Skip to main content

Recycling of Paleo-Asian Ocean carbonates and its influence on the lithospheric composition of the North China Craton

Abstract

The deep carbon cycle, which plays a critical role in mantle evolution and Earth habitability, is closely linked to the recycling of carbonate-bearing rocks through subduction. Marine carbonates are subducted to different depths during the closure of oceanic basins, thus carry important signatures of the disappeared oceanic basins. Petrological and geochemical features of the Hannuoba carbonatites in the northern North China Craton indicate that they were formed by melting of limestone subducted to mantle depths. Here, we show that detrital zircons carried by these carbonatites have a broad spectrum of U-Pb ages from Precambrian to Phanerozoic. Precambrian age peaks are at ∼2.5 Ga, 2.1–2.3 Ga, 1.8–2.0 Ga, ∼1.65 Ga, 1.3–1.4 Ga,∼1.1 Ga, 0.91–0.94 Ga, 0.74–0.81 Ga, and 0.62–0.63 Ga, respectively. The recorded age peaks are different from those in the northern North China Craton and thus preclude an origin of crustal contamination. Nevertheless, the Precambrian age spectra are compatible with those of the Xingmeng Orogen in the southeastern Central Asian Orogenic Belt. Furthermore, the significantly positive εHf(t) values of 7.7–13.5 for the 300–373 Ma zircons are similar to those in the Xingmeng Orogen but different from those in the northern North China Craton. All these features suggest that the limestone precursor for the Hannuoba carbonatites was originated from the Paleo-Asian Ocean, and its deposition time was not earlier than 300 Ma. This indicates that the Paleo-Asian Ocean still existed in the late Carboniferous to early Permian. The widespread distribution of metamorphic carbonates in the Central Asian Orogenic Belt indicates that there may have been widespread sedimentary carbonates in the Paleo-Asian Ocean. A large amount of sedimentary carbonates was probably carried into mantle during subduction of the Paleo-Asian oceanic slab, which significantly modified the chemical and physical properties of the lithospheric mantle.

References

  1. Amato J M, Toro J, Miller E L, Gehrels G E, Farmer G L, Gottlieb E S, Till A B. 2009. Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions. Geol Soc Am Bull, 121: 1219–1235

    Article  Google Scholar 

  2. Barker D S. 2001. Calculated silica activities in carbonatite liquids. Contrib Mineral Petrol, 141: 704–709

    Article  Google Scholar 

  3. Becker H, Altherr R. 1992. Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature, 358: 745–748

    Article  Google Scholar 

  4. Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H J. 2011. Diapirs as the source of the sediment signature in arc lavas. Nat Geosci, 4: 641–646

    Article  Google Scholar 

  5. Belousova E A, Griffin W L, O’Reilly S, Fisher N I. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 143: 602–622

    Article  Google Scholar 

  6. Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 148: 243–258

    Article  Google Scholar 

  7. Brounce M, Cottrell E, Kelley K A. 2019. The redox budget of the Mariana subduction zone. Earth Planet Sci Lett, 528: 115859

    Article  Google Scholar 

  8. Bulanova G, Walter M, Smith C, Kohn S, Armstrong L, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol, 160: 489–510

    Article  Google Scholar 

  9. Castillo P R. 2015. The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts. Lithos, 216–217: 254–263

    Article  Google Scholar 

  10. Chen B, Jahn B M, Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. J Asian Earth Sci, 34: 245–257

    Article  Google Scholar 

  11. Chen B, Zhao G, Simon W. 2001. Subduction- and collision-related granitoids from Southern Sonidzuoqi, Inner Mongolia: Isotopic ages and tectonic implications. Geol Rev, 47: 361–367

    Google Scholar 

  12. Chen C, Liu Y, Feng L, Foley S F, Zhou L, Ducea M N, Hu Z C. 2018. Calcium isotope evidence for subduction-enriched lithospheric mantle under the northern North China Craton. Geochim Cosmochim Acta, 238: 55–67

    Article  Google Scholar 

  13. Chen C F, Liu Y S, Foley S F, Ducea M N, Geng X L, Zhang W, Xu R, Hu Z C, Zhou L, Wang Z C. 2017. Carbonated sediment recycling and its contribution to lithospheric refertilization under the northern North China Craton. Chem Geol, 466: 641–653

    Article  Google Scholar 

  14. Chen C F, Liu Y S, Foley S F, Ducea M N, He D T, Hu Z C, Chen W, Zong K Q. 2016. Paleo-Asian oceanic slab under the North China Craton revealed by carbonatites derived from subducted limestones. Geology, 44: 1039–1042

