Skip to main content

Contaminant transport in heterogeneous aquifers: A critical review of mechanisms and numerical methods of non-Fickian dispersion

Abstract

Natural aquifers usually exhibit complex physical and chemical heterogeneities, which are key factors complicating kinetic processes, such as contaminant transport and transformation, posing a great challenge in the remediation of contaminated groundwater. Aquifer heterogeneity usually leads to a distinct feature, the so-called “anomalous transport” in groundwater, which deviates from the phenomenon described by the classical advection-dispersion equation (ADE) based on Fick’s Law. Anomalous transport, also known as non-Fickian dispersion or “anomalous dispersion” in a broad sense, can explain the hydrogeological mechanism that leads to the temporally continuous deterioration of water quality and rapid spatial expansion of pollutant plumes. Contaminants enter and then are retained in the low-permeability matrix from the high-permeability zone via molecular diffusion, chemical adsorption, and other mass exchange effects. This process can be reversed when the concentration of pollutants in high-permeability zones is relatively low. The contaminants slowly return to the high-permeability zones through reverse molecular diffusion, resulting in sub-dispersive anomalous transport leading to the chronic gradual deterioration of water quality. Meanwhile, some contaminants are rapidly transported along the interconnected preferential flow paths, resulting in super-dispersive anomalous transport, which leads to the rapid spread of contaminants. Aquifer heterogeneity is also an important factor that constrains the efficacy of groundwater remediation, while the development, application, and evaluation of groundwater remediation technologies are usually based on the Fickian dispersion process predicted by the ADE equation. Comprehensive studies of the impacts of non-Fickian dispersion on contaminant transport and remediation are still needed. This article reviews the non-Fickian dispersion phenomenon caused by the heterogeneity of geological media, summarizes the processes and current understanding of contaminant migration and transformation in highly heterogeneous aquifers, and evaluates mathematical methods describing the main non-Fickian dispersion features. This critical review also discusses the limitations of existing research and outlines potential future research areas to advance the understanding of mechanisms and modeling of non-Fickian dispersion in heterogeneous media.

This is a preview of subscription content, access via your institution.

References

  1. Abou Najm M R, Jabro J D, Iversen W M, Mohtar R H, Evans R G. 2010. New method for the characterization of three-dimensional preferential flow paths in the field. Water Resour Res, 46: W02503

    Article  Google Scholar 

  2. Adams E E, Gelhar L W. 1992. Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis. Water Resour Res, 28: 3293–3307

    Article  Google Scholar 

  3. Albano J, Comfort S D, Zlotnik V, Halihan T, Burbach M, Chokejaroenrat C, Onanong S, Clayton W. 2010. In situ chemical oxidation of RDX-contaminated groundwater with permanganate at the Nebraska ordnance plant. Ground Water Monitor Remed, 30: 96–106

    Article  Google Scholar 

  4. Allen-King R M, Divine D P, Robin M J L, Alldredge J R, Gaylord D R. 2006. Spatial distributions of perchloroethylene reactive transport parameters in the Borden Aquifer. Water Resour Res, 42: W01413

    Article  Google Scholar 

  5. Allen-King R M, Halket R M, Gaylord D R, Robin M J L. 1998. Characterizing the heterogeneity and correlation of perchloroethene sorption and hydraulic conductivity using a facies-based approach. Water Resour Res, 34: 385–396

    Article  Google Scholar 

  6. Anderson M P, McCray J. 2011. Foreword: Lessons learned about contaminant hydrogeology from Legacy research sites. Ground Water, 49: 617–619

    Article  Google Scholar 

  7. Angier J, McCarty G W. 2008. Preferential Groundwater Flow in Riparian Wetlands: Effects on Nutrient Delivery. Poster Report. Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3). U.S. Department of Agriculture

  8. Ahmed S, Marsily G, Talbot A. 1988. Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity. Ground Water, 26: 78–86

    Article  Google Scholar 

  9. Arfib B, de Marsily G, Ganoulis J. 2007. Locating the zone of saline intrusion in a coastal karst aquifer using springflow data. Ground Water, 45: 28–35

    Article  Google Scholar 

  10. Baeumer B, Zhang Y, Schumer R. 2015. Incorporating super-diffusion due to sub-grid heterogeneity to capture non-Fickian transport. Ground-water, 53: 699–708

    Article  Google Scholar 

  11. Barenblatt G I, Zheltov I P, Kochina I N. 1960. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J Appl Math Mech, 24: 1286–1303

    Article  Google Scholar 

  12. Bauget F, Fourar M. 2008. Non-Fickian dispersion in a single fracture. J Contam Hydrol, 100: 137–148

    Article  Google Scholar 

  13. Bear J. 2013. Dynamics of Fluids in Porous Media. New York: Courier Corporation, 2013

    Google Scholar 

  14. Becker M W, Shapiro A M. 2003. Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock. Water Resour Res, 39: 1024

    Article  Google Scholar 

  15. Benner S G, Blowes D W, Molson J W H. 2001. Modeling preferential flow in reactive barriers: Implications for performance and design. Ground Water, 39: 371–379

    Article  Google Scholar 

  16. Benson D A. 1998. The fractional advection-dispersion equation: Development and application. Dissertation for Doctoral Degree. Reno: University of Nevada

    Google Scholar 

  17. Benson D A, Schumer R, Meerschaert M M, Wheatcraft S W. 2001. Fractional dispersion, Levy motion, and the MADE tracer tests. Transp Porous Media, 42: 211–240

    Article  Google Scholar 

  18. Berkowitz B. 2002. Characterizing flow and transport in fractured geological media: A review. Adv Water Resour, 25: 861–884

    Article  Google Scholar 

  19. Berkowitz B, Cortis A, Dentz M, Scher H. 2006. Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys, 44: RG2003

    Article  Google Scholar 

  20. Berkowitz B, Emmanuel S, Scher H. 2008. Non-Fickian transport and multiple-rate mass transfer in porous media. Water Resour Res, 44: W03402

    Article  Google Scholar 

  21. Bianchi M, Zheng C. 2016. A lithofacies approach for modeling non-Fickian solute transport in a heterogeneous alluvial aquifer. Water Resour Res, 52: 552–565

