Skip to main content
Log in

Spatial variations in the trophic status of Favia palauensis corals in the South China Sea: Insights into their different adaptabilities under contrasting environmental conditions

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Scleractinian corals exhibit a dual trophic pattern of autotrophic photosynthesis and heterotrophic predation. However, whether corals can adjust their trophic status under contrasting environmental conditions remains unclear. In our study, 70 scleractinian corals (Favia palauensis) were collected from Sanya and the Xisha and Nansha Islands in the South China Sea. We measured the zooxanthellae density (ZD) and δ13C of zooxanthellae (δ13Cz) and host tissue (δ13Ch) and analyzed the difference between δ13Ch and δ13Cz (i.e., Δh−z 13C). The relatively high ZD and δ13Cz values in the samples from Sanya indicate that these corals might have higher photosynthetic rates and autotrophic abilities than those from Xisha and Nansha. In contrast, the relatively low δ13Ch and Δh−z 13C values in the samples from Xisha and Nansha suggest that these corals might have a higher heterotrophic ability than those from Sanya. In addition, we tested the coral tissue biomass and skeletal δ13C (δ13Cs) in the samples from Sanya and examined their correlations with Δh−z 13C. The results showed a negative correlation, indicating that the more the organic material produced by the coral, the stronger its heterotrophic ability. Our results show that corals can adjust their trophic status under different environmental and physiological conditions, which is essential for increasing their adaptability to different environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A. 2009. Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta, 73: 5333–5342

    Article  Google Scholar 

  • Allison N, Tudhope A W, Fallick A E. 1996. Factors influencing the stable carbon and oxygen isotopic composition of Porites lutea coral skeletons from Phuket, South Thailand. Coral Reefs, 15: 43–57

    Google Scholar 

  • Anthony K R N. 2000. Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs, 19: 59–67

    Article  Google Scholar 

  • Anthony K R N, Fabricius K E. 2000. Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol, 252: 221–253

    Article  Google Scholar 

  • Bachar A, Achituv Y, Pasternak Z, Dubinsky Z. 2007. Autotrophy versus heterotrophy: The origin of carbon determines its fate in a symbiotic sea anemone. J Exp Mar Biol Ecol, 349: 295–298

    Article  Google Scholar 

  • Bhagooli R, Hidaka M. 2004. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comp Biochem Phys A, 137: 547–555

    Article  Google Scholar 

  • Cohen A L, Hart S R. 1997. The effect of colony topography on climate signals in coral skeleton. Geochim Cosmochim Acta, 61: 3905–3912

    Article  Google Scholar 

  • Dou Y, Gao J W, Shi X T, Chen R N, Zhou W L. 2015. Outbreak frequency and factors influencing red tides in nearshore waters of the South China Sea from 2000 to 2013 (in Chinese). J Hydroecol, 36: 31–37

    Google Scholar 

  • Deng W F, Wei G J, Xie L H, Yu K F. 2013. Environmental controls on coral skeletal δ13C in the northern South China Sea. J Geophys Res-Biogeosci, 118: 1359–1368

    Article  Google Scholar 

  • DeNiro M J, Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta, 42: 495–506

    Article  Google Scholar 

  • Fabricius K E, Benayahu Y, Genin A. 1995. Herbivory in asymbiotic soft corals. Science, 268: 90–92

    Article  Google Scholar 

  • Fagoonee I, Wilson H B, Hassell M P, Turner J R. 1999. The dynamics of zooxanthellae populations: A long-term study in the field. Science, 283: 843–845

    Article  Google Scholar 

  • Falkowski P G, Dubinsky Z, Muscatine L, Porter J W. 1984. Light and the bioenergetics of a symbiotic coral. Bioscience, 34: 705–709

    Article  Google Scholar 

  • Ferrier-Pagès C, Leal M C. 2019. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol Evol, 9: 723–740

    Article  Google Scholar 

  • Ferrier-Pagès C, Sauzéat L, Balter V. 2018. Coral bleaching is linked to the capacity of the animal host to supply essential metals to the symbionts. Glob Change Biol, 24: 3145–3157