    Article  Google Scholar 

  15. Cheng Z, Zhang Z, Hou T, Santosh M, Chen L, Ke S, Xu L. 2017. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochim Cosmochim Acta, 202: 159–178

    Article  Google Scholar 

  16. Cheng Z, Zhang Z, Xie Q, Hou T, Ke S. 2018. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth Planet Sci Lett, 489: 100–110

    Article  Google Scholar 

  17. Cherniak D J, Watson E B. 2001. Pb diffusion in zircon. Chem Geol, 172: 5–24

    Article  Google Scholar 

  18. Choi S H, Mukasa S B, Zhou X H, Xian X H, Andronikov A V. 2008. Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chem Geol, 248: 40–61

    Article  Google Scholar 

  19. Clift P D. 2017. A revised budget for Cenozoic sedimentary carbon subduction. Rev Geophys, 55: 97–125

    Article  Google Scholar 

  20. Cope T, Ritts B D, Darby B J, Fildani A, Graham S A. 2005. Late Paleozoic sedimentation on the northern margin of the north China block: Implications for regional tectonics and climate change. Int Geol Rev, 47: 270–296

    Article  Google Scholar 

  21. Demoux A, Kröner A, Liu D, Badarch G. 2009. Precambrian crystalline basement in southern Mongolia as revealed by SHRIMP zircon dating. Int J Earth Sci-Geol Rundsch, 98: 1365–1380

    Article  Google Scholar 

  22. Dobretsov N L, Buslov M M, Vernikovsky V A. 2003. Neoproterozoic to early ordovician evolution of the Paleo-Asian Ocean: Implications to the break-up of Rodinia. Gondwana Res, 6: 143–159

    Article  Google Scholar 

  23. Dutkiewicz A, Müller R D, O’Callaghan S, Jónasson H. 2015. Census of seafloor sediments in the world’s ocean. Geology, 43: 795–798

    Article  Google Scholar 

  24. Fedo C M, Sircombe K N, Rainbird R H. 2003. Detrital zircon analysis of the sedimentary record. Rev Mineral Geochem, 53: 277–303

    Article  Google Scholar 

  25. Foley S F, Pintér Z. 2018. Chapter 1 — Primary Melt Compositions in the Earth’s Mantle. In: Kono Y, Sanloup C, Eds. Magmas under Pressure. Amsterdam: Elsevier. 3–42

    Google Scholar 

  26. Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci, 4: 703–706

    Article  Google Scholar 

  27. Galvez M E, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J. 2013. Graphite formation by carbonate reduction during subduction. Nat Geosci, 6: 473–477

    Article  Google Scholar 

  28. Ge W C, Wu F Y, Zhou C Y, Zhang J H. 2005. Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain (in Chinese with English abstract). Acta Petrol Sin, 21: 749–762

    Google Scholar 

  29. Gervasoni F, Klemme S, Rohrbach A, Grützner T, Berndt J. 2017. Experimental constraints on the stability of baddeleyite and zircon in carbonate- and silicate-carbonate melts. Am Miner, 102: 860–866

    Article  Google Scholar 

  30. Grant M L, Wilde S A, Wu F, Yang J. 2009. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean Proterozoic boundary. Chem Geol, 261: 155–171

    Article  Google Scholar 

  31. Grassi D, Schmidt M W. 2011. The melting of carbonated pelites from 70 to 700 km depth. J Petrol, 52: 765–789

    Article  Google Scholar 

  32. Griffin W L, Zhang A, O’Reilly S Y, Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M, Chung S L, Lo C H, Lee T Y, Eds. Mantle Dynamics and Plate Interactions in East Asia. Geodynamics Series. Washington D C: American Geophysical Union. 107–126

    Chapter  Google Scholar 

  33. Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 64: 133–147

    Article  Google Scholar 

  34. Guo J H, Shi X, Bian A G, Xu R, Zhai M, Li Y G. 1999. Pb isotopic composition of feldspar and U-Pb age of zircon from early Proterozoic granite in Sanggan area, North China craton: Metamorphism, crustal melting and tectono-thermal event (in Chinese with English abstract). Acta Petrol Sin, 15: 199–207

    Google Scholar 

  35. Han G, Liu Y, Neubauer F, Genser J, Zhao Y, Wen Q, Li W, Wu L, Jiang X, Zhao L. 2012a. Provenance analysis of Permian sandstones in the central and southern Da Xing’an Mountains, China: Constraints on the evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics, 580: 100–113