    Article  Google Scholar 

  22. Bianchi M, Zheng C, Tick G R, Gorelick S M. 2011a. Investigation of small-scale preferential flow with a forced-gradient tracer test. Ground Water, 49: 503–514

    Article  Google Scholar 

  23. Bianchi M, Zheng C, Wilson C, Tick G R, Liu G, Gorelick S M. 2011b. Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths. Water Resour Res, 47: W05524

    Article  Google Scholar 

  24. Binley A, Hubbard S S, Huisman J A, Revil A, Robinson D A, Singha K, Slater L D. 2015. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res, 51: 3837–3866

    Article  Google Scholar 

  25. Boggs J M, Adams E E. 1992. Field study of dispersion in a heterogeneous aquifer: 4. Investigation of adsorption and sampling bias. Water Resour Res, 28: 3325–3336

    Article  Google Scholar 

  26. Bolster D, Benson D A, Le Borgne T, Dentz M. 2010. Anomalous mixing and reaction induced by superdiffusive nonlocal transport. Phys Rev E, 82: 021119

    Article  Google Scholar 

  27. Bowling J C, Rodriguez A B, Harry D L, Zheng C. 2005. Delineating alluvial aquifer heterogeneity using resistivity and GPR data. Ground Water, 43: 890–903

    Google Scholar 

  28. Bromly M, Hinz C. 2004. Non-Fickian transport in homogeneous un-saturated repacked sand. Water Resour Res, 40: W07402

    Article  Google Scholar 

  29. Brusseau M L. 1998. Non-ideal transport of reactive solutes in heterogeneous porous media: 3. Model testing and data analysis using calibration versus prediction. J Hydrol, 209: 147–165

    Article  Google Scholar 

  30. Brusseau M L, Guo Z. 2014. Assessing contaminant-removal conditions and plume persistence through analysis of data from long-term pump-and-treat operations. J Contam Hydrol, 164: 16–24

    Article  Google Scholar 

  31. Brusseau M L, Hatton J, DiGuiseppi W. 2011. Assessing the impact of source-zone remediation efforts at the contaminant-plume scale through analysis of contaminant mass discharge. J Contam Hydrol, 126: 130–139

    Article  Google Scholar 

  32. Carrera J, Hidalgo J J, Slooten L J, Vázquez-Suñé E. 2010. Computational and conceptual issues in the calibration of seawater intrusion models. Hydrogeol J, 18: 131–145

    Article  Google Scholar 

  33. Carle S F, Fogg G E. 1996. Transition probability-based indicator geostatistics. Math Geol, 28: 453–476

    Article  Google Scholar 

  34. Cassiraga E F, Fernàndez-Garcia D, Gómez-Hernández J J. 2005. Performance assessment of solute transport upscaling methods in the context of nuclear waste disposal. Int J Rock Mech Min Sci, 42: 756–764

    Article  Google Scholar 

  35. Chang A, Sun H G, Zheng C, Lu B, Lu C, Ma R, Zhang Y. 2018. A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs. Physica A-Stat Mech Appl, 502: 356–369

    Article  Google Scholar 

  36. Chang A, Sun H G, Zhang Y, Zheng C, Min F. 2019. Spatial fractional Darcy’s Law to quantify fluid flow in natural reservoirs. Physica A-Stat Mech Appl, 519: 119–126

    Article  Google Scholar 

  37. Chen G, Xu H L, Chen Z H. 1998. Research progress on spatial scale effect of porous media permeability coefficient (in Chinese). Geo Sci Technol Inf, S2: 3–5

    Google Scholar 

  38. Chen K, Zhan H, Yang Q. 2017. Fractional models simulating non-Fickian behavior in four-stage single-well push-pull tests. Water Resour Res, 53: 9528–9545

    Article  Google Scholar 

  39. Chen K, Zhan H, Zhou R. 2016. Subsurface solute transport with one-, two-, and three-dimensional arbitrary shape sources. J Contam Hydrol, 190: 44–57

    Article  Google Scholar 

  40. Cheng A, Wang H, Wang K. 2015. A Eulerian-Lagrangian control volume method for solute transport with anomalous diffusion. Numer Methods Partial Differ Eq, 31: 253–267

    Article  Google Scholar 

  41. Cirpka O A, Valocchi A J. 2016. Debates-Stochastic subsurface hydrology from theory to practice: Does stochastic subsurface hydrology help solving practical problems of contaminant hydrogeology? Water Resour Res, 52: 9218–9227

    Article  Google Scholar 

  42. Coats K H, Smith B D. 1964. Dead-end pore volume and dispersion in porous media. Soc Pet Engineers J, 4: 73–84

    Article  Google Scholar 

  43. Cortis A, Berkowitz B. 2004. Anomalous transport in “classical” soil and sand columns. Soil Sci Soc Am J, 68: 1539–1548

    Article  Google Scholar 

  44. Cui J, Hao X X, Xu J Q, Zhou X C, Sun G H. 2014. Analysis of soil fractal characteristics and numerical simulation of solute transport process. In: CEM. Abstracts of 2014 National Symposium on Environmental Mechanics. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2014. 1

    Google Scholar 

  45. Culkin S L, Singha K, Day-Lewis F D. 2008. Implications of rate-limited mass transfer for aquifer storage and recovery. Ground Water, 46: 591–605

    Article  Google Scholar 

  46. Cushman J H. 1991. On diffusion in fractal porous media. Water Resour Res, 27: 643–644

    Article  Google Scholar 

  47. Cushman J H, Ginn T R. 2000. Fractional advection-dispersion equation: A classical mass balance with convolution-Fickian flux. Water Resour Res, 36: 3763–3766

    Article  Google Scholar 

  48. Cushman J H, Tartakovsky D N. 2016. The Handbook of Groundwater Engineering. New York: CRC Press

    Book  Google Scholar 

  49. Dagan G. 1982. Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 2. The solute transport. Water Resour Res, 18: 835–848

