Skip to main content

Sea surface salinity-derived indexes for distinguishing two types of El Niño events in the tropical Pacific

Abstract

In this study, sea surface salinity (SSS) indexes are derived from reanalysis and observational datasets to distinguish the two types of (Central Pacific (CP) and Eastern Pacific (EP)) El Niño events in the tropical Pacific. Based on the SSS anomalous spatial and temporal pointwise correlations with sea surface temperature (SST) indexes of two types of El Niño events, the key areas with SSS variations for EP and CP El Niño events are identified. For EP El Niño events, the key areas are located over an arcuate area centered at (0°, 130°E) and in the central equatorial Pacific covering (5°S–5°N, 175°W–158°W). For CP El Niño events, the key areas are located in the northeastern western Pacific covering (2°S–9°N, 142°E–170°E) and in the southeastern Pacific covering (20°S–10°S, 135°W–95°W). The key areas for EP and CP El Niño events in this study are not located near the dateline in the equatorial Pacific and differ from those obtained from the regression or composite methods. Accordingly, these key areas are used to construct SSS indexes, termed as the CP/EP El Niño SSS index (CSI/ESI), to distinguish EP and CP El Niño events independently. The SSS indexes are verified by different datasets over varying time periods and they can be adequately used to identify the two types of El Niño events and serve as another useful tool for monitoring ENSO. These analyses offer novel insight into how to represent the diversity of El Niño events.

This is a preview of subscription content, access via your institution.

References

  1. Ashok K, Behera S K, Rao S A, Weng H, Yamagata T. 2007. El Niño Modoki and its possible teleconnection. J Geophys Res, 112: C11007

    Article  Google Scholar 

  2. Ashok K, Yamagata T. 2009. The El Niño with a difference. Nature, 461: 481–484

    Article  Google Scholar 

  3. Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev, 97: 163–172

    Article  Google Scholar 

  4. Bosc C, Delcroix T. 2008. Observed equatorial Rossby waves and ENSO-related warm water volume changes in the equatorial Pacific Ocean. J Geophys Res, 113: C06003

    Google Scholar 

  5. Bosc C, Delcroix T, Maes C. 2009. Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J Geophys Res, 114: C06023

    Google Scholar 

  6. Cai W, Wang G, Dewitte B, Wu L, Santoso A, Takahashi K, Yang Y, Carréric A, McPhaden M J. 2018. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564: 201–206

    Article  Google Scholar 

  7. Cravatte S, Delcroix T, Zhang D, McPhaden M, Leloup J. 2009. Observed freshening and warming of the western pacific warm pool. Clim Dyn, 33: 565–589

    Article  Google Scholar 

  8. Delcroix T, Hénin C. 1991. Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. J Geophys Res, 96: 22135–22,150

    Article  Google Scholar 

  9. Delcroix T, McPhaden M. 2002. Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000. J Geophys Res, 107: 8002

    Article  Google Scholar 

  10. Delcroix T, Picaut J. 1998. Zonal displacement of the western equatorial Pacific “fresh pool”. J Geophys Res, 103: 1087–1098

    Article  Google Scholar 

  11. Delcroix T. 1998. Observed surface oceanic and atmospheric variability in the tropical Pacific at seasonal and ENSO timescales: A tentative overview. J Geophys Res, 103: 18611–18633

    Article  Google Scholar 

  12. Deser C, Wallace J M. 1987. El Niño events and their relation to the Southern Oscillation: 1925–1986. J Geophys Res, 92: 14189–14,196

    Article  Google Scholar 

  13. Eldin G, Rodier M, Radenac M H. 1997. Physical and nutrient variability in the upper equatorial Pacific associated with westerly wind forcing and wave activity in October 1994. Deep-Sea Res Part II-Top Stud Oceanogr, 44: 1783–1800

    Article  Google Scholar 

  14. Freund M B, Henley B J, Karoly D J, McGregor H V, Abram N J, Dommenget D. 2019. Higher frequency of central Pacific El Niño events in recent decades relative to past centuries. Nat Geosci, 12: 450–455

    Article  Google Scholar 

  15. Giese B S, Seidel H F, Compo G P, Sardeshmukh P D. 2016. An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J Geophys Res-Oceans, 121: 6891–6910

    Article  Google Scholar 

  16. Ham Y G, Kim J H, Luo J J. 2019. Deep learning for multi-year ENSO forecasts. Nature, 573: 568–572

    Article  Google Scholar 

  17. Hanley D E, Bourassa M A, O’Brien J J, Smith S R, Spade E R. 2003. A quantitative evaluation of ENSO indices. J Clim, 16: 1249–1258