    Article  Google Scholar 

  36. Han G, Liu Y, Neubauer F, Jin W, Genser J, Ren S, Li W, Wen Q, Zhao Y, Liang C. 2012b. LA-ICP-MS U-Pb dating and Hf isotopic compositions of detrital zircons from the Permian sandstones in Da Xing’an Mountains, NE China: New evidence for the eastern extension of the Erenhot-Hegenshan suture zone. J Asian Earth Sci, 49: 249–271

    Article  Google Scholar 

  37. He D, Liu Y, Moynier F, Foley S F, Chen C. 2020a. Platinum group element mobilization in the mantle enhanced by recycled sedimentary carbonate. Earth Planet Sci Lett, 541: 116262

    Article  Google Scholar 

  38. He D T, Liu Y S, Chen C F, Foley S F, Ducea M N. 2020b. Oxidization of the mantle caused by sediment recycling may contribute to the formation of iron-rich mantle melts. Sci Bull, 65: 519–521

    Article  Google Scholar 

  39. He D T, Liu Y S, Gao C G, Chen C F, Hu Z C, Gao S. 2017. SiC-dominated ultra-reduced mineral assemblage in carbonatitic xenoliths from the Dalihu basalt, Inner Mongolia, China. Am Miner, 102: 312–320

    Article  Google Scholar 

  40. He Z, Zhang Z, Zong K, Xiang H, Klemd R. 2014. Metamorphic P-T-t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction. Lithos, 196–197: 1–13

    Article  Google Scholar 

  41. Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar J M, Hoskin P W O, Eds. Zircon Rev Mineral Geochem. 27–62

  42. Hou T, Zhang Z, Keiding J K, Veksler I V. 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: Implications for lithospheric mantle metasomatism and the origin of apatite ores. J Petrol, 56: 893–918

    Article  Google Scholar 

  43. Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J Anal At Spectr, 27: 1391–1399

    Article  Google Scholar 

  44. Jahn B, Wu F, Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth Environ Sci Trans R Soc Edinburgh, 91: 181–193

    Article  Google Scholar 

  45. Jiang N, Carlson R W, Guo J. 2011. Source of Mesozoic intermediate-felsic igneous rocks in the North China Craton: Granulite xenolith evidence. Lithos, 125: 335–346

    Article  Google Scholar 

  46. Jugo P J, Wilke M, Botcharnikov R E. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity. Geochim Cosmochim Acta, 74: 5926–5938

    Article  Google Scholar 

  47. Kelemen P B, Manning C E. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA, 112: E3997–E4006

    Article  Google Scholar 

  48. Kirscher U. 2014. Paleozoic Paleogeography of the south western part of the Central Asian Orogenic Belt: Paleomagnetic constraints. Universitätsbibliothek der Ludwig-Maximilians-Universität

  49. Kononova V A, Kurat G, Embey-Isztin A, Pervov V A, Koeberl C, Brandstätter F. 2002. Geochemistry of metasomatised spinel peridotite xenoliths from the Dariganga Plateau, South-eastern Mongolia. Mineral Petrol, 75: 1–21

    Article  Google Scholar 

  50. Lee C T A, Lackey J S. 2015. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements, 11: 125–130

    Article  Google Scholar 

  51. Li J L, Klemd R, Gao J, Meyer M. 2012. Coexisting carbonate-bearing eclogite and blueschist in SW Tianshan, China: Petrology and phase equilibria. J Asian Earth Sci, 60: 174–187

    Article  Google Scholar 

  52. Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl Sci Rev, 4: 111–120

    Article  Google Scholar 

  53. Li X H, Liu Y, Li Q L, Guo C H, Chamberlain K R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst, 10: Q04010

    Google Scholar 

  54. Li Y, Brouwer F M, Xiao W, Zheng J. 2017. Late Devonian to early Carboniferous arc-related magmatism in the Baolidao arc, Inner Mongolia, China: Significance for southward accretion of the eastern Central Asian orogenic belt. Geol Soc Am Bull, 129: 677–697

    Article  Google Scholar 

  55. Lin J, Liu Y, Yang Y, Hu Z. 2016. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci, 1: 5–27

    Article  Google Scholar 

  56. Liu S, Feng C, Hu R, Lai S, Coulson I M, Feng G, Yang Y. 2014. Geochemical, Sr-Nd isotope, and zircon U-Pb geochronological constraints on the origin of Early Cretaceous carbonatite dykes, northern Shanxi Province, China. Acta Petrol Sin, 30: 350–360