    Article  Google Scholar 

  50. Dagan G. 1984. Solute transport in heterogeneous porous formations. J Fluid Mech, 145: 151–177

    Article  Google Scholar 

  51. Dagan G. 1994. Upscaling of dispersion coefficients in transport through heterogeneous formations. Comput Methods Water Resour X, 1: 431–439

    Article  Google Scholar 

  52. Deans H A. 1963. A mathematical model for dispersion in the direction of flow in porous media. Soc Pet Engineers J, 3: 49–52

    Article  Google Scholar 

  53. Deng H, Dai Z, Wolfsberg A, Lu Z, Ye M, Reimus P. 2010. Upscaling of reactive mass transport in fractured rocks with multimodal reactive mineral facies. Water Resour Res, 46: W06501

    Article  Google Scholar 

  54. Deng Y R, Lu H J, Dong M G, Cheng Z, Zhuang C W, Xiao R B, Zhong Y, Peng P A. 2019. Pollution characteristics and migration law of benzene in typical chemical sites in Dawan District, Guangdong, Hong Kong and Macao (in Chinese). Environ Sci, 40: 5615–5622

    Google Scholar 

  55. Dentz M, Berkowitz B. 2003. Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water Resour Res, 39: 1111

    Article  Google Scholar 

  56. Dentz M, Cortis A, Scher H, Berkowitz B. 2004. Time behavior of solute transport in heterogeneous media: Transition from anomalous to normal transport. Adv Water Resour, 27: 155–173

    Article  Google Scholar 

  57. Department of Energy (DOE). 2010. Verification Monitoring Report for the Old and New Rifle, Colorado, Processing Sites. LMS/RFO/RFN/S07012

  58. Department of Energy (DOE). 2018. Proposed Plan for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Waste. DOE/OR/01–2695&D2/R1

  59. Descourvières C, Hartog N, Patterson B M, Oldham C, Prommer H. 2010. Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer. Appl Geochem, 25: 261–275

    Article  Google Scholar 

  60. Dogan M, Van Dam R L, Bohling G C, Butler Jr. J J, Hyndman D W. 2011. Hydrostratigraphic analysis of the MADE site with full-resolution GPR and direct-push hydraulic profiling. Geophys Res Lett, 38: L06405

    Article  Google Scholar 

  61. Dogan M, Van Dam R L, Liu G, Meerschaert M M, Butler Jr. JJ, Bohling G C, Benson D A, Hyndman D W. 2014. Predicting flow and transport in highly heterogeneous alluvial aquifers. Geophys Res Lett, 41: 7560–7565

    Article  Google Scholar 

  62. Dubreuil-Boisclair C, Gloaguen E, Marcotte D, Giroux B. 2011. Heterogeneous aquifer characterization from ground-penetrating radar tomography and borehole hydrogeophysical data using nonlinear Bayesian simulations. Geophysics, 76: J13–J25

    Article  Google Scholar 

  63. Einstein A. 1906. On the theory of the Brownian movement. Annals Phy, 4: 371–381

    Article  Google Scholar 

  64. EPA. 2018. Record of Decision, Hanford 100 Area Superfund Site. WA3890090076

  65. Ezzedine S, Rubin Y, Chen J. 1999. Bayesian Method for hydrogeological site characterization using borehole and geophysical survey data: Theory and application to the Lawrence Livermore National Laboratory Superfund Site. Water Resour Res, 35: 2671–2683

    Article  Google Scholar 

  66. Feehley C E, Zheng C, Molz F J. 2000. A dual-domain mass transfer approach for modeling solute transport in heterogeneous aquifers: Application to the Macrodispersion Experiment (MADE) site. Water Resour Res, 36: 2501–2515

    Article  Google Scholar 

  67. Fernàndez-Garcia D, Llerar-Meza G, Gómez-Hernández J J. 2009. Up-scaling transport with mass transfer models: Mean behavior and propagation of uncertainty. Water Resour Res, 45: W10411

    Article  Google Scholar 

  68. Fiori A, Cvetkovic V, Dagan G, Attinger S, Bellin A, Dietrich P, Zech A, Teutsch G. 2016. Debates-Stochastic subsurface hydrology from theory to practice: The relevance of stochastic subsurface hydrology to practical problems of contaminant transport and remediation. What is characterization and stochastic theory good for? Water Resour Res, 52: 9228–9234

    Google Scholar 

  69. Flach G P, Crisman S A, Molz F J. 2004. Comparison of single-domain and dual-domain subsurface transport models. Ground Water, 42: 815–828

    Article  Google Scholar 

  70. Fleckenstein J H, Fogg G E. 2008. Efficient upscaling of hydraulic conductivity in heterogeneous alluvial aquifers. Hydrogeol J, 16: 1239–1250

    Article  Google Scholar 

  71. Fogg G E. 1986. Groundwater flow and sand body interconnectedness in a thick, multiple-aquifer system. Water Resour Res, 22: 679–694

    Article  Google Scholar 

  72. Fogg C E, Carle S F, Green C. 2000. Connected-network paradigm for the alluvial aquifer system. In: Zhang D, Winter C L, eds. Theory, Modeling, and Field Investigation in Hydrogeology: A Special Volume in Honor of Shlomo P. Neuman’s 60th Birthday. Special Paper. Boulder, CO: Geological Society of America. 348: 25–42

    Google Scholar 

  73. Fogg G E, LaBolle E M. 2006. Motivation of synthesis, with an example on groundwater quality sustainability. Water Resour Res, 42: W03S05

    Article  Google Scholar 

  74. Fogg G E, Zhang Y. 2016. Debates-Stochastic subsurface hydrology from theory to practice: A geologic perspective. Water Resour Res, 52: 9235–9245

    Article  Google Scholar 

  75. Fomin S, Chugunov V, Hashida T. 2005. The effect of non-Fickian diffusion into surrounding rocks on contaminant transport in a fractured porous aquifer. Proc R Soc A, 461: 2923–2939

    Article  Google Scholar 

  76. Friedly J C, Davis J A, Kent D B. 1995. Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments. Water Resour Res, 31: 2783–2794