    Article  Google Scholar 

  • Ferrier-Pagès C, Hoogenboom M O, Houlbrèque F. 2011. The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N, eds. Coral Reefs: An Ecosystem in Transition. Dordrecht: Springer Netherlands. 215–229

    Chapter  Google Scholar 

  • Fitt W K, McFarland F K, Warner M E, Chilcoat G C. 2000. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr, 45: 677–685

    Article  Google Scholar 

  • Fox M D, Williams G J, Johnson M D, Radice V Z, Zgliczynski B J, Kelly E L A, Rohwer F L, Sandin S A, Smith J E. 2018. Gradients in primary production predict trophic strategies of mixotrophic corals across spatial scales. Curr Biol, 28: 3355–3363

    Article  Google Scholar 

  • Fujise L, Yamashita H, Suzuki G, Sasaki K, Liao L M, Koike K. 2014. Moderate thermal stress causes active and immediate expulsion of photosynthetically damaged zooxanthellae (symbiodinium) from corals. PLoS ONE, 9: e114321

    Article  Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D. 2000. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol, 203: 3445–3457

    Article  Google Scholar 

  • Gattuso J P, Allemand D, Frankignoulle M. 1999. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. Am Zool, 39: 160–183

    Article  Google Scholar 

  • Godinot C, Houlbrèque F, Grover R, Ferrier-Pagès C. 2011. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE, 6: e25024

    Article  Google Scholar 

  • Goreau T F, Goreau N I, Yonge C M. 1971. Reef corals: Autotrophs or heterotrophs? Biol Bull, 141: 247–260

    Article  Google Scholar 

  • Grottoli A G, Rodrigues L J, Palardy J E. 2006. Heterotrophic plasticity and resilience in bleached corals. Nature, 440: 1186–1189

    Article  Google Scholar 

  • Grottoli A G, Rodrigues L J, Juarez C. 2004. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol, 145: 621–631

    Article  Google Scholar 

  • Grottoli A G, Wellington G M. 1999. Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs, 18: 29–41

    Article  Google Scholar 

  • Gustafsson M S M, Baird M E, Ralph P J. 2014. Modeling photoinhibition-driven bleaching in Scleractinian coral as a function of light, temperature, and heterotrophy. Limnol Oceanogr, 59: 603–622

    Article  Google Scholar 

  • Hallock P, Schlager W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios, 1: 389–398

    Article  Google Scholar 

  • Heikoop J M, Dunn J J, Risk M J, Schwarcz H P, McConnaughey T A, Sandeman I M. 2000. Separation of kinetic and metabolic isotope effects in carbon-13 records preserved in reef coral skeletons. Geochim Cosmochim Acta, 64: 975–987

    Article  Google Scholar 

  • Hoegh-Guldberg O. 1999. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res, 50: 839–866

    Google Scholar 

  • Hoegh-Guldberg O. 1994. Population dynamics of symbiotic zooxanthellae in the coral Pocillopora damicornis exposed to elevated ammonium [(NH4)2SO4] concentrations. Pac Sci, 48: 263–272

    Google Scholar 

  • Hoegh-Guldberg O, Smith G J. 1989. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J Exp Mar Biol Ecol, 129: 279–303

    Article  Google Scholar 

  • Hoogenboom M O, Rodolfo-Metalpa R, Ferrier-Pagès C. 2010. Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J Exp Biol, 213: 2399–2409

    Article  Google Scholar 

  • Hoogenboom M O, Anthony K R N, Connolly S R. 2006. Energetic cost of photoinhibition in corals. Mar Ecol Prog Ser, 313: 1–12

    Article  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C. 2009. Heterotrophy in tropical scleractinian corals. Biol Rev, 84: 1–17

    Article  Google Scholar 

  • Houlbrèque F, Tambutté E, Ferrier-Pagès C. 2003. Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol, 296: 145–166

    Article  Google Scholar 

  • Hughes A D, Grottoli A G. 2013. Heterotrophic compensation: A possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS ONE, 8: e81172

