Skip to main content

The oxygen cycle and a habitable Earth

Abstract

As an important contributor to the habitability of our planet, the oxygen cycle is interconnected with the emergence and evolution of complex life and is also the basis to establish Earth system science. Investigating the global oxygen cycle provides valuable information on the evolution of the Earth system, the habitability of our planet in the geologic past, and the future of human life. Numerous investigations have expanded our knowledge of the oxygen cycle in the fields of geology, geochemistry, geobiology, and atmospheric science. However, these studies were conducted separately, which has led to onesided understandings of this critical scientific issue and an incomplete synthesis of the interactions between the different spheres of the Earth system. This review presents a five-sphere coupled model of the Earth system and clarifies the core position of the oxygen cycle in Earth system science. Based on previous research, this review comprehensively summarizes the evolution of the oxygen cycle in geological time, with a special focus on the Great Oxidation Event (GOE) and the mass extinctions, as well as the possible connections between the oxygen content and biological evolution. The possible links between the oxygen cycle and biodiversity in geologic history have profound implications for exploring the habitability of Earth in history and guiding the future of humanity. Since the Anthropocene, anthropogenic activities have gradually steered the Earth system away from its established trajectory and had a powerful impact on the oxygen cycle. The human-induced disturbance of the global oxygen cycle, if not controlled, could greatly reduce the habitability of our planet.

This is a preview of subscription content, access via your institution.

References

  • Alcott L J, Mills B J W, Poulton S W. 2019. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science, 366: 1333–1337

    Google Scholar 

  • Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the cretaceous-tertiary extinction. Science, 208: 1095–1108

    Google Scholar 

  • Anser Li Z X, Aeolus Lee C T. 2004. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet Sci Lett, 228: 483–493

    Google Scholar 

  • Archibald J D, Clemens W A, Padian K, Rowe T, Macleod N, Barrett P M, Gale A, Holroyd P, Sues H D, Arens N C, Horner J R, Wilson G P, Goodwin M B, Brochu C A, Lofgren D L, Hurlbert S H, Hartman J H, Eberth D A, Wignall P B, Currie P J, Weil A, Prasad G V R, Dingus L, Courtillot V, Milner A, Milner A, Bajpai S, Ward D J, Sahni A. 2010. Cretaceous extinctions: Multiple causes. Science, 328: 973

    Google Scholar 

  • Aulbach S, Viljoen K S. 2015. Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: From convecting mantle source to palaeo-ocean floor and back. Earth Planet Sci Lett, 431: 274–286

    Google Scholar 

  • Bambach R K. 2006. Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci, 34: 127–155

    Google Scholar 

  • Barley M, Bekker A, Krapez B. 2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet Sci Lett, 238: 156–171

    Google Scholar 

  • Barnosky A D, Matzke N, Tomiya S, Wogan G O U, Swartz B, Quental T B, Marshall C, McGuire J L, Lindsey E L, Maguire K C, Mersey B, Ferrer E A. 2011. Has the Earth’s sixth mass extinction already arrived? Nature, 471: 51–57

    Google Scholar 

  • Battle M, Fletcher S M, Bender M L, Keeling R F, Manning A C, Gruber N, Tans P P, Hendricks M B, Ho D T, Simonds C, Mika R, Paplawsky B. 2006. Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models. Glob Biogeochem Cycle, 20: GB1010

    Google Scholar 

  • Battle M O, Munger J W, Conley M, Sofen E, Perry R, Hart R, Davis Z, Scheckman J, Woogerd J, Graeter K, Seekins S, David S, Carpenter J. 2019. Atmospheric measurements of the terrestrial O2: CO2 exchange ratio of a midlatitude forest. Atmos Chem Phys, 19: 8687–8701

    Google Scholar 

  • Bauer N, Hilaire J, Brecha R J, Edmonds J, Jiang K, Kriegler E, Rogner H H, Sferra F. 2016. Assessing global fossil fuel availability in a scenario framework. Energy, 111: 580–592

    Google Scholar 

  • Bekker A, Holland H D, Wang P L, Rumble Iii D, Stein H J, Hannah J L, Coetzee L L, Beukes N J. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117–120