    Article  Google Scholar 

  77. Gardner W R, Brooks R H. 1957. A descriptive theory of leaching. Soil Sci, 83: 295–304

    Article  Google Scholar 

  78. Gao G, Zhan H, Feng S, Huang G, Mao X. 2009. Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column. J Hydrol, 377: 391–404

    Article  Google Scholar 

  79. Gelhar L W. 1986. Stochastic subsurface hydrology from theory to applications. Water Resour Res, 22: 135S–145S

    Article  Google Scholar 

  80. Gelhar L W. 1993. Stochastic Subsurface Hydrology. Englewood Cliffs, NJ: Prentice-Hall. 390

    Google Scholar 

  81. Gogu R C, Hallet V, Dassargues A. 2003. Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environ Geol, 44: 881–892

    Article  Google Scholar 

  82. Gómez-Hernández J J, Wen X H. 1998. To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv Water Resour, 21: 47–61

    Article  Google Scholar 

  83. Guo Z, Brusseau M L. 2017. The impact of well-field configuration on contaminant mass removal and plume persistence for homogeneous versus layered systems. Hydrol Process, 31: 4748–4756

    Article  Google Scholar 

  84. Guo Z, Fogg G E, Henri C V. 2019. Upscaling of regional scale transport under transient conditions: Evaluation of the multirate mass transfer model. Water Resour Res, 55: 5301–5320

    Article  Google Scholar 

  85. Guo Z, Henri C V, Fogg G E, Zhang Y, Zheng C. 2020. Adaptive multirate mass transfer (aMMT) model: A new approach to upscale regional-scale transport under transient flow conditions. Water Resour Res, 56: e26000

    Google Scholar 

  86. Gueting N, Klotzsche A, van der Kruk J, Vanderborght J, Vereecken H, Englert A. 2015. Imaging and characterization of facies heterogeneity in an alluvial aquifer using GPR full-waveform inversion and cone penetration tests. J Hydrol, 524: 680–695

    Article  Google Scholar 

  87. Haggerty R, McKenna S A, Meigs L C. 2000. On the late-time behavior of tracer test breakthrough curves. Water Resour Res, 36: 3467–3479

    Article  Google Scholar 

  88. Harvey C F, Gorelick S M. 1995. Temporal moment-generating equations: Modeling transport and mass transfer in heterogeneous aquifers. Water Resour Res, 31: 1895–1911

    Article  Google Scholar 

  89. Harvey C, Gorelick S M. 2000. Rate-limited mass transfer or macrodispersion: Which dominates plume evolution at the Macrodispersion Experiment (MADE) Site? Water Resour Res, 36: 637–650

    Article  Google Scholar 

  90. Harvey C F, Haggerty R, Gorelick S M. 1994. Aquifer remediation: A method for estimating mass transfer rate coefficients and an evaluation of pulsed pumping. Water Resour Res, 30: 1979–1991

    Article  Google Scholar 

  91. Hasan S, Joekar-Niasar V, Karadimitriou N K, Sahimi M. 2019. Saturation dependence of non-Fickian transport in porous media. Water Resour Res, 55: 1153–1166

    Article  Google Scholar 

  92. Hasan S, Niasar V, Karadimitriou N K, Godinho J R A, Vo N T, An S, Rabbani A, Steeb H. 2020. Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron micro-tomography. Proc Natl Acad Sci USA, 117: 23443–23449

    Article  Google Scholar 

  93. Hess K M, Davis J A, Kent D B, Coston J A. 2002. Multispecies reactive tracer test in an aquifer with spatially variable chemical conditions, Cape Cod, Massachusetts: Dispersive transport of bromide and nickel. Water Resour Res, 38: 1161

    Article  Google Scholar 

  94. Heße F, Radu F A, Thullner M, Attinger S. 2009. Upscaling of the advection-diffusion-reaction equation with Monod reaction. Adv Water Resour, 32: 1336–1351

    Article  Google Scholar 

  95. Jha S K, Mariethoz G, Mathews G, Vial J, Kelly B F J. 2016. Influence of alluvial morphology on upscaled hydraulic conductivity. Groundwater, 54: 384–393

    Article  Google Scholar 

  96. Jiang L, Fan Y L, Li T T, Zhomg M S. 2013. California’s “low risk settlement policy for underground oil storage tanks” and Its Enlightenment to China. Environ Pollut Control, 10: 86–92

    Google Scholar 

  97. Journel A G. 1983. Nonparametric estimation of spatial distributions. Math Geol, 15: 445–468

    Article  Google Scholar 

  98. Journel A G, Gomez-Hernandez J J. 1993. Stochastic imaging of the Wilmington clastic sequence. SPE Format Eval, 8: 33–40

    Article  Google Scholar 

  99. Kang P K, Le Borgne T, Dentz M, Bour O, Juanes R. 2014. Impact of velocity correlation and distribution on transport in fractured media: Field evidence and theoretical model. Water Resour Res, 51: 940–959

    Article  Google Scholar 

  100. Katyal D, Tapasya T, Varun J. 2017. Recent trends in groundwater vulnerability assessment techniques: A review. Int J Appl Res, 3: 646–655

    Google Scholar 

  101. Kelly W. 1977. Geoelectrical sounding for estimating hydraulic conductivity. Ground Water, 15: 420–425

    Article  Google Scholar 

  102. Knudby C, Carrera J. 2005. On the relationship between indicators of geostatistical, flow and transport connectivity. Adv Water Resour, 28: 405–421

    Article  Google Scholar 

  103. Koltermann C E, Gorelick S M. 1996. Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches. Water Resour Res, 32: 2617–2658

    Article  Google Scholar 

  104. LaBolle E M, Fogg G E. 2001. Role of molecular diffusion in contaminant migration and recovery in an alluvial aquifer system. Transp Porous Media, 42: 155–179

    Article  Google Scholar 

  105. LeBlanc D R, Garabedian S P, Hess K M, Gelhar L W, Quadri R D, Stollenwerk K G, Wood W W. 1991. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. Experimental design and observed tracer movement. Water Resour Res, 27: 895–910

    Article  Google Scholar 

  106. Le Borgne T, Bour O, Paillet F L, Caudal J P. 2006. Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. J Hydrol, 328: 347–359