    Article  Google Scholar 

  18. Harrison D E, Larkin N K. 1998. El Niño-Southern Oscillation sea surface temperature and wind anomalies, 1946–1993. Rev Geophys, 36: 353–399

    Article  Google Scholar 

  19. Hasson A E A, Delcroix T, Dussin R. 2013. An assessment of the mixed layer salinity budget in the tropical Pacific Ocean. Observations and modelling (1990-2009). Ocean Dyn, 63: 179–194

    Article  Google Scholar 

  20. Ingleby B, Huddleston M. 2007. Quality control of ocean temperature and salinity profiles—Historical and real-time data. J Mar Syst, 65: 158–175

    Article  Google Scholar 

  21. Jeong H I, Ahn J B. 2017. A new method to classify ENSO events into eastern and central Pacific types. Int J Climatol, 37: 2193–2199

    Article  Google Scholar 

  22. Jin F F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci, 54: 811–829

    Article  Google Scholar 

  23. Kang X, Zhang R H, Wang G. 2017. Effects of different freshwater flux representations in an ocean general circulation model of the tropical Pacific. Sci Bull, 62: 345–351

    Article  Google Scholar 

  24. Kao H Y, Yu J Y. 2009. Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim, 22: 615–632

    Article  Google Scholar 

  25. Kim H M, Webster, P J, Curry J A. 2009. Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325: 77–80

    Article  Google Scholar 

  26. Kug J S, Jin F F, An S I. 2009. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J Clim, 22: 1499–1515

    Article  Google Scholar 

  27. Lagerloef G, Colomb F R, Le Vine D, Wentz F, Yueh S, Ruf C, Lilly J, Gunn J, Chao Y, deCharon A, Feldman G, Swift C. 2008. The Aqua-rius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21: 68–81

    Article  Google Scholar 

  28. Lee T, McPhaden M J. 2010. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett, 37: L14603

    Google Scholar 

  29. Lian T, Chen D, Tang Y. 2017. Genesis of the 2014–2016 El Niño events. Sci China Earth Sci, 60: 1589–1600

    Article  Google Scholar 

  30. Lin P, Yu Z, Lü J, Ding M, Hu A, Liu H. 2019. Two regimes of Atlantic Multidecadal Oscillation: Cross-basin dependent or Atlantic-intrinsic. Sci Bull, 64: 198–204

    Article  Google Scholar 

  31. Liu C, Liang X, Ponte R M, Vinogradova N, Wang O. 2019. Vertical redistribution of salt and layered changes in global ocean salinity. Nat Commun, 10: 3445

    Article  Google Scholar 

  32. Maes C. 2008. On the ocean salinity stratification observed at the eastern edge of the equatorial Pacific warm pool. J Geophys Res, 113: C03027

    Google Scholar 

  33. Maes C, Ando K, Delcroix T, Kessler W S, McPhaden M J, Roemmich D. 2006. Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophys Res Lett, 33: L06601

    Article  Google Scholar 

  34. Maes C, Picaut J, Kuroda Y, Ando K. 2004. Characteristics of the convergence zone at the eastern edge of the Pacific warm pool. Geophys Res Lett, 31: 293–317

    Article  Google Scholar 

  35. McPhaden M J, Zhang X, Hendon H H, Wheeler M C. 2006. Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett, 33: L16702

    Article  Google Scholar 

  36. Newman M, Shin S I, Alexander M A. 2011. Natural variation in ENSO flavors. Geophys Res Lett, 38: L14705

    Article  Google Scholar 

  37. Nguyen H, Hendon H H, Lim E P, Boschat G, Maloney E, Timbal B. 2018. Variability of the extent of the Hadley circulation in the southern hemisphere: A regional perspective. Clim Dyn, 50: 129–142

    Article  Google Scholar 

  38. Picaut J, Ioualalen M, Delcroix T, François M, Murtugudde R, Vialard J. 2001. The oceanic zone of convergence on the eastern edge of the pacific warm pool: A synthesis of results and implications for El Niño-Southern Oscillation and biogeochemical phenomena. J Geophys Res-Oceans, 106: 2363–2386

    Article  Google Scholar 

  39. Qi J, Zhang L, Qu T, Yin B, Xu Z, Yang D, Li D, Qin Y. 2019. Salinity variability in the tropical Pacific during the Central-Pacific and Eastern-Pacific El Niño events. J Mar Syst, 199: 103225