    Google Scholar 

  • Bekker A, Slack J F, Planavsky N, Krapez B, Hofmann A, Konhauser K O, Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geol, 105: 467–508

    Google Scholar 

  • Bergman N M. 2004. COPSE: A new model of biogeochemical cycling over phanerozoic time. Am J Sci, 304: 397–437

    Google Scholar 

  • Berner R A. 2006. Geocarbsulf: A combined model for Phanerozoic atmospheric O2 and CO2. GeoChim CosmoChim Acta, 70: 5653–5664

    Google Scholar 

  • Berner R A. 2005. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. GeoChim CosmoChim Acta, 69: 3211–3217

    Google Scholar 

  • Berner R A. 2004. The Phanerozoic Carbon Cycle: CO2 and O2. Oxford University Press

  • Berner R A, Vandenbrooks J M, Ward P D. 2007. Evolution: Oxygen and evolution. Science, 316: 557–558

    Google Scholar 

  • Bonner J T. 1988. The Evolution of Complexity by Means of Natural Selection. Princeton University Press

  • Bopp L, Resplandy L, Orr J C, Doney S C, Dunne J P, Gehlen M, Halloran P, Heinze C, Ilyina T, Séférian R, Tjiputra J, Vichi M. 2013. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10: 6225–6245

    Google Scholar 

  • Bowring S A, Erwin D H, Jin Y G, Martin M W, Davidek K, Wang W. 1998. U/Pb zircon geochronology and tempo of the End-Permian mass extinction. Science, 280: 1039–1045

    Google Scholar 

  • Burgess S D, Bowring S, Shen S. 2014. High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA, 111: 3316–3321

    Google Scholar 

  • Burgess S D, Muirhead J D, Bowring S A. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat Commun, 8: 164

    Google Scholar 

  • Burron I, da Costa G, Sharpe R, Fayek M, Gauert C, Hofmann A. 2018. 3.2 Ga detrital uraninite in the Witwatersrand Basin, South Africa: Evidence of a reducing Archean atmosphere. Geology, 46: 295–298

    Google Scholar 

  • Butterfield N J. 2018. Oxygen, animals and aquatic bioturbation: An updated account. Geobiology, 16: 3–16

    Google Scholar 

  • Campbell I H, Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci, 1: 554–558

    Google Scholar 

  • Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci, 33: 1–36

    Google Scholar 

  • Cardona T. 2019. Thinking twice about the evolution of photosynthesis. Open Biol, 9: 180246

    Google Scholar 

  • Cartigny P, Palot M, Thomassot E, Harris J W. 2014. Diamond formation: A stable isotope perspective. Annu Rev Earth Planet Sci, 42: 699–732

    Google Scholar 

  • Catling D C, Kasting J F. 2017. Long-Term Climate Evolution. In: Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge: Cambridge University Press. 299–326, doi: https://doi.org/10.1017/9781139020558

    Google Scholar 

  • Catling D C, Zahnle K J. 2020. The Archean atmosphere. Sci Adv, 6: eaax1420

    Google Scholar 

  • Catling D C, Zahnle K J, McKay C P. 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science, 293: 839–843

    Google Scholar 

  • Ceballos G, Ehrlich P R, Barnosky A D, García A, Pringle R M, Palmer T M. 2015. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci Adv, 1: e1400253

    Google Scholar 

  • Ceballos G, Ehrlich P R, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA, 114: E6089–E6096

    Google Scholar 

  • Chen B, Dong L, Liu X, Shi G Y, Chen L, Nakajima T, Habib A. 2016. Exploring the possible effect of anthropogenic heat release due to global energy consumption upon global climate: A climate model study. Int J Climatol, 36: 4790–4796

    Google Scholar 

  • Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi R K, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu Z, Nemani R R, Myneni R B. 2019. China and India lead in greening of the world through land-use management. Nat Sustain, 2: 122–129

    Google Scholar 

  • Chen J, Shen S, Li X, Xu Y, Joachimski M M, Bowring S A, Erwin D H, Yuan D, Chen B, Zhang H, Wang Y, Cao C, Zheng Q, Mu L. 2016. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 26–38