    Article  Google Scholar 

  107. Levy M, Berkowitz B. 2003. Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J Contam Hydrol, 64: 203–226

    Article  Google Scholar 

  108. Li L, Gawande N, Kowalsky M B, Steefel C I, Hubbard S S. 2011. Physicochemical heterogeneity controls on uranium bioreduction rates at the field scale. Environ Sci Technol, 45: 9959–9966

    Article  Google Scholar 

  109. Li N, Ren L. 2012. Research progress of continuous time random walk theory in simulating solute transport in porous media. Adv Water Sci, 23: 881–886

    Google Scholar 

  110. Liang Y, Chen J S, Chen L. 2011. Modeling method for numerical simulation of pore flow and distribution law of pore velocity. Chin J Geotech Eng, 33: 1104–1109

    Google Scholar 

  111. Lin G Y, Fu Y B, Jiao Z L, Liang Y K. 2020. Prediction and analysis of pollutant migration under hydraulic control measures based on GMS. J Water Resour Archit Eng, 18: 243–248

    Google Scholar 

  112. Lin X Y, Wang Y X. 2018. China’s Discipline Development Strategy Groundwater Science. Beijing: Chinese Academy of Sciences

    Google Scholar 

  113. Liu G, Butler Jr. J J, Bohling G C, Reboulet E, Knobbe S, Hyndman D W. 2009. A new method for high-resolution characterization of hydraulic conductivity. Water Resour Res, 45: W08202

    Google Scholar 

  114. Liu G, Zheng C, Gorelick S M. 2004. Limits of applicability of the advection-dispersion model in aquifers containing connected high-conductivity channels. Water Resour Res, 40: W08308

    Google Scholar 

  115. Liu G, Zheng C, Tick G R, Butler Jr. J J, Gorelick S M. 2010. Relative importance of dispersion and rate-limited mass transfer in highly heterogeneous porous media: Analysis of a new tracer test at the Macro-dispersion Experiment (MADE) site. Water Resour Res, 46: W03524

    Google Scholar 

  116. Long J C S, Ewing R C. 2004. Yucca Mountain: Earth-science issues at a geologic repository for high-level nuclear waste. Annu Rev Earth Planet Sci, 32: 363–401

    Article  Google Scholar 

  117. Lu B, Song J, Li S, Tick G R, Wei W, Zhu J, Zheng C, Zhang Y. 2018a. Quantifying transport of arsenic in both natural soils and relatively homogeneous porous media using stochastic models. Soil Sci Soc Am J, 82: 1057–1070

    Article  Google Scholar 

  118. Lu B, Zhang Y, Zheng C, Green C, O’Neill C, Sun H G, Qian J. 2018b. Comparison of time nonlocal transport models for characterizing non-Fickian transport: From mathematical interpretation to laboratory application. Water, 10: 778

    Article  Google Scholar 

  119. Lu L, Wu J C, Wang J J. 2008. Monte Carlo simulation of solute transport in multi-scale heterogeneous porous media. Adv Water Sci, 3: 333–338

    Google Scholar 

  120. Ma R, Zheng C, Liu C, Greskowiak J, Prommer H, Zachara J M. 2014. Assessment of controlling processes for field-scale uranium reactive transport under highly transient flow conditions. Water Resour Res, 50: 1006–1024

    Article  Google Scholar 

  121. Ma R, Zheng C, Prommer H, Greskowiak J, Liu C, Zachara J, Rockhold M. 2010. A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions. Water Resour Res, 46: W05509

    Article  Google Scholar 

  122. Ma T, Wang Y X. 2000. Coupling simulation of U(VI) migration in shallow groundwater system: A case study of a tailing pond of nuclear industry in southern China (in Chinese). J Earth Sci, 25: 456–461

    Google Scholar 

  123. Mao D, Liu Z, Wang W, Li S, Gao Y, Xu Z, Zhang C. 2018. An application of hydraulic tomography to a deep coal mine: Combining traditional pumping tests with water inrush incidents. J Hydrol, 567: 1–11

    Article  Google Scholar 

  124. Mariethoz G, Renard P, Straubhaar J. 2010. The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res, 46: W11536

    Google Scholar 

  125. Matthieu III D E, Brusseau M L, Guo Z, Plaschke M, Carroll K C, Brinker F. 2014. Persistence of a groundwater contaminant plume after hydraulic source containment at a chlorinated-solvent contaminated site. Groundwater Monit R, 34: 23–32

    Article  Google Scholar 

  126. Mettier R, Kosakowski G, Kolditz O. 2006. Influence of small-scale heterogeneities on contaminant transport in fractured crystalline rock. Ground Water, 44: 687–696

    Article  Google Scholar 

  127. Meerschaert M M, Zhang Y, Baeumer B. 2008. Tempered anomalous diffusion in heterogeneous systems. Geophys Res Lett, 35: L17403

    Article  Google Scholar 

  128. Miao Z. 2008. Fate of chlorinated compounds in a sedimentary fractured rock aquifer in South Central Wisconsin. Master’s thesis. Ontario: University of Waterloo

    Google Scholar 

  129. Ministry of Ecological Environment. 2017. Technical Guide for Risk Management and Control of Contaminated Land-barrier Technology

  130. Moltyaner G L, Killey R W D. 1988. Twin lake tracer tests: Transverse dispersion. Water Resour Res, 24: 1628–1637

    Article  Google Scholar 

  131. National Research Council. 1993. Ground Water Vulnerability Assessment: Contamination Potential under Conditions of Uncertainty. Washington DC: National Academy Press

    Google Scholar 

  132. National Research Council. 1996. Rock Fractures and Fluid Flow: Contemporary Understanding and Applications. Washington DC: National Academies Press

    Google Scholar 

  133. National Research Council. 2013. Alternatives for Managing the Nation’s Complex Contaminated Groundwater Sites. Washington DC: National Academies Press

    Google Scholar 

  134. Neretnieks I. 2002. A stochastic multi-channel model for solute transport—Analysis of tracer tests in fractured rock. J Contam Hydrol, 55: 175–211