    Google Scholar 

  57. Liu S, Hu R, Gao S, Feng C, Huang Z, Lai S, Yuan H, Liu X, Coulson I M, Feng G, Wang T, Qi Y. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China. J Asian Earth Sci, 36: 168–182

    Article  Google Scholar 

  58. Liu Y, Chen C, He D, Chen W. 2019. Deep carbon cycle in subduction zones. Sci China Earth Sci, 62: 1764–1782

    Article  Google Scholar 

  59. Liu Y S, Gao S, Gao C G, Zong K Q, Hu Z C, Ling W L. 2010a. Garnetrich granulite xenoliths from the Hannuoba basalts, North China: Petrogenesis and implications for the Mesozoic crust-mantle interaction. J Earth Sci, 21: 669–691

    Article  Google Scholar 

  60. Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb Dating, Hfisotopes and trace elements in Zircons from mantle Xenoliths. J Petrol, 51: 537–571

    Article  Google Scholar 

  61. Liu Y S, Gao S, Liu X M, Chen X M, Zhang W L, Wand X C. 2003. Thermodynamic evolution of lithosphere of the North China Craton: Records from lower crust and upper mantle xenoliths from Hannuoba. Chin Sci Bull, 48: 2371–2377

    Article  Google Scholar 

  62. Liu Y S, Gao S, Yuan H L, Zhou L, Liu X M, Wang X C, Hu Z C, Wang L S. 2004a. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: Insights on evolution of lower continental crust. Chem Geol, 211: 87–109

    Article  Google Scholar 

  63. Liu Y S, He D, Gao C G, Foley S, Gao S, Hu Z C, Zong K Q, Chen H H. 2015. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths. Sci Rep, 5: 11547

    Article  Google Scholar 

  64. Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 257: 34–43

    Article  Google Scholar 

  65. Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J, Chen H H. 2010c. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull, 55: 1535–1546

    Article  Google Scholar 

  66. Liu Y S, Wang X H, Wang D B, He D T, Zong K Q, Gao C G, Hu Z C, Gong H J. 2012. Triassic high-Mg adakitic andesites from Linxi, Inner Mongolia: Insights into the fate of the Paleo-Asian ocean crust and fossil slab-derived melt-peridotite interaction. Chem Geol, 328: 89–108

    Article  Google Scholar 

  67. Liu Y S, Yuan H L, Gao S, Hu Z C, Wang X C, Liu X M, Lin W L. 2004b. Zircon U-Pb ages of olivine pyroxenite xenolith from Hannuoba: Links between the 97–158 Ma basaltic underplating and granulite-facies metamorphism. Chin Sci Bull, 49: 1055–1062

    Google Scholar 

  68. Lü Z, Bucher K, Zhang L. 2013. Omphacite-bearing calcite marble and associated coesite-bearing pelitic schist from the meta-ophiolitic belt of Chinese western Tianshan. J Asian Earth Sci, 76: 37–47

    Article  Google Scholar 

  69. Lv L, Mao J, Liu J, Zhang Z, Xie G. 2007. Geological characteristics, geochronology and tectonic settings of typical magmatic Ni-Cu-(PGE) sulfide deposits in the Northern margin of the North China Craton. Acta Geosci Sin, 28: 148–166

    Google Scholar 

  70. Mackenzie F T, Morse J W. 1992. Sedimentary carbonates through Phanerozoic time. Geochim Cosmochim Acta, 56: 3281–3295

    Article  Google Scholar 

  71. McDonough W F, Sun S S. 1995. The composition of the earth. Chem Geol, 120: 223–253

    Article  Google Scholar 

  72. McKenzie N R, Horton B K, Loomis S E, Stockli D F, Planavsky N J, Lee C T A. 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 352: 444–447

    Article  Google Scholar 

  73. Meng X H, Ge M. 2002. Research on cyclic sequence, events and formational evolution of the Sino-Korea plate. Earth Sci Front, 9: 125–140

    Google Scholar 

  74. Menzies M A, Fan W M, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean Craton, China. Geol Soc Lond Special Publ, 76: 71–81

    Article  Google Scholar 

  75. Miao L, Qiu Y, McNaughton N, Luo Z, Groves D, Zhai Y, Fan W, Zhai M, Guan K. 2002. SHRIMP U-Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: Constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geol Rev, 19: 187–204