    Google Scholar 

  • Ciborowski T J R, Kerr A C. 2016. Did mantle plume magmatism help trigger the Great Oxidation Event? Lithos, 246–247: 128–133

    Google Scholar 

  • Clapham M E, Karr J A. 2012. Environmental and biotic controls on the evolutionary history of insect body size. Proc Natl Acad Sci USA, 109: 10927–10930

    Google Scholar 

  • Cole D B, Mills D B, Erwin D H, Sperling E A, Porter S M, Reinhard C T, Planavsky N J. 2020. On the co-evolution of surface oxygen levels and animals. Geobiology, 18: 260–281

    Google Scholar 

  • Colman A S, Mackenzie F T, Holland H D, Van Cappellen P, Ingall E D. 1997. Redox stabilization of the atmosphere and oceans and marine productivity. Science, 275: 406–408

    Google Scholar 

  • Condie K C. 2018. A planet in transition: The onset of plate tectonics on Earth between 3 and 2 Ga? GeoSci Front, 9: 51–60

    Google Scholar 

  • Cox G M, Lyons T W, Mitchell R N, Hasterok D, Gard M. 2018. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth Planet Sci Lett, 489: 28–36

    Google Scholar 

  • Crowe S A, Døssing L N, Beukes N J, Bau M, Kruger S J, Frei R, Canfield D E. 2013. Atmospheric oxygenation three billion years ago. Nature, 501: 535–538

    Google Scholar 

  • Crutzen P J. 2002. Geology of mankind. Nature, 415: 23

    Google Scholar 

  • Dart T, Gallo M, Beer J, Fischer J, Morgan T, Pilmanis A. 2017. Hyperoxia and hypoxic hypoxia effects on simple and choice reaction times. Aerospace Med Human Performance, 88: 1073–1080

    Google Scholar 

  • Dauphas N, Craddock P R, Asimow P D, Bennett V C, Nutman A P, Ohnenstetter D. 2009. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett, 288: 255–267

    Google Scholar 

  • de Aquino Lemos V, dos Santos R V T, Lira F S, Rodrigues B, Tufik S, de Mello M T. 2013. Can high altitude influence cytokines and sleep? Mediat Inflamm, 2013: 1–8

    Google Scholar 

  • DePalma R A, Smit J, Burnham D A, Kuiper K, Manning P L, Oleinik A, Larson P, Maurrasse F J, Vellekoop J, Richards M A, Gurche L, Alvarez W. 2019. A seismically induced onshore surge deposit at the KPg boundary, North Dakota. Proc Natl Acad Sci USA, 116: 8190–8199

    Google Scholar 

  • Diaz R J, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321: 926–929

    Google Scholar 

  • Duncan M S, Dasgupta R. 2017. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nat Geosci, 10: 387–392

    Google Scholar 

  • Eguchi J, Seales J, Dasgupta R. 2020. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nat Geosci, 13: 71–76

    Google Scholar 

  • Erwin D H. 2020. The origin of animal body plans: A view from fossil evidence and the regulatory genome. Development, 147: dev182899

    Google Scholar 

  • Erwin D H, Laflamme M, Tweedt S M, Sperling E A, Pisani D, Peterson K J. 2011. The cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334: 1091–1097

    Google Scholar 

  • Evans K A. 2012. The redox budget of subduction zones. Earth-Sci Rev, 113: 11–32

    Google Scholar 

  • Fan J X, Shen S Z, Erwin D H, Sadler P M, MacLeod N, Cheng Q M, Hou X D, Yang J, Wang X D, Wang Y, Zhang H, Chen X, Li G X, Zhang Y C, Shi Y K, Yuan D X, Chen Q, Zhang L N, Li C, Zhao Y Y. 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367: 272–277

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289: 756–758

    Google Scholar 

  • Farquhar J, Savarino J, Airieau S, Thiemens M H. 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere. J Geophys Res, 106: 32829–32839

    Google Scholar 

  • Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nat Commun, 8: 14845

    Google Scholar 

  • Gaillard F, Scaillet B, Arndt N T. 2011. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature, 478: 229–232