    Article  Google Scholar 

  135. Neuman S P. 1990. Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res, 16: 1749–1758

    Article  Google Scholar 

  136. Neuman S P, Tartakovsky D M. 2009. Perspective on theories of non-Fickian transport in heterogeneous media. Adv Water Resour, 32: 670–680

    Article  Google Scholar 

  137. Obiri-Nyarko F, Grajales-Mesa S J, Malina G. 2014. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111: 243–259

    Article  Google Scholar 

  138. Oppermann A. 2003. Remediation of CHC by Reductive Dechlorination in Germany: A Full-Scale Approach. In: The Seveth International Conference of in situ and on-site Bioremediation. Platform Presentation #559

  139. Paine J G, Collins E W. 2003. Applying airborne electromagnetic induction in groundwater salinization and resource studies, West Texas. In: Symposium on the Application of Geophysics to Engineering and Environmental Problems. 722–738

  140. Pickens J F, Grisak G E. 1981. Scale-dependent dispersion in a stratified granular aquifer. Water Resour Res, 17: 1191–1211

    Article  Google Scholar 

  141. Pedretti D, Fernàndez-Garcia D, Sanchez-Vila X, Bolster D, Benson D A. 2014. Apparent directional mass-transfer capacity coefficients in three-dimensional anisotropic heterogeneous aquifers under radial convergent transport. Water Resour Res, 50: 1205–1224

    Article  Google Scholar 

  142. Proce C J, Ritzi R W, Dominic D F, Dai Z. 2004. Modeling multiscale heterogeneity and aquifer interconnectivity. Ground Water, 42: 658–670

    Article  Google Scholar 

  143. Qian J Z, Liu Y, Zhang Y, Sun P T. 2013. Experimental and Simulation Study on solute transport of bimolecular reaction in porous media (in Chinese). J Univ Sci Technol China, 43: 104–109

    Google Scholar 

  144. Qu Z Q, Jia L Q, Jin H Y, Jiang X, Zhang Q, Gao J H. 1999. Macropores and preferential flow and their effects on migration behavior of pollutants in soil (in Chinese). Acta Pedol Sin, 3: 341–347

    Google Scholar 

  145. Rajaram H. 2016. Debates-Stochastic subsurface hydrology from theory to practice: Introduction. Water Resour Res, 52: 9215–9217

    Article  Google Scholar 

  146. Ramanathan R, Ritzi Jr. R W, Allen-King R M. 2010. Linking hierarchical stratal architecture to plume spreading in a Lagrangian-based transport model: 2. Evaluation using new data from the Borden site. Water Resour Res, 46: W01510

    Google Scholar 

  147. Reeves D M, Benson D A, Meerschaert M M. 2008a. Transport of conservative solutes in simulated fracture networks: 1. Synthetic data generation. Water Resour Res, 44: W05404

    Google Scholar 

  148. Reeves D M, Benson D A, Meerschaert M M, Scheffler H P. 2008b. Transport of conservative solutes in simulated fracture networks: 2. Ensemble solute transport and the correspondence to operator-stable limit distributions. Water Resour Res, 44: W05410

    Google Scholar 

  149. Reimus P, Pohll G, Mihevc T, Chapman J, Haga M, Lyles B, Kosinski S, Niswonger R, Sanders P. 2003. Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced-gradient test. Water Resour Res, 39: 1356

    Article  Google Scholar 

  150. Ren L, Qin Y D, Wang J. 2001. Stochastic simulation of salt preferential transport in heterogeneous saturated soil (in Chinese). Acta Pedol Sin, 1: 104–113

    Google Scholar 

  151. Ren L, Wang J, Qin Y D. 2000. Transfer function simulation of salt transport in saturated steady flow of heterogeneous soil (in Chinese). Adv Water Sci, 4: 392–400

    Google Scholar 

  152. Rosenbom A E, Binning P J, Aamand J, Dechesne A, Smets B F, Johnsen A R. 2014. Does microbial centimeter-scale heterogeneity impact MCPA degradation in and leaching from a loamy agricultural soil? Sci Total Environ, 472: 90–98

    Article  Google Scholar 

  153. Rubin Y, Hubbard S S. 2006. Hydrogeophysics. In: Singh V P, ed. Water Science and Technology Library, Volume 50. Dordrecht: Springer

    Google Scholar 

  154. Rubin Y, Mavko G, Harris J. 1992. Mapping permeability in heterogeneous aquifers using hydrologic and seismic data. Water Resour Res, 28: 1809–1816

    Article  Google Scholar 

  155. Sanchez-Vila X, Guadagnini A, Carrera J. 2006. Representative hydraulic conductivities in saturated groundwater flow. Rev Geophys, 44: RG3002

    Article  Google Scholar 

  156. Sanchez-Vila X, Fernàndez-Garcia D. 2016. Debates-Stochastic subsurface hydrology from theory to practice: Why stochastic modeling has not yet permeated into practitioners? Water Resour Res, 52: 9246–9258

    Article  Google Scholar 

  157. Scheibe T D, Murray C J, Fraser G S, Davis J M. 1998. Simulation of geologic patterns: A comparison of stochastic simulation techniques for groundwater transport modeling. In: Fraser G S, Davis J M, eds. Hydrogeologic Models of Sedimentary Aquifers. Tulsa: SEPM (Society for Sedimentary Geology). 7–118

    Google Scholar 

  158. Scheibe T, Yabusaki S. 1998. Scaling of flow and transport behavior in heterogeneous groundwater systems. Adv Water Resour, 22: 223–238

    Article  Google Scholar 

  159. Schumer R, Benson D A, Meerschaert M M, Baeumer B. 2003a. Fractal mobile/immobile solute transport. Water Resour Res, 39: 1296

    Google Scholar 

  160. Schumer R, Benson D A, Meerschaert M M, Baeumer B. 2003b. Multi-scaling fractional advection-dispersion equations and their solutions. Water Resour Res, 39: 1022

    Google Scholar 

  161. Schumer R, Meerschaert M M, Baeumer B. 2009. Fractional advection-dispersion equations for modeling transport at the Earth surface. J Geophys Res, 114: F00A07