    Article  Google Scholar 

  40. Qu T, Yu J Y. 2014. ENSO indices from sea surface salinity observed by Aquarius and Argo. J Oceanogr, 70: 367–375

    Article  Google Scholar 

  41. Rackow T, Goessling H F, Jung T, Sidorenko D, Semmler T, Barbi D, Handorf D. 2018. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: Climate variability. Clim Dyn, 50: 2369–2394

    Article  Google Scholar 

  42. Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev, 110: 354–384

    Article  Google Scholar 

  43. Ren H L, Jin F F. 2011. Niño indices for two types of ENSO. Geophys Res Lett, 38: L04704

    Article  Google Scholar 

  44. Ren L, Speer K, Chassignet E P. 2011. The mixed layer salinity budget and sea ice in the Southern Ocean. J Geophys Res, 116: C08031

    Google Scholar 

  45. Ren H L, Zuo J, Deng Y. 2019. Statistical predictability of Niño indices for two types of ENSO. Clim Dyn, 52: 5361–5382

    Article  Google Scholar 

  46. Roberts A, Widiasih E, Timmermann A, Jones C K R T, Guckenheimer J. 2016. Mixed-mode oscillations of El Niño-southern oscillation. J Atmos Sci, 73: 1755–1766

    Article  Google Scholar 

  47. Santoso A, Mcphaden M J, Cai W. 2017. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev Geophys, 55: 1079–1129

    Article  Google Scholar 

  48. Singh A, Delcroix T, Cravatte S. 2011. Contrasting the flavors of El Niño-Southern Oscillation using sea surface salinity observations. J Geophys Res, 116: C06016

    Google Scholar 

  49. Takahashi K, Montecinos A, Goubanova K, Dewitte B. 2011. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys Res Lett, 38: L10704

    Article  Google Scholar 

  50. Timmermann A, An S I, Kug J S, Jin F F, Cai W, Capotondi A, Cobb K M, Lengaigne M, McPhaden M J, Stuecker M F, Stein K, Wittenberg A T, Yun K S, Bayr T, Chen H C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y G, Hayashi M, Ineson S, Kang D, Kim S, Kim W M, Lee J Y, Li T, Luo J J, McGregor S, Planton Y, Power S, Rashid H, Ren H L, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang W H, Yeh S W, Yoon J, Zeller E, Zhang X. 2018. El Niño-Southern Oscillation complexity. Nature, 559: 535–545

    Article  Google Scholar 

  51. Trenberth K E. 1984. Signal versus noise in the Southern Oscillation. Mon Weather Rev, 112: 326–332

    Article  Google Scholar 

  52. Trenberth K E. 1997. The definition of El Niño. Bull Amer Meteorol Soc, 78: 2771–2778

    Article  Google Scholar 

  53. Trenberth K E, Caron J M, Stepaniak D P. 2001. The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Clim Dyn, 17: 259–276

    Article  Google Scholar 

  54. Weisberg R H, Wang C. 1997. A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett, 24: 779–782

    Article  Google Scholar 

  55. Weng H, Behera S K, Yamagata T. 2009. Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Clim Dyn, 32: 663–674

    Article  Google Scholar 

  56. Weng H, Ashok K, Behera S K, Rao S A, Yamagata T. 2007. Impacts of recent El Niño Modoki on dry/wet conditions in the pacific rim during boreal summer. Clim Dyn, 29: 113–129

    Article  Google Scholar 

  57. Wiedermann M, Radebach A, Donges J F, Kurths J, Donner R V. 2016. A climate network-based index to discriminate different types of El Niño and La Niña. Geophys Res Lett, 43: 7176–7185

    Article  Google Scholar 

  58. Williams I N, Patricola C M. 2018. Diversity of ENSO events unified by convective threshold sea surface temperature: A nonlinear ENSO index. Geophys Res Lett, 45: 9236–9244

    Article  Google Scholar 

  59. Xiang B, Wang B, Li T. 2013. A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Clim Dyn, 41: 327–340

    Article  Google Scholar 

  60. Xu K, Tam C Y, Zhu C, Liu B, Wang W. 2017. CMIP5 projections of two types of El Niño and their related tropical precipitation in the twenty-first century. J Clim, 30: 849–864

    Article  Google Scholar 

  61. Xu K, Zhu C W, He J H. 2012. Linkage between the dominant modes in Pacific subsurface ocean temperature and the two type ENSO events. Chin Sci Bull, 57: 3491–3496