    Google Scholar 

  • Goffner D, Sinare H, Gordon L J. 2019. The Great Green Wall for the Sahara and the Sahel Initiative as an opportunity to enhance resilience in Sahelian landscapes and livelihoods. Reg Environ Change, 19: 1417–1428

    Google Scholar 

  • Gold D A, Caron A, Fournier G P, Summons R E. 2017. Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature, 543: 420–423

    Google Scholar 

  • Gulick S P S, Bralower T J, Ormö J, Hall B, Grice K, Schaefer B, Lyons S, Freeman K H, Morgan J V, Artemieva N, Kaskes P, de Graaff S J, Whalen M T, Collins G S, Tikoo S M, Verhagen C, Christeson G L, Claeys P, Coolen M J L, Goderis S, Goto K, Grieve R A F, McCall N, Osinski G R, Rae A S P, Riller U, Smit J, Vajda V, Wittmann A. 2019. The first day of the Cenozoic. Proc Natl Acad Sci USA, 116: 19342–19351

    Google Scholar 

  • Gumsley A P, Chamberlain K R, Bleeker W, Söderlund U, de Kock M O, Larsson E R, Bekker A. 2017. Timing and tempo of the Great Oxidation Event. Proc Natl Acad Sci USA, 114: 1811–1816

    Google Scholar 

  • Hayes J M, Waldbauer J R. 2006. The carbon cycle and associated redox processes through time. Phil Trans R Soc B, 361: 931–950

    Google Scholar 

  • Hazen R M, Papineau D, Bleeker W, Downs R T, Ferry J M, McCoy T J, Sverjensky D A, Yang H. 2008. Mineral evolution. Am Miner, 93: 1693–1720

    Google Scholar 

  • He Y, Meng X, Ke S, Wu H, Zhu C, Teng F Z, Hoefs J, Huang J, Yang W, Xu L, Hou Z, Ren Z Y, Li S. 2019. A nephelinitic component with unusual δ56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle. Earth Planet Sci Lett, 512: 175–183

    Google Scholar 

  • Herman J K, Ingermann R L. 1996. Effects of hypoxia and hyperoxia on oxygen-transfer properties of the blood of a viviparous snake. J Exp Biol, 199: 2061–2070

    Google Scholar 

  • Hinojosa J L, Brown S T, Chen J, DePaolo D J, Paytan A, Shen S, Payne J L. 2012. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology, 40: 743–746

    Google Scholar 

  • Hobkirk J P, Damy T, Walters M, Bennett A, Smith S J, Ingle L, Clark A L, Cleland J G F. 2013. Effects of reducing inspired oxygen concentration for one hour in patients with chronic heart failure: Implications for air travel. Eur J Heart Failure, 15: 505–510

    Google Scholar 

  • Holland H D. 1985. The chemical evolution of the atmosphere and oceans. Geol Mag, 122: 404–405

    Google Scholar 

  • Holland H D. 2009. Why the atmosphere became oxygenated: A proposal. GeoChim CosmoChim Acta, 73: 5241–5255

    Google Scholar 

  • Holland H D, Lazar B, McCaffrey M. 1986. Evolution of the atmosphere and oceans. Nature, 320: 27–33

    Google Scholar 

  • Hong L, Xu Y G, Zhang L, Wang Y, Ma L. 2020. Recycled carbonate-induced oxidization of the convective mantle beneath Jiaodong, Eastern China. Lithos, 366–367: 105544

    Google Scholar 

  • Hu Q, Kim D Y, Yang W, Yang L, Meng Y, Zhang L, Mao H K. 2016. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles. Nature, 534: 241–244

    Google Scholar 

  • Hu Y, Ding F. 2011. Radiative constraints on the habitability of exoplanets Gliese 581c and Gliese 581d. Astron Astrophys, 526: A135

    Google Scholar 

  • Hu Y, Yang J, Ding F, Peltier W R. 2011. Model-dependence of the CO2 threshold for melting the hard Snowball Earth. Clim Past, 7: 17–25

    Google Scholar 

  • Huang J, Yu H, Dai A, Wei Y, Kang L. 2017. Drylands face potential threat under 2°C global warming target. Nat Clim Change, 7: 417–422

    Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R. 2016. Accelerated dryland expansion under climate change. Nat Clim Change, 6: 166–171

    Google Scholar 

  • Huang J, Huang J, Liu X, Li C, Ding L, Yu H. 2018. The global oxygen budget and its future projection. Sci Bull, 63: 1180–1186

    Google Scholar 

  • Huey R B, Ward P D. 2005. Hypoxia, global warming, and terrestrial late permian extinctions. Science, 308: 398–401

    Google Scholar 

  • IPCC. 2014. AR5 - Working Group 3, Mitigation of Climate Change-Contribution of Working Group III. Cambridge: Cambridge University Press

    Google Scholar 

  • Jin Y G, Wang Y, Wang W, Shang Q H, Cao C Q, Erwin D H. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289: 432–436

    Google Scholar 

  • Joachimski M M, Lai X, Shen S, Jiang H, Luo G, Chen B, Chen J, Sun Y. 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40: 195–198

    Google Scholar 

  • Kasting J F. 2013. What caused the rise of atmospheric O2? Chem Geol, 362: 13–25

    Google Scholar 

  • Kasting J F, Ackerman T P, Series N, Jan N. 1993. Earth’s Early atmosphere: Response. Science, 235: 2341–2343

    Google Scholar 

  • Kasting J F, Canfield D E. 2012. The Global Oxygen Cycle. In: Knoll A H, Canfield D E, Konhauser K O, eds. Fundamentals of Geobiology. John Wiley & Sons, Ltd, Chichester, UK. 93–104, doi: https://doi.org/10.1002/9781118280874.ch7

    Google Scholar 

  • Keeling R F, Manning A C. 2014. Studies of recent changes in atmospheric O2 Content. In: Treatise on Geochemistry. Elsevier. 385–404, doi: https://doi.org/10.1016/B978-0-08-095975-7.0042004

  • Keeling R F, Najjar R P, Bender M L, Tans P P. 1993. What atmospheric oxygen measurements can tell us about the global carbon cycle. Glob Biogeochem Cycle, 7: 37–67

    Google Scholar 

  • Keeling R F, Shertz S R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature, 358: 723–727

    Google Scholar 

  • Keller C B, Schoene B. 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature, 485: 490–493

    Google Scholar 

  • Kirschvink J L, Gaidos E J, Bertani L E, Beukes N J, Gutzmer J, Maepa L N, Steinberger R E. 2000. Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA, 97: 1400–1405

    Google Scholar 

  • Knoll A H, Bambach R K, Payne J L, Pruss S, Fischer W W. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett, 256: 295–313

    Google Scholar 

  • Knoll A H, Nowak M A. 2017. The timetable of evolution. Sci Adv, 3: e1603076

    Google Scholar 

  • Konhauser K O, Pecoits E, Lalonde S V, Papineau D, Nisbet E G, Barley M E, Arndt N T, Zahnle K, Kamber B S. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458: 750–753

    Google Scholar 

  • Krause A J, Mills B J W, Zhang S, Planavsky N J, Lenton T M, Poulton S W. 2018. Stepwise oxygenation of the Paleozoic atmosphere. Nat Commun, 9: 4081

    Google Scholar 

  • Kring D A. 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol, 255: 4–21

    Google Scholar 

  • Krissansen-Totton J, Buick R, Catling D C. 2015. A statistical analysis of the carbon isotope record from the Archean to phanerozoic and implications for the rise of oxygen. Am J Sci, 315: 275–316

    Google Scholar 

  • Kump L R. 2014. The Geochemistry of Mass Extinction. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Elsevier. 269–280, doi: https://doi.org/10.1016/B978-0-08-095975-7.01313-9

  • Kump L R, Barley M E. 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature, 448: 1033–1036

    Google Scholar 

  • Kump L R, Garrels R M. 1986. Modeling atmospheric O2 in the global sedimentary redox cycle. Am J Sci, 286: 337–360

    Google Scholar 

  • Laakso T A, Schrag D P. 2014. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet Sci Lett, 388: 81–91