    Google Scholar 

  162. Seeboonruang U, Ginn T R. 2006. Upscaling heterogeneity in aquifer reactivity via exposure-time concept: Forward model. J Contam Hydrol, 84: 127–154

    Article  Google Scholar 

  163. Seki K, Thullner M, Hanada J, Miyazaki T. 2006. Moderate bioclogging leading to preferential flow paths in biobarriers. Ground Water Monitor Remed, 26: 68–76

    Article  Google Scholar 

  164. SERDP. 2018. SERDP and ESTCP Workshop on Research and Development Needs for Chlorinated Solvents in Groundwater

  165. Short M, Guadagnini L, Guadagnini A. 2006. Estimating Preferential Flow Paths within an Aquifer System. LAUR-06–5233

  166. SKB. 2004. Research, Design and Development Program 2004: Program for Research Development and Demonstration of Methods for the Management and Disposal of Nuclear Waste, Including Social Science Research. Swedish Nuclear Fuel and Waste Management, TR-04–21. 2004

  167. Snow D H. 1999. Overview of Permeable Reactive Barriers. Civil Engineering Dept, Brigham Young University

  168. Sokolov I M, Klafter J. 2006. Field-induced dispersion in subdiffusion. Phys Rev Lett, 97: 140602

    Article  Google Scholar 

  169. Steelman C M, Meyer J R, Parker B L. 2017. Multidimensional investigation of bedrock heterogeneity/unconformities at a DNAPL-impacted site. Groundwater, 55: 532–549

    Article  Google Scholar 

  170. Sudicky E A. 1986. A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res, 22: 2069–2082

    Article  Google Scholar 

  171. Sun H G, Meerschaert M M, Zhang Y, Zhu J, Chen W. 2013. A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media. Adv Water Resour, 52: 292–295

    Article  Google Scholar 

  172. Sun H G, Chang A L, Chen W, Zhang Y. 2015. Anomalous diffusion: fractional derivative equation models and applications in environmental flows. Sci Sin-Phys Mech Astron, 45: 104702

    Article  Google Scholar 

  173. Sun N Z. 1989. Mathematical Model and Numerical Method of Ground-water Pollution. Beijing: Geological Publishing House

    Google Scholar 

  174. Swanson S K, Bahr J M, Bradbury K R, Anderson K M. 2006. Evidence for preferential flow through sandstone aquifers in Southern Wisconsin. Sediment Geol, 184: 331–342

    Article  Google Scholar 

  175. U.S. Government Accountability Office (GAO). 2005. Groundwater Contamination: DoD Uses and Develops a Range of Remediation Technologies to Clean Up Military Sites. GAO-05–666

  176. van Genuchten M T, Wierenga P J. 1977. Mass transfer studies in sorbing porous media: II. Experimental evaluation with tritium (3H2O). Soil Sci Soc Am J, 41: 272–278

    Article  Google Scholar 

  177. Voutilainen M, Kekäläinen P, Siitari-Kauppi M, Sardini P, Muuri E, Timonen J, Martin A. 2017. Modeling transport of cesium in grimsel granodiorite with micrometer scale heterogeneities and dynamic update of Kd. Water Resour Res, 53: 9245–9265

    Article  Google Scholar 

  178. Wang B C, Yang T X, Hou Y W. 1981. The basic theory and calculation method of groundwater quality simulation experiment—Taking the groundwater quality simulation of Jining City as an example (in Chinese). J Jilin Univ Earth Sci Ed, 8: 106–124

    Google Scholar 

  179. Wang K L, Huang G H. 2010. Influence of spatial variation of permeability coefficient on pollutant migration in two-dimensional strongly heterogeneous aquifer (in Chinese). J Hydraul Eng, 41: 437–445

    Google Scholar 

  180. Wang Q, Bian J, Wan H, Gu T. 2019. Non-Fickian transport of ammonia nitrogen in vadose zone: experiments and modeling. Arab J Geosci, 12: 711

    Article  Google Scholar 

  181. Wang X, Zhng Y B, Zhang J X, Li Y R. 2017. Study on pollution migration based on combined model of vadose zone and aquifer (in Chinese). J Taiyuan Univ Technol Soc Sci Ed, 48: 805–810

    Google Scholar 

  182. Wang X L, Zheng C, Liu G S. 2012. The latest development of permeability measurement by direct propulsion technology (in Chinese). Hydrogeol Eng Geol, 39: 8–18

    Google Scholar 

  183. Wen X H, Kung C S. 1993. Stochastic simulation of solute transport in heterogeneous formations: A comparison of parametric and nonparametric geostatistical approaches. Ground Water, 31: 953–965

    Article  Google Scholar 

  184. Wen X H, Gómez-Hernández J J. 1996. Upscaling hydraulic conductivities in heterogeneous media: An overview. J Hydrol, 183: ix–xxxii

    Article  Google Scholar 

  185. Wen X H, Gómez-Hernández J J. 1998. Numerical modeling of macro-dispersion in heterogeneous media: A comparison of multi-Gaussian and non-multi-Gaussian models. J Contam Hydrol, 30: 129–156

    Article  Google Scholar 

  186. Wu Y, Xu L, Wang S, Wang Z, Shang J, Li X, Zheng C. 2017. Nitrate attenuation in low-permeability sediments based on isotopic and microbial analyses. Sci Total Environ, 618: 15–25

    Article  Google Scholar 

  187. Yan X S, Ge C, Qian J Z. 2019. Experimental and simulation study on monitoring solute transport in dual media based on high density electrical method (in Chinese). J Hefei Univ Technol Nat Sci, 42: 1540–1545

    Google Scholar 

  188. Yao D J, Yue C S, Lv J G, Wang Y, Lu G H, Wang Z Q. 2020. Research progress on remediation technology of polluted groundwater in industrial sites in China (in Chinese). Mod Chem Ind, 40: 45–49

    Google Scholar 

  189. Yeh T C J, Lee C H, Hsu K C, Illman W A, Barrash W, Cai X, Daniels J, Sudicky E, Wan L, Li G, Winter C L. 2008. A view toward the future of subsurface characterization: CAT scanning groundwater basins. Water Resour Res, 44: W03301