    Article  Google Scholar 

  • Hughes T P, Baird A H, Bellwood D R, Card M, Connolly S R, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson J B C, Kleypas J, Lough J M, Marshall P, Nyström M, Palumbi S R, Pandolfi J M, Rosen B, Roughgarden J. 2003. Climate change, human impacts, and the resilience of coral reefs. Science, 301: 929–933

    Article  Google Scholar 

  • Johannes R E, Wiebe W J. 1970. Method for determination of coral tissue biomass and composition1. Limnol Oceanogr, 15: 822–824

    Article  Google Scholar 

  • Ke Z X, Tan Y H, Huang L M, Liu H J, Liu J X, Jiang X, Wang J X. 2018. Spatial distribution patterns of phytoplankton biomass and primary productivity in six coral atolls in the central South China Sea. Coral Reefs, 37: 919–927

    Article  Google Scholar 

  • Krueger T, Bodin J, Horwitz N, Loussert-Fonta C, Sakr A, Escrig S, Fine M, Meibom A. 2018. Temperature and feeding induce tissue level changes in autotrophic and heterotrophic nutrient allocation in the coral symbiosis—A NanoSIMS study. Sci Rep, 8: 12710

    Article  Google Scholar 

  • Ladrière O, Penin L, Van Lierde E, Vidal-Dupiol J, Kayal M, Roberty S, Poulicek M, Adjeroud M. 2014. Natural spatial variability of algal endosymbiont density in the coral Acropora globiceps: A small-scale approach along environmental gradients around Moorea (French Polynesia). J Mar Biol Ass, 94: 65–74

    Article  Google Scholar 

  • Land L S, Lang J C, Smith B N. 1975. Preliminary observations on the carbon isotopic composition of some reef coral tissues and symbiotic zooxanthellae1. Limnol Oceanogr, 20: 283–287

    Article  Google Scholar 

  • Lesser M P. 1997. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs, 16: 187–192

    Article  Google Scholar 

  • Lesser M P. 1996. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr, 41: 271–283

    Article  Google Scholar 

  • Levas S J, Grottoli A G, Hughes A, Osburn C L, Matsui Y. 2013. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: Implications for resilience in mounding corals. PLoS ONE, 8: e63267

    Article  Google Scholar 

  • Li S, Yu K F, Shi Q, Chen T R, Zhao M X, Zhao J X. 2008. Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching. Chin Sci Bull, 53: 295–303

    Article  Google Scholar 

  • Linsley B K, Dunbar R B, Dassié E P, Tangri N, Wu H C, Brenner L D, Wellington G M. 2019. Coral carbon isotope sensitivity to growth rate and water depth with paleo-sea level implications. Nat Commun, 10: 2056

    Article  Google Scholar 

  • Maier C, Weinbauer M G, Pätzold J. 2010. Stable isotopes reveal limitations in C and N assimilation in the Caribbean reef corals Madracis auretenra, M. carmabi and M.formosa. Mar Ecol Prog Ser, 412: 103–112

    Article  Google Scholar 

  • Marubini F, Davies P S. 1996. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol, 127: 319–328

    Article  Google Scholar 

  • McConnaughey T. 1989a. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta, 53: 163–171

    Article  Google Scholar 

  • McConnaughey T. 1989b. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta, 53: 151–162

    Article  Google Scholar 

  • Mills M M, Lipschultz F, Sebens K P. 2004. Particulate matter ingestion and associated nitrogen uptake by four species of scleractinian corals. Coral Reefs, 23: 311–323

    Article  Google Scholar 

  • Muller-Parker G, D’Elia C F, Cook C B. 2015. Interactions between corals and their symbiotic algae. In: Birkeland C, ed. Coral Reefs in the Anthropocene. Dordrecht: Springer Netherlands. 99–116

    Chapter  Google Scholar 

  • Muscatine L. 1980. Productivity of zooxanthellae. In: Falkowski, eds. Primary Productivity in the Sea. New York: Plenum Press. 381–402