    Google Scholar 

  • Laakso T A, Strauss J V, Peterson K J. 2020. Herbivory and its effect on Phanerozoic oxygen concentrations. Geology, 48: 410–414

    Google Scholar 

  • Laurance W F. 2019. The Anthropocene. Curr Biol, 29: R953–R954

    Google Scholar 

  • Le Quéré C, Andrew R M, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers P A, Korsbakken J I, Peters G P, Canadell J G, Arneth A, Arora V K, Barbero L, Bastos A, Bopp L, Chevallier F, Chini L P, Ciais P, Doney S C, Gkritzalis T, Goll D S, Harris I, Haverd V, Hoffman F M, Hoppema M, Houghton R A, Hurtt G, Ilyina T, Jain A K, Johannessen T, Jones C D, Kato E, Keeling R F, Goldewijk K K, Landschützer P, Lefèvre N, Lienert S, Liu Z, Lombardozzi D, Metzl N, Munro D R, Nabel J E M S, Nakaoka S, Neill C, Olsen A, Ono T, Patra P, Peregon A, Peters W, Peylin P, Pfeil B, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rocher M, Rödenbeck C, Schuster U, Schwinger J, Séférian R, Skjelvan I, Steinhoff T, Sutton A, Tans P P, Tian H, Tilbrook B, Tubiello F N, van der Laan-Luijkx I T, van der Werf G R, Viovy N, Walker A P, Wiltshire A J, Wright R, Zaehle S, Zheng B. 2018. Global carbon budget 2018. Earth Syst Sci Data, 10: 2141–2194

    Google Scholar 

  • Lee C T A, Yeung L Y, McKenzie N R, Yokoyama Y, Ozaki K, Lenardic A. 2016. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat Geosci, 9: 417–424

    Google Scholar 

  • Lee H, Muirhead J D, Fischer T P, Ebinger C J, Kattenhorn S A, Sharp Z D, Kianji G. 2016. Massive and prolonged deep carbon emissions associated with continental rifting. Nat Geosci, 9: 145–149

    Google Scholar 

  • Lenton T M, Dahl T W, Daines S J, Mills B J W, Ozaki K, Saltzman M R, Porada P. 2016. Earliest land plants created modern levels of atmospheric oxygen. Proc Natl Acad Sci USA, 113: 9704–9709

    Google Scholar 

  • Lenton T M, Held H, Kriegler E, Hall J W, Lucht W, Rahmstorf S, Schellnhuber H J. 2008. Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA, 105: 1786–1793

    Google Scholar 

  • Lewis S L, Maslin M A. 2015. Defining the Anthropocene. Nature, 519: 171–180

    Google Scholar 

  • Li C, Huang J, Ding L, Liu X, Yu H, Huang J. 2020. Increasing escape of oxygen from oceans under climate change. Geophys Res Lett, 47: e86345

    Google Scholar 

  • Liu H, Zartman R E, Ireland T R, Sun W D. 2019. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks. Proc Natl Acad Sci USA, 116: 18854–18859

    Google Scholar 

  • Liu X, Huang J, Huang J, Li C, Ding L, Meng W. 2020. Estimation of gridded atmospheric oxygen consumption from 1975 to 2018. J Meteorol Res, 34: 646–658

    Google Scholar 

  • Livina V N, Vaz Martins T M, Forbes A B. 2015. Tipping point analysis of atmospheric oxygen concentration. Chaos, 25: 036403

    Google Scholar 

  • Lueker T J, Keeling R F, Dubey M K. 2001. The oxygen to carbon dioxide ratios observed in emissions from a wildfire in northern California. Geophys Res Lett, 28: 2413–2416

    Google Scholar 

  • Luo G, Ono S, Beukes N J, Wang D T, Xie S, Summons R E. 2016. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv, 2: e1600134

    Google Scholar 

  • Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315

    Google Scholar 

  • Machta L, Hughes E. 1970. Atmospheric oxygen in 1967 to 1970. Science, 168: 1582–1584

    Google Scholar 

  • Manning A C, Keeling R F. 2006. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B-Chem Phys Meteor, 58: 95–116