    Article  Google Scholar 

  76. Montero P, Haissen F, Mouttaqi A, Molina J F, Errami A, Sadki O, Cambeses A, Bea F. 2016. Contrasting SHRIMP U-Pb zircon ages of two carbonatite complexes from the peri-cratonic terranes of the Reguibat Shield: Implications for the lateral extension of the West African Craton. Gondwana Res, 38: 238–250

    Article  Google Scholar 

  77. Niu X, Chen B, Feng G, Liu F, Yang J. 2017. Origin of lamprophyres from the northern margin of the North China Craton: Implications for mantle metasomatism. J Geol Soc, 174: 353–364

    Article  Google Scholar 

  78. Niu X, Chen B, Liu A, Suzuki K, Ma X. 2012. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Craton. Lithos, 149: 146–158

    Article  Google Scholar 

  79. Ogasawara Y, Ohta M, Fukasawa K, Katayama I, Maruyama S. 2000. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan. Isl Arc, 9: 400–416

    Article  Google Scholar 

  80. Poli S. 2015. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat Geosci, 8: 633–636

    Article  Google Scholar 

  81. Rodionov N V, Belyatsky B V, Antonov A V, Kapitonov I N, Sergeev S A. 2012. Comparative in-situ U-Th-Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline-ultramafic complex, Kola Peninsula, Russia. Gondwana Res, 21: 728–744

    Article  Google Scholar 

  82. Rojas-Agramonte Y, Kröner A, Demoux A, Xia X, Wang W, Donskaya T, Liu D, Sun M. 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Res, 19: 751–763

    Article  Google Scholar 

  83. Rudnick R L, Gao S, Ling W L, Liu Y S, McDonough W F. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 77: 609–637

    Article  Google Scholar 

  84. Schertl H P, Okay A I. 1994. A coesite inclusion in dolomite in Dabie Shan, China: Petrological and rheological significance. European J Mineral, 6: 995–1000

    Article  Google Scholar 

  85. Schertl H P, Sobolev N V. 2013. The Kokchetav Massif, Kazakhstan: “Type locality” of diamond-bearing UHP metamorphic rocks. J Asian Earth Sci, 63: 5–38

    Article  Google Scholar 

  86. Schettino E, Poli S. 2020. Hydrous carbonatitic liquids drive CO2 recycling from subducted marls and limestones. In: Manning C E, Lin J F, Mao W L, Eds. Carbon in Earth’s Interior. 209–221

  87. Şengör A, Natal’in B, Burtman V. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299–307

    Article  Google Scholar 

  88. Shi Y R, Liu D Y, Zhang Q, Jian P, Zhang F Q, Miao L C, Shi G H, Zhang L, Tao H. 2004. SHRIMP dating of diorites and granites in southern Suzuoqi, Inner Mongolia (in Chinese with English abstract). Acta Geol Sin, 78: 789–799

    Google Scholar 

  89. Simakin A G, Salova T P, Bondarenko G V. 2012. Experimental study of magmatic melt oxidation by CO2. Petrology, 20: 593–606

    Article  Google Scholar 

  90. Sláma J, Košler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 249: 1–35

    Article  Google Scholar 

  91. Tang J, Zheng Y F, Wu Y B, Gong B. 2006. Zircon SHRIMP U-Pb dating, C and O isotopes for impure marbles from the Jiaobei terrane in the Sulu orogen: Implication for tectonic affinity. Precambrian Res, 144: 1–18

    Article  Google Scholar 

  92. Tang Y J, Zhang H F, Ying J F, Zhang J, Liu X M. 2008. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 101: 435–452

    Article  Google Scholar 

  93. Tsuno K, Dasgupta R. 2012. The effect of carbonates on near-solidus melting of pelite at 3 GPa: Relative efficiency of H2O and CO2 subduction. Earth Planet Sci Lett, 319–320: 185–196

    Article  Google Scholar 

  94. Veizer J, Mackenzie F T. 2003. 7.15-Evolution of Sedimentary Rocks. In: Holland H D, Turekian K K, Eds. Treatise on Geochemistry. Pergamon, Oxford: Elsevier. 369–407

    Chapter  Google Scholar 

  95. Vermeesch P. 2012. On the visualisation of detrital age distributions. Chem Geol, 312–313: 190–194

    Article  Google Scholar 

  96. Volkova N I, Budanov V I. 1999. Geochemical discrimination of metabasalt rocks of the Fan-Karategin transitional blueschist/greenschist belt, South Tianshan, Tajikistan: Seamount volcanism and accretionary tectonics. Lithos, 47: 201–216

    Article  Google Scholar 

  97. Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A, Shirey S B. 2011. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334: 54–57