    Chapter  Google Scholar 

  • Muscatine L, Porter J W, Kaplan I R. 1989. Resource partitioning by reef corals as determined from stable isotope composition. Mar Biol, 100: 185–193

    Article  Google Scholar 

  • Nahon S, Richoux N B, Kolasinski J, Desmalades M, Ferrier Pages C, Lecellier G, Planes S, Berteaux Lecellier V. 2013. Spatial and temporal variations in stable carbon (δ13C) and nitrogen (δ15N) isotopic composition of symbiotic scleractinian corals. PLoS ONE, 8: e81247

    Article  Google Scholar 

  • Palardy J E, Rodrigues L J, Grottoli A G. 2008. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J Exp Mar Biol Ecol, 367: 180–188

    Article  Google Scholar 

  • Papina M, Meziane T, van Woesik R. 2003. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comp Biochem Phys B, 135: 533–537

    Article  Google Scholar 

  • Plass-Johnson J G, McQuaid C D, Hill J M. 2015. Morphologically similar, coexisting hard corals (Porites lobata and P. solida) display similar trophic isotopic ratios across reefs and depths. Mar Freshwater Res, 67: 671–676

    Article  Google Scholar 

  • Porter J W, Fitt W K, Spero H J, Rogers C S, White M W. 1989. Bleaching in reef corals: Physiological and stable isotopic responses. Proc Natl Acad Sci USA, 86: 9342–9346

    Article  Google Scholar 

  • Qin Z J, Yu K F, Wang Y H, Xu L J, Huang X Y, Chen B, Li Y, Wang W H, Pan Z L. 2019. Spatial and intergeneric variation in physiological indicators of corals in the South China Sea: Insights into their current state and their adaptability to environmental stress. J Geophys Res-Oceans, 124: 3317–3332

    Article  Google Scholar 

  • Rau G H, Teyssie J L, Rassoulzadegan F, Fowler S W. 1990. 13C/12C and 15N/14N variations among size-fractionated marine particles: Implications for their origin and trophic relationships. Mar Ecol Prog Ser, 59: 33–38

    Article  Google Scholar 

  • Reynaud S, Ferrier-Pagès C, Sambrotto R, Juillet-Leclerc A, Jaubert J, Gattuso J P. 2002. Effect of feeding on the carbon and oxygen isotopic composition in the tissues and skeleton of the zooxanthellate coral Stylophora pistillata. Mar Ecol Prog Ser, 238: 81–89

    Article  Google Scholar 

  • Reynaud-Vaganay S, Juillet-Leclerc A, Jaubert J, Gattuso J P. 2001. Effect of light on skeletal δ13C and δ18O, and interaction with photosynthesis, respiration and calcification in two zooxanthellate scleractinian corals. Palaeogeogr Palaeoclimatol Palaeoecol, 175: 393–404

    Article  Google Scholar 

  • Risk M J, Sammarco P W, Schwarcz H P. 1994. Cross-continental shelf trends in δ13C in coral on the Great Barrier Reef. Mar Ecol Prog Ser, 106: 121–130

    Article  Google Scholar 

  • Rodrigues L J, Grottoli A G. 2006. Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals. Geochim Cosmochim Acta, 70: 2781–2789

    Article  Google Scholar 

  • Sawall Y, Al-Sofyani A, Banguera-Hinestroza E, Voolstra C R. 2014. Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea. PLoS ONE, 9: e103179

    Article  Google Scholar 

  • Sawall Y, Teichberg M C, Seemann J, Litaay M, Jompa J, Richter C. 2011. Nutritional status and metabolism of the coral Stylophora subseriata along a eutrophication gradient in Spermonde Archipelago (Indonesia). Coral Reefs, 30: 841–853

    Article  Google Scholar 

  • Schoepf V, Stat M, Falter J L, McCulloch M T. 2015. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep, 5: 17639

    Article  Google Scholar 

  • Schoepf V, Levas S J, Rodrigues L J, McBride M O, Aschaffenburg M D, Matsui Y, Warner M E, Hughes A D, Grottoli A G. 2014. Kinetic and metabolic isotope effects in coral skeletal carbon isotopes: A re-evaluation using experimental coral bleaching as a case study. Geochim Cosmochim Acta, 146: 164–178