    Google Scholar 

  • Mao H K, Hu Q, Yang L, Liu J, Kim D Y, Meng Y, Zhang L, Prakapenka V B, Yang W, Mao W L. 2017. When water meets iron at Earth’s core-mantle boundary. Natl Sci Rev, 4: 870–878

    Google Scholar 

  • Martin D, McKenna H, Livina V. 2017. The human physiological impact of global deoxygenation. J Physiol Sci, 67: 97–106

    Google Scholar 

  • McCormick L R, Levin L A, Oesch N W. 2019. Vision is highly sensitive to oxygen availability in marine invertebrate larvae. J Exp Biol, 222: jeb200899

    Google Scholar 

  • Minejima C, Kubo M, Tohjima Y, Yamagishi H, Koyama Y, Maksyutov S, Kita K, Mukai H. 2012. Analysis of ΔO2/ΔCO2 ratios for the pollution events observed at Hateruma Island, Japan. Atmos Chem Phys, 12: 2713–2723

    Google Scholar 

  • Morris S C. 1993. The fossil record and the early evolution of the Metazoa. Nature, 361: 219–225

    Google Scholar 

  • Nicklas R W, Puchtel I S, Ash R D, Piccoli P M, Hanski E, Nisbet E G, Waterton P, Pearson D G, Anbar A D. 2019. Secular mantle oxidation across the Archean-Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. GeoChim CosmoChim Acta, 250: 49–75

    Google Scholar 

  • Nowak D J, Hoehn R, Crane D E. 2007. Oxygen production by urban trees in the United States. Arboric Urban For, 33: 220–226

    Google Scholar 

  • Nursall J R. 1959. Oxygen as a prerequisite to the origin of the metazoa. Nature, 183: 1170–1172

    Google Scholar 

  • Och L M, Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci Rev, 110: 26–57

    Google Scholar 

  • Olson S L, Ostrander C M, Gregory D D, Roy M, Anbar A D, Lyons T W. 2019. Volcanically modulated pyrite burial and ocean-atmosphere oxidation. Earth Planet Sci Lett, 506: 417–427

    Google Scholar 

  • Oschlies A, Brandt P, Stramma L, Schmidtko S. 2018. Drivers and mechanisms of ocean deoxygenation. Nat Geosci, 11: 467–473

    Google Scholar 

  • Overpeck J T, Cole J E. 2006. Abrupt change in Earth’s climate system. Annu Rev Environ Resour, 31: 1–31

    Google Scholar 

  • Pavlov A A, Kasting J F. 2002. Mass-independent fractionation of sulfur isotopes in archean sediments: Strong evidence for an anoxic archean atmosphere. Astrobiology, 2: 27–41

    Google Scholar 

  • Payne J L, Boyer A G, Brown J H, Finnegan S, Kowalewski M, Krause R A, Lyons S K, McClain C R, McShea D W, Novack-Gottshall P M, Smith F A, Stempien J A, Wang S C. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci USA, 106: 24–27

    Google Scholar 

  • Payne J L, McClain C R, Boyer A G, Brown J H, Finnegan S, Kowalewski M, Krause Jr. R A, Lyons S K, McShea D W, Novack-Gottshall P M, Smith F A, Spaeth P, Stempien J A, Wang S C. 2011. The evolutionary consequences of oxygenic photosynthesis: A body size perspective. Photosynth Res, 107: 37–57

    Google Scholar 

  • Petsch S T. 2014a. The Global Oxygen Cycle. In: Treatise on Geochemistry. Elsevier. 437–473, doi: https://doi.org/10.1016/B978-0-08-095975-7.00811-1

  • Petsch S T. 2014b. Weathering of Organic Carbon. In: Treatise on Geochemistry. Elsevier. 217–238, doi: https://doi.org/10.1016/B978-0-08-095975-7.01013-5

  • Pierazzo E, Kring D A, Melosh H J. 1998. Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J Geophys Res, 103: 28607–28625

    Google Scholar 

  • Planavsky N J, Asael D, Hofmann A, Reinhard C T, Lalonde S V, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith A J B, Beukes N J, Bekker A, Johnson T M, Konhauser K O, Lyons T W, Rouxel O J. 2014. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci, 7: 283–286

