2003. Global mantle tomography: Progress Status in the Past 10 Years. Annu Rev Earth Planet Sci, 31: 303–328

    Article  Google Scholar 

  • Saad Y. 2003. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics

  • Schenk O, Gärtner K. 2004. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Comput Syst, 20: 475–487

    Article  Google Scholar 

  • Semenov A, Kuvshinov A. 2012. Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses-II. Data analysis and results. Geophys J Int, 191: 965–992

    Google Scholar 

  • Sun J, Egbert G D. 2012. A thin-sheet model for global electromagnetic induction. Geophys J Int, 189: 343–356

    Article  Google Scholar 

  • Sun J, Kelbert A, Egbert G D. 2015. Ionospheric current source modeling and global geomagnetic induction using ground geomagnetic observatory data. J Geophys Res-Solid Earth, 120: 6771–6796

    Article  Google Scholar 

  • Tabbara M, Blacker T, Belytschko T. 1994. Finite element derivative recovery by moving least square interpolants. Comput Methods Appl Mech Eng, 117: 211–223

    Article  Google Scholar 

  • Tang J, Wang F, Ren Z, Guo R. 2010. 3-D direct current resistivity forward modeling by adaptive multigrid finite element method. J Cent South Univ Technol, 17: 587–592

    Article  Google Scholar 

  • Uyeshima M, Schultz A. 2000. Geoelectromagnetic induction in a heterogeneous sphere:a new three-dimensional forward solver using a conservative staggered-grid finite difference method. Geophys J Int, 140: 636–650

    Article  Google Scholar 

  • Velímský J, Martinec Z. 2005. Time-domain, spherical harmonic-finite element approach to transient three-dimensional geomagnetic induction in a spherical heterogeneous earth. Geophys J Int, 161: 81–101

    Article  Google Scholar 

  • Weiss C J. 2010. Triangulated finite difference methods for global-scale electromagnetic induction simulations of whole mantle electrical heterogeneity. Geochem Geophys Geosyst, 11: Q11010

    Article  Google Scholar 

  • Weiss C J, Everett M E. 1998. Geomagnetic induction in a heterogeneous sphere: Fully three-dimensional test computations and the response of a realistic distribution of oceans and continents. Geophys J Int, 135: 650–662

    Article  Google Scholar 

  • Xu G, Tang J, Huang Q, Uyeshima M. 2015. Study on the conductivity structure of the upper mantle and transition zone beneath North China (in Chinese). Chin J Geophys, 58: 566–575

    Google Scholar 

  • Yin C, Liu Y, Xiong B. 2020. Status and prospect of 3D inversions in EM geophysics. Sci China Earth Sci, 63: 452–455

    Article  Google Scholar 

  • Yoshimura R, Oshiman N. 2002. Edge-based finite element approach to the simulation of geoelectromagnetic induction in a 3-D sphere. Geophys Res Lett, 29: 1039

    Article  Google Scholar 

  • Zhang H, Egbert G D, Chave A D, Huang Q, Kelbert A, Erofeeva S Y. 2019. Constraints on the resistivity of the oceanic lithosphere and asthenosphere from seafloor ocean tidal electromagnetic measurements. Geophys J Int, 219: 464–478

    Article  Google Scholar 

  • Zhang Y, Weng A, Li S, Yang Y, Tang Y, Liu Y. 2020. Electrical conductivity in the mantle transition zone beneath Eastern China derived from L1-Norm C-responses. Geophys J Int, 221: 1110–1124

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks are given to Zdeněk MARTINEC from Dublin Institute for Advanced studies for kindly providing analytic solutions and Anna KELBERT from United States Geological Survey for kindly offering benchmark solutions for comparison. We thank Chaojian CHEN from ETH Zurich and Jianping LI from Guangzhou Marine Geological Survey of China Geological Survey for their helpful discussion. We would like to thank the responsible editor and two anonymous reviewers for their valuable comments, which have greatly improved the quality of this paper. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 72088101, 41922027, 41830107, 41811530010), Innovation-Driven Project of Central South University (Grant No. 2020CX0012), the National Natural Science Foundation of Hunan Province of China (Grant No. 2019JJ20032), Macau Foundation and the pre-research project on Civil Aerospace Technologies funded by China’s National Space Administration (Grant Nos. D020308, D020303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengyong Ren or Jingtian Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Ren, Z., Tang, J. et al. 3D finite-element modeling of Earth induced electromagnetic field and its potential applications for geomagnetic satellites. Sci. China Earth Sci. 64, 1798–1812 (2021). https://doi.org/10.1007/s11430-020-9786-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9786-9

Keywords

Navigation