    Article  Google Scholar 

  190. Yin M, Zhang Y, Ma R, Tick G R, Bianchi M, Zheng C, Wei W, Wei S, Liu X. 2020. Super-diffusion affected by hydrofacies mean length and source geometry in alluvial settings. J Hydrol, 582: 124515

    Article  Google Scholar 

  191. Yu X N, Zhang Y, Sun H G, Zheng C M. 2018. Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison. Chaos Solitons Fractals, 115: 306–312

    Article  Google Scholar 

  192. Zha Y, Yeh T C J, Illman W A, Mok C M W, Tso C H M, Carrera B A, Wang Y L. 2019. Exploitation of pump-and-treat remediation systems for characterization of hydraulic heterogeneity. J Hydrol, 573: 324–340

    Article  Google Scholar 

  193. Zhang C, Wu Y Q, Qin R G. 2014. Influence of permeability scaling on solute transport in heterogeneous aquifer (in Chinese). Hydrogeol Eng Geol, 41: 19–25, 31

    Google Scholar 

  194. Zhang D. 2001. Stochastic Methods for Flow in Porous Media: Coping with Uncertainties. New York: Academic Press

    Google Scholar 

  195. Zhang D, Li C J, Li W. 2017. Determination of groundwater pollution sources by combining stable isotope and hydrochemical methods (in Chinese). Ground Water, 29: 80–81

    Google Scholar 

  196. Zhang Y, Benson D A, Baeumer B. 2007. Predicting the tails of breakthrough curves in regional-scale alluvial systems. Ground Water, 45: 473–484

    Article  Google Scholar 

  197. Zhang Y, LaBolle E M, Pohlmann K. 2009a. Monte Carlo approximation of anomalous diffusion in macroscopic heterogeneous media. Water Resour Res, 45: W10417

    Google Scholar 

  198. Zhang Y, Benson D A, Reeves D M. 2009b. Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Adv Water Resources, 32: 561–581

    Article  Google Scholar 

  199. Zhang Y, Sun H G, Neupauer R M, Straka P, Kelly J F, Lu B, Zheng C. 2018. Identification of pollutant source for super-diffusion in aquifers and rivers with bounded domains. Water Resour Res, 54: 7092–7108

    Article  Google Scholar 

  200. Zhang Y, Sun H G, Stowell H H, Zayernouri M, Hansen S E. 2017. A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals, 102: 29–46

    Article  Google Scholar 

  201. Zhang Y, Yu X, Li X, Kelly J F, Sun H G, Zheng C. 2019. Impact of absorbing and reflective boundaries on fractional derivative models: Quantification, evaluation and application. Adv Water Resour, 128: 129–144

    Article  Google Scholar 

  202. Zhang Y, Zhou D, Yin M, Sun H G, Wei W, Li S, Zheng C. 2020. Nonlocal transport models for capturing solute transport in one-dimensional sand columns: Model review, applicability, limitations and improvement. Hydrol Process, 34: 5104–5122

    Article  Google Scholar 

  203. Zhao Y S. 2007. Control and remediation of groundwater contaminated sites (in Chinese). J Changchun Univ Technol Nat Sci Ed, 28: 116–123

    Google Scholar 

  204. Zhao Y S, Lin X Y. 1994. Groundwater Pollution Simulation and Pollution Control and Treatment (in Chinese). Changchun: Jilin Science and Technology Press

    Google Scholar 

  205. Zheng C. 2006. Accounting for aquifer heterogeneity in Solute Transport Modeling: A Case Study from the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. In: Delleur J W, ed. Handbook of Groundwater Engineering. 2nd ed. Boca Raton: CRC Press

    Google Scholar 

  206. Zheng C. 2014. Research and numerical simulation of groundwater pollution migration process. Achievement Report of China Geological Survey. Water Science Research Center of Peking University

  207. Zheng C, Bianchi M, Gorelick S M. 2011. Lessons learned from 25 years of research at the MADE site. Ground Water, 49: 649–662

    Article  Google Scholar 

  208. Zheng C, Gorelick S M. 2003. Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale. Ground Water, 41: 142–155

    Article  Google Scholar 

  209. Zheng C, Jiao J J. 1998. Numerical simulation of tracer tests in heterogeneous aquifer. J Environ Eng, 124: 510–516

    Article  Google Scholar 

  210. Zheng D F, Zhao Y S, Wang B D. 2002. Migration characteristics and simulation prediction of light nonaqueous liquid in underground environment (in Chinese). Adv Water Sci, 13: 321–325

    Google Scholar 

  211. Zhou H, Li L, Jaime Gómez-Hernández J. 2010. Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Comput Geosci, 36: 1224–1235

    Article  Google Scholar 

  212. Zinn B, Harvey C F. 2003. When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res, 39: 1051

    Article  Google Scholar 

  213. Zoua S, Ma J, Koussis A D. 1996. Analytical solutions to non-Fickian subsurface dispersion in uniform groundwater flow. J Hydrol, 179: 237–258

    Article  Google Scholar 

Download references

Acknowledgements

An appendix containing the definition of key contaminant transport terminology can be found in the web version of the paper (https://link.springer.com/). We thank the reviewers and responsible editor for their constructive suggestions, and Jonathan Frame for helping polish the manuscript. This work was supported by the National Key R&D Program of China (Grant No. 2016YFC0402806), the National Natural Science Foundation of China (Grant Nos. 41931292, 42007162 & 41722208), and the Natural Science Foundation of Guangdong Province (CN) (Grant No. 2020A1515010891).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chunmiao Zheng.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Ma, R., Zhang, Y. et al. Contaminant transport in heterogeneous aquifers: A critical review of mechanisms and numerical methods of non-Fickian dispersion. Sci. China Earth Sci. 64, 1224–1241 (2021). https://doi.org/10.1007/s11430-020-9755-y

Download citation

Keywords

  • Aquifer heterogeneity
  • Contaminant transport
  • Contamination remediation
  • Non-Fickian dispersion
  • Anomalous transport
  • Small-scale preferential flow paths