    Article  Google Scholar 

  98. Wang C, Lai Y J, Foley S F, Liu Y, Belousova E, Zong K, Hu Z. 2020. Rutile records for the cooling history of the Trans-North China orogen from assembly to break-up of the Columbia supercontinent. Precambrian Res, 346: 105763

    Article  Google Scholar 

  99. Wang C Y, Liu Y S, Foley S F, Zong K Q, Hu Z C. 2019. Lithospheric transformation of the northern North China Craton by changing subduction style of the Paleo-Asian oceanic plate: Constraints from peridotite and pyroxenite xenoliths in the Yangyuan basalts. Lithos, 328–329: 58–68

    Article  Google Scholar 

  100. Wang C Y, Liu Y S, Min N, Zong K Q, Hu Z C, Gao S. 2016. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: Evidence from peridotite xenoliths in the Datong basalts. Lithos, 261: 109–127

    Article  Google Scholar 

  101. Wang R, Liu Y, Zong K, Hu Z. 2017. In-situ trace elements and Sr isotopes in peridotite xenoliths from Jining: Implications for lithospheric mantle evolution (in Chinese with English abstract). Earth Sci, 42: 511–526

    Google Scholar 

  102. Wang T, Tong Y, Zhang L, Li S, Huang H, Zhang J, Guo L, Yang Q, Hong D, Donskaya T, Gladkochub D, Tserendash N. 2017b. Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance. J Asian Earth Sci, 145: 368–392

    Article  Google Scholar 

  103. Wang T, Zheng Y, Gehrels G E, Mu Z. 2001. Geochronological evidence for existence of South Mongolian microcontinent—A zircon U-Pb age of grantoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex. Chin Sci Bull, 46: 2005–2008

    Article  Google Scholar 

  104. Wei Y, Zheng J, Su Y, Ma Q, Griffin W L. 2015. Lithological and age structure of the lower crust beneath the northern edge of the North China Craton: Xenolith evidence. Lithos, 216–217: 211–223

    Article  Google Scholar 

  105. Wiechert U, Ionov D A, Wedepohl K H. 1997. Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: A record of partial melting and cryptic metasomatism in the upper mantle. Contrib Mineral Petrol, 126: 345–364

    Article  Google Scholar 

  106. Wiedenbeck M, Allé P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A V, Roddick J C, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Geoanal Res, 19: 1–23

    Article  Google Scholar 

  107. Wilde S A, Zhou X, Nemchin A A, Sun M. 2003. Mesozoic crust-mantle interaction beneath the North China Craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 31: 817–820

    Article  Google Scholar 

  108. Windley B F, Alexeiev D, Xiao W, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc, 164: 31–47

    Article  Google Scholar 

  109. Windley B F, Maruyama S, Xiao W J. 2010. Delamination/thinning of subcontinental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am J Sci, 310: 1250–1293

    Article  Google Scholar 

  110. Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 231: 53–72

    Article  Google Scholar 

  111. Wu D, Liu Y S, Chen C F, Xu R, Ducea M N, Hu Z C, Zong K Q. 2017. Insitu trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton. Lithos, 288–289: 338–351

    Article  Google Scholar 

  112. Wu F Y, Jahn B M, Wilde S, Sun D Y. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328: 89–113

    Article  Google Scholar 

  113. Wu F Y, Lin J Q, Wilde S A, Zhang X O, Yang J H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103–119

    Article  Google Scholar 

  114. Xiao W, Windley B F, Hao J, Zhai M G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22: 1069

    Article  Google Scholar 

  115. Xu B, Charvet J, Chen Y, Zhao P, Shi G. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Res, 23: 1342–1364

    Article  Google Scholar 

  116. Xu B, Zhao P, Wang Y, Liao W, Luo Z, Bao Q, Zhou Y. 2015. The pre-Devonian tectonic framework of Xing’an-Mongolia orogenic belt (XMOB) in north China. J Asian Earth Sci, 97: 183–196

    Article  Google Scholar 

  117. Xu C, Chakhmouradian A R, Kynický J, Li Y, Song W, Chen W. 2019. A Paleoproterozoic mantle source modified by subducted sediments under the North China Craton. Geochim Cosmochim Acta, 245: 222–239

    Article  Google Scholar 

  118. Xu C, Kynický J, Song W, Tao R, Lü Z, Li Y, Yang Y, Pohanka M, Galiova M V, Zhang L, Fei Y. 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nat Commun, 9: 2790