    Article  Google Scholar 

  • Schoepf V, Grottoli A G, Warner M E, Cai W J, Melman T F, Hoadley K D, Pettay D T, Hu X P, Li Q, Xu H, Wang Y C, Matsui Y, Baumann J H. 2013. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS ONE, 8: e75049

    Article  Google Scholar 

  • Seemann J. 2013. The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. J Exp Mar Biol Ecol, 442: 88–95

    Article  Google Scholar 

  • Shimokawa S, Murakami T, Ukai A, Kohno H, Mizutani A, Nakase K. 2014. Relationship between coral distributions and physical variables in Amitori Bay, Iriomote Island, Japan. J Geophys Res-Oceans, 119: 8336–8356

    Article  Google Scholar 

  • Sunagawa S, Cortés J, Jiménez C, Lara R. 2008. Variation in cell densities and pigment concentrations of symbiotic dinoflagellates in the coral Pavona clavus in the Eastern Pacific (Costa Rica). Cienc Mar, 34: 113–123

    Article  Google Scholar 

  • Swart P K, Saied A, Lamb K. 2005a. Temporal and spatial variation in the δ15N and δ13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol Oceanogr, 50: 1049–1058

    Article  Google Scholar 

  • Swart P K, Szmant A, Porter J W, Dodge R E, Tougas J I, Southam J R. 2005b. The isotopic composition of respired carbon dioxide in scleractinian corals: Implications for cycling of organic carbon in corals. Geochim Cosmochim Acta, 69: 1495–1509

    Article  Google Scholar 

  • Tchernov D, Gorbunov M Y, de Vargas C, Yadav S N, Milligan A J, Häggblom M, Falkowski P G. 2004. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA, 101: 13531–13535

    Article  Google Scholar 

  • Titlyanov E A, Tsukahara J, Titlyanova T V, Leletkin V A, Van Woesik R, Yamazato K. 2000. Zooxanthellae population density and physiological state of the coral Stylophora pistillata during starvation and osmotic shock. Symbiosis, 28: 303–322

    Google Scholar 

  • Treignier C, Grover R, Ferrier-Pagés C, Tolosa I. 2008. Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr, 53: 2702–2710

    Article  Google Scholar 

  • Tremblay P, Gori A, Maguer J F, Hoogenboom M O, Ferrier-Pagès C. 2016. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Sci Rep, 6: 38112

    Article  Google Scholar 

  • Tremblay P, Maguer J F, Grover R, Ferrier-Pagès C. 2015. Trophic dynamics of scleractinian corals: Stable isotope evidence. J Exp Biol, 218: 1223–1234

    Google Scholar 

  • Tremblay P, Grover R, Maguer J F, Hoogenboom M O, Ferrier-Pagès C. 2014. Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs, 33: 1–13

    Article  Google Scholar 

  • Tremblay P, Grover R, Maguer J F, Legendre L, Ferrier-Pagès C. 2012. Autotrophic carbon budget in coral tissue: A new 13C-based model of photosynthate translocation. J Exp Biol, 215: 1384–1393

    Article  Google Scholar 

  • Venn A A, Loram J E, Douglas A E. 2008. Photosynthetic symbioses in animals. J Exp Bot, 59: 1069–1080

    Article  Google Scholar 

  • Wang D R, Wu Z J, Li Y C, Chen J R, Chen M. 2011. Analysis on variation trend of coral reef in Xisha. Acta Ecologica Sin, 31: 254–258

    Article  Google Scholar 

  • Wang W H, Yu K F, Wang Y H. 2016. A review on the research of coral reefs in the Weizhou Island, Beibu Gulf (in Chinese). Trop Geogr, 36: 72–79

    Google Scholar 

  • Williams G J, Sandin S A, Zgliczynski B J, Fox M D, Gove J M, Rogers J S, Furby K A, Hartmann A C, Caldwell Z R, Price N N, Smith J E. 2018. Biophysical drivers of coral trophic depth zonation. Mar Biol, 165: 60