    Article  Google Scholar 

  62. Yeh S W, Kug J S, Dewitte B, Kwon M H, Kirtman B P, Jin F F. 2009. El Niño in a changing climate. Nature, 461: 511–514

    Article  Google Scholar 

  63. Yu J Y, Kao H Y. 2007. Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res, 112: 2006JD007654

    Article  Google Scholar 

  64. Yu J Y, Kao H Y, Lee T. 2010. Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim, 23: 2869–2884

    Article  Google Scholar 

  65. Yu J Y, Kim S T. 2013. Identifying the types of major El Niño events since 1870. Int J Climatol, 33: 2105–2112

    Article  Google Scholar 

  66. Zhang R H, Gao C. 2016. The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event. Sci Bull, 61: 1061–1070

    Article  Google Scholar 

  67. Zhang R H, Gao C, Kang X, Zhi H, Wang Z, Feng L. 2015. ENSO modulations due to interannual variability of freshwater forcing and ocean biology-induced heating in the tropical Pacific. Sci Rep, 5: 18506

    Article  Google Scholar 

  68. Zhang R H, Zheng F, Zhu J, Pei Y, Zheng Q, Wang Z. 2012. Modulation of El Niño-Southern Oscillation by freshwater flux and salinity variability in the tropical Pacific. Adv Atmos Sci, 29: 647–660

    Article  Google Scholar 

  69. Zhang R H, Yu Y, Song Z, Ren H L, Tang Y, Qiao F, Wu T, Gao C, Hu J, Tian F, Zhu Y, Chen L, Liu H, Lin P, Wu F, Wang L. 2020. A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. J Ocean Limnol, 38: 930–961

    Article  Google Scholar 

  70. Zhang Z, Ren B, Zheng J. 2019. A unified complex index to characterize two types of ENSO simultaneously. Sci Rep, 9: 8373

    Article  Google Scholar 

  71. Zheng F, Yu J Y. 2017. Contrasting the skills and biases of deterministic predictions for the two types of El Niño. Adv Atmos Sci, 34: 1395–1403

    Article  Google Scholar 

  72. Zheng F, Zhang R H. 2015. Interannually varying salinity effects on ENSO in the tropical Pacific: A diagnostic analysis from Argo. Ocean Dyn, 65: 691–705

    Article  Google Scholar 

  73. Zheng F, Fang X H, Yu J Y, Zhu J. 2014a. Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys Res Lett, 41: 7651–7657

    Article  Google Scholar 

  74. Zheng F, Wan L Y, Wang H. 2012. Distinguished effects of interannual salinity variability on the development of the Central-Pacific El Niño events. Atmos Ocean Sci Lett, 5: 123–127

    Article  Google Scholar 

  75. Zheng F, Zhang R H, Zhu J. 2014b. Effects of interannual salinity variability on the barrier layer in the western-central equatorial Pacific: A diagnostic analysis from Argo. Adv Atmos Sci, 31: 532–542

    Article  Google Scholar 

  76. Zhi H, Zhang R H, Lin P, Shi S. 2019. Effects of salinity variability on recent El Niño events. Atmosphere, 10: 475

    Article  Google Scholar 

  77. Zhi H, Zhang R H, Lin P, Yu P, Zhou G, Shi S. 2020. Interannual salinity variability associated with the central Pacific and eastern Pacific El Niños in the tropical Pacific. J Geophys Res-Oceans, 125: e16090

    Article  Google Scholar 

  78. Zhu J, Huang B, Zhang R H, Hu Z Z, Kumar A, Balmaseda M A, Marx L, Kinter J L III. 2015. Salinity anomaly as a trigger for ENSO events. Sci Rep, 4: 6821

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of the following dataset: Argo, EN, SODA, etc. This work was supported by the National Key Research and Development Program on Monitoring, Early Warning and Prevention of Major Natural Disaster (Grant Nos. 2018YFC1506002, 2016YFC1401601, 2019YFC1510004), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB 40000000, XDB 42000000), the National Natural Science Foundation of China (Grant Nos. 42030410, 41976026, 41931183, 41690122) and the National Key R&D Program of China (Grant No. 2017YFC1404102).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Lin or Rong-Hua Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhi, H., Lin, P., Fang, Z. et al. Sea surface salinity-derived indexes for distinguishing two types of El Niño events in the tropical Pacific. Sci. China Earth Sci. 64, 1267–1284 (2021). https://doi.org/10.1007/s11430-020-9780-2

Download citation

Keywords

  • Two types of El Niño
  • Sea surface salinity indexes
  • Tropical Pacific