    Article  Google Scholar 

  119. Xu C, Kynický J, Tao R, Liu X, Zhang L, Pohanka M, Song W, Fei Y. 2017. Recovery of an oxidized majorite inclusion from Earth’s deep asthenosphere. Sci Adv, 3: e1601589

    Article  Google Scholar 

  120. Xu R, Liu Y, Wang X, Zong K, Hu Z, Chen H, Zhou L. 2017. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen. Lithos, 274–275: 383–396

    Article  Google Scholar 

  121. Xu S, Nagao K, Uto K, Wakita H, Nakai S I, Liu C. 1998. He, Sr and Nd isotopes of mantle-derived xenoliths in volcanic rocks of NE China. J Asian Earth Sci, 16: 547–556

    Article  Google Scholar 

  122. Xu Y G, Menzies M A, Thirlwall M F, Huang X L, Liu Y, Chen X M. 2003. “Reactive” harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta, 67: 487–505

    Article  Google Scholar 

  123. Xu Y G. 2002. Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: Pyroxenite xenoliths from Hannuoba, North China. Chem Geol, 182: 301–322

    Article  Google Scholar 

  124. Xue S, Ling M X, Liu Y L, Sun W. 2018. Recycling of subducted carbonates: Formation of the Taohuala Mountain carbonatite, North China Craton. Chem Geol, 478: 89–101

    Article  Google Scholar 

  125. Yan G H, Mu B L, Zeng Y S, Jian H C, Ren K X, Feng T L. 2007. Igneous carbonatites in North China Craton: The temporal and spatial distribution, Sr and Nd isotopic charateristics and their geological significance. Geol J China Univ, 13: 463–473

    Google Scholar 

  126. Yang J H, Sun J F, Zhang M, Wu F Y, Wilde S A. 2012. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chem Geol, 328: 149–167

    Article  Google Scholar 

  127. Yang J H, Wu F Y, Shao J A, Wilde S A, Xie L W, Liu X M. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet Sci Lett, 246: 336–352

    Article  Google Scholar 

  128. Yang J H, Wu F Y, Wilde S A, Liu X M. 2007. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chem Geol, 242: 155–175

    Article  Google Scholar 

  129. Yang J H, Zhang M, Wu F Y. 2018. Mesozoic decratonization of the North China Craton by lithospheric delamination: Evidence from Sr-Nd-Hf-Os isotopes of mantle xenoliths of Cenozoic alkaline basalts in Yangyuan, Hebei Province, China. J Asian Earth Sci, 160: 396–407

    Article  Google Scholar 

  130. Yang J, Gao S, Chen C, Tang Y, Yuan H, Gong H, Xie S, Wang J. 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochim Cosmochim Acta, 73: 2660–2673

    Article  Google Scholar 

  131. Yuan H L, Gao S, Dai M N, Zong C L, Günther D, Fontaine G H, Liu X M, Diwu C R. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem Geol, 247: 100–118

    Article  Google Scholar 

  132. Zhang H F, Sun Y L, Tang Y J, Xiao Y, Zhang W H, Zhao X M, Santosh M, Menzies M A. 2012. Melt-peridotite interaction in the Pre-Cambrian mantle beneath the western North China Craton: Petrology, geochemistry and Sr, Nd and Re isotopes. Lithos, 149: 100–114

    Article  Google Scholar 

  133. Zhang H T, Liu Y S, Hu Z C, Zong K Q, Chen H H, Chen C F. 2017. Low-δ13C carbonates in the Miocene basalt of the northern margin of the North China Craton: Implications for deep carbon recycling. J Asian Earth Sci, 144: 110–125

    Article  Google Scholar 

  134. Zhang L, Liu Y, Wang L, Wang C, Zhang G. 2020. Multiple metasomatism of the lithospheric mantle beneath the northeastern North China Craton. Lithos, 374–375: 105719

    Article  Google Scholar 

  135. Zhang S H, Zhao Y, Kröner A, Liu X M, Xie L W, Chen F K. 2009a. Early Permian plutons from the northern North China Block: Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. Int J Earth Sci-Geol Rundsch, 98: 1441–1467

    Article  Google Scholar 

  136. Zhang S H, Zhao Y, Song B, Hu J-M, Liu S-W, Yang Y-H, Chen F-K, Liu X-M, Liu J. 2009b. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications. Geol Soc Am Bull, 121: 181–200

    Google Scholar 

  137. Zhang S H, Zhao Y, Song B, Yang Y H. 2007a. Zircon SHRIMP U-Pb and in-situ Lu-Hf isotope analyses of a tuff from western Beijing: Evidence for missing Late Paleozoic arc volcano eruptions at the northern margin of the North China block. Gondwana Res, 12: 157–165