    Article  Google Scholar 

  • Wooldridge S A. 2013. Breakdown of the coral-algae symbiosis: Towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences, 10: 1647–1658

    Article  Google Scholar 

  • Xu L J, Yu K F, Li S, Liu G H, Tao S C, Shi Q, Chen T R, Zhang H L. 2017. Interseasonal and interspecies diversities of Symbiodinium density and effective photochemical efficiency in five dominant reef coral species from Luhuitou fringing reef, northern South China Sea. Coral Reefs, 36: 477–487

    Article  Google Scholar 

  • Xu S D, Yu K F, Zhang Z N, Chen B, Qin Z J, Huang X Y, Jiang W, Wang Y X, Wang Y H. 2020. Intergeneric differences in trophic status of scleractinian corals from Weizhou Island, northern South China Sea: Implication for their different environmental stresses tolerance. J Geophys Res-Biogeosci, 125: e05451

    Article  Google Scholar 

  • Xu S D, Yu K F, Wang Y H, Liu T, Jiang W, Wang S P, Chu M H. 2018. Oil spill recorded by skeletal δ13C of Porites corals in Weizhou Island, Beibu Gulf, northern South China Sea. Estuar Coast Shelf Sci, 207: 338–344

    Article  Google Scholar 

  • Yentsch C S, Yentsch C M, Cullen J J, Lapointe B, Phinney D A, Yentsch S W. 2002. Sunlight and water transparency: Cornerstones in coral research. J Exp Mar Biol Ecol, 268: 171–183

    Article  Google Scholar 

  • Yin X J, Li Y Q, Lei Q, Wang A J, Xu Y H, Chen J. 2014. Source and spatial distributions of particulate organic carbon and its isotope in surface waters of Prydz Bay, Antarctica, during summer. Adv Polar Sci, 25: 175–182

    Google Scholar 

  • Yu K F. 2012. Coral reefs in the South China Sea: Their response to and records on past environmental changes. Sci China Earth Sci, 55: 1217–1229

    Article  Google Scholar 

  • Zhao M X, Yu K F, Shi Q, Chen T R, Zhang H L, Chen T G. 2013. Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea. Environ Monit Assess, 185: 7381–7392

    Article  Google Scholar 

  • Zhao M X, Yu K F, Zhang Q, Shi Q, Price G J. 2012. Long-term decline of a fringing coral reef in the northern South China Sea. J Coast Res, 28: 1088–1099

    Article  Google Scholar 

  • Zhao M X, Yu K F, Zhang Z, Shi Q. 2008. Spatial pattern of coral diversity in Luhuitou fringing reef, Sanya, China (in Chinese). Acta Ecol Sin, 28: 1419–1428

    Article  Google Scholar 

  • Zhu H T, Jiang X W, Meng X L, Feng Q, Cui S X, Liang C. 2016. A quantitative approach to monitoring new sand cay migration in Nansha Islands. Acta Oceanol Sin, 35: 102–107

    Article  Google Scholar 

Download references

Acknowledgements

The data used in this paper are available from Appendix materials. This work was supported by the National Natural Science Foundation of China (Grant Nos. 42090041, 42030502 & 41663001), the Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology (Grant No. MGQNLM-TD201801), the Guangxi Scientific Projects (Grant Nos. AD17129063, AA17204074 & 2020GXNSFAA297026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefu Yu.

Electronic Supplementary Material

11430_2020_9774_MOESM1_ESM.pdf

Spatial variations in the trophic status of Favia palauensis corals in the South China Sea: Insights into their different adaptabilities under contrasting environmental conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Zhang, Z., Yu, K. et al. Spatial variations in the trophic status of Favia palauensis corals in the South China Sea: Insights into their different adaptabilities under contrasting environmental conditions. Sci. China Earth Sci. 64, 839–852 (2021). https://doi.org/10.1007/s11430-020-9774-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9774-0

Keywords

Navigation