    Article  Google Scholar 

  138. Zhang S H, Zhao Y, Ye H, Liu J M, Hu Z C. 2014. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt. Geol Soc Am Bull, 126: 1275–1300

    Article  Google Scholar 

  139. Zhang S H, Zhao Y U E, Song B, Yang Z Y, Hu J M, Wu H A I. 2007b. Carboniferous granitic plutons from the northern margin of the North China block: Implications for a late Palaeozoic active continental margin. J Geol Soc, 164: 451–463

    Article  Google Scholar 

  140. Zhang S, Zhao Y, Ye H, Hou K, Li C. 2012. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction. Lithos, 155: 1–18

    Article  Google Scholar 

  141. Zhao G, Sun M, Wilde S A, Sanzhong L. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177–202

    Article  Google Scholar 

  142. Zhao G, Wilde S A, Cawood P A, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73

    Article  Google Scholar 

  143. Zhao G, Wilde S A, Sun M, Li S, Li X, Zhang J. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Res, 160: 213–226

    Article  Google Scholar 

  144. Zhao P, Chen Y, Xu B, Faure M, Shi G Z, Choulet F. 2013. Did the Paleo-Asian Ocean between North China Block and Mongolia Block exist during the late Paleozoic? First paleomagnetic evidence from central-eastern Inner Mongolia, China. J Geophys Res Solid Earth, 118: 1873–1894

    Article  Google Scholar 

  145. Zheng J, Griffin W L, O’Reilly S Y, Lu F, Yu C, Zhang M, Li H. 2004. U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: Evolution of the lower crust beneath the North China Craton. Contrib Mineral Petrol, 148: 79–103

    Article  Google Scholar 

  146. Zheng J P, Griffin W L, Qi L, O’Reilly S Y, Sun M, Zheng S, Pearson N, Gao J F, Yu C M, Su Y P, Tang H Y, Liu Q S, Wu X L. 2009. Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chem Geol, 264: 266–280

    Article  Google Scholar 

  147. Zhou C Y, Wu F Y, Ge W C, Sun D Y, Abdel Rahman A A, Zhang J H, Cheng R Y. 2005. Age, geochemistry and petrogenesis of the cumulate gabbro in Tahe, northern Da Hinggan Mountain (in Chinese with English abstract). Acta Petrol Sin, 21: 763–775

    Google Scholar 

  148. Zhou R, Liu D, Zhou A, Zou Y, Xie J. 2019. A synthesis of late Paleozoic and early Mesozoic sedimentary provenances and constraints on the tectonic evolution of the northern North China Craton. J Asian Earth Sci, 185: 104029

    Article  Google Scholar 

  149. Zhu B Q. 1998. Theory and Applications of Isotope Systematics in Geosciences: Evolution of Continental Crust and Mantle in China (in Chinese). Beijing: Science Press

    Google Scholar 

  150. Zhu R, Chen L, Wu F, Liu J. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797

    Article  Google Scholar 

  151. Zong K Q, Zhang Z M, He Z Y, Hu Z C, Santosh M, Liu Y S, Wang W. 2012. Early Palaeozoic high-pressure granulites from the Dunhuang block, northeastern Tarim Craton: Constraints on continental collision in the southern Central Asian Orogenic Belt. J Metamorph Geol, 30: 753–768

    Article  Google Scholar 

  152. Zou D, Zhang H, Hu Z, Santosh M. 2016. Complex metasomatism of lithospheric mantle by asthenosphere-derived melts: Evidence from peridotite xenoliths in Weichang at the northern margin of the North China Craton. Lithos, 264: 210–223

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. GUO Jingliang for his help with zircon U-Pb dating and the three anonymous reviewers for their suggestions. This work was supported by the Key R&D Program of China (Grant No. 2019YFA0708400), the National Natural Science Foundation of China (Grant No. 41530211), and the Special Fund of the State Key Laboratory of Geological Processes and Mineral Resources (Grant No. MSFGPMR01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, C., He, D. et al. Recycling of Paleo-Asian Ocean carbonates and its influence on the lithospheric composition of the North China Craton. Sci. China Earth Sci. 64, 1346–1362 (2021). https://doi.org/10.1007/s11430-020-9764-1

Download citation

Keywords

  • North China Craton
  • lithosphere
  • Paleo-Asian Ocean
  • Subduction
  • Deep carbon cycle
  • Zircon geochronology