    Google Scholar 

  • Pörtner H O, Peck M A. 2010. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J Fish Biol, 77: 1745–1779

    Google Scholar 

  • Poulsen C J, Tabor C, White J D. 2015. Long-term climate forcing by atmospheric oxygen concentrations. Science, 348: 1238–1241

    Google Scholar 

  • Prince E D, Goodyear C P. 2006. Hypoxia-based habitat compression of tropical pelagic fishes. Fisheries Oceanogr, 15: 451–464

    Google Scholar 

  • Rasmussen B, Buick R. 1999. Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology, 27: 115

    Google Scholar 

  • Raymond J, Segrè D. 2006. The effect of oxygen on biochemical networks and the evolution of complex life. Science, 311: 1764–1767

    Google Scholar 

  • Reinhard C T, Fischer W W. 2019. Mechanistic links between the sedimentary redox cycle and marine acid-base chemistry. Geochem Geophys Geosyst, 20: 5968–5978

    Google Scholar 

  • Reinhard C T, Planavsky N J, Olson S L, Lyons T W, Erwin D H. 2016. Earth’s oxygen cycle and the evolution of animal life. Proc Natl Acad Sci USA, 113: 8933–8938

    Google Scholar 

  • Renne P R, Sprain C J, Richards M A, Self S, Vanderkluysen L, Pande K. 2015. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, 350: 76–78

    Google Scholar 

  • Robertson D S, McKenna M C, Toon O B, Hope S, Lillegraven J A. 2004. Survival in the first hours of the Cenozoic. Geo Soc Am Bull, 116: 760

    Google Scholar 

  • Rogner H H, Aguilera R F, Archer C L, Bertani R, Bhattacharya S C, Dusseault M B, Gagnon L, Haberl H., Hoogwijk M, Johnson A, Rogner M L, Wagner H, Yakushev V, Arent D J, Bryden I, Krausmann F, Odell P, Schillings C, Shafiei A. 2012. Chapter 7 - Energy resources and potentials. In: Team G E A W, ed. Global Energy Assessment—Toward a Sustainable Future. Cambridge University Press and IIASA. 423–512, doi: https://doi.org/10.13140/RG.2.1.3049.8724

  • Rosing M T, Frei R. 2004. U-rich Archaean sea-floor sediments from Greenland—Indications of >3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett, 217: 237–244

    Google Scholar 

  • Ruddiman W F. 2018. Three flaws in defining a formal ‘Anthropocene’. Prog Phys Geography-Earth Environ, 42: 451–461

    Google Scholar 

  • Rutten M G. 1966. Geologic data on atmospheric history. Palaeogeogr Palaeoclimatol Palaeoecol, 2: 47–57

    Google Scholar 

  • Rye R, Holland H D. 1998. Paleosols and the evolution of atmospheric oxygen: A critical review. Am J Sci, 298: 621–672

    Google Scholar 

  • Sahoo S K, Planavsky N J, Jiang G, Kendall B, Owens J D, Wang X, Shi X, Anbar A D, Lyons T W. 2016. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology, 14: 457–468

    Google Scholar 

  • Schimel D S. 1995. Terrestrial ecosystems and the carbon cycle. Glob Change Biol, 1: 77–91

    Google Scholar 

  • Schmidtko S, Stramma L, Visbeck M. 2017. Decline in global oceanic oxygen content during the past five decades. Nature, 542: 335–339

    Google Scholar 

  • Schoene B, Eddy M P, Samperton K M, Keller C B, Keller G, Adatte T, Khadri S F R. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363: 862–866

    Google Scholar 

  • Schoene B, Eddy M P, Samperton K M, Keller C B, Keller G, Adatte T, Khadri S F R. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363: 862–866

    Google Scholar 

  • Schulte P, Alegret L, Arenillas I, Arz J A, Barton P J, Bown P R, Bralower T J, Christeson G L, Claeys P, Cockell C S, Collins G S, Deutsch A, Goldin T J, Goto K, Grajales-Nishimura J M, Grieve R A F, Gulick S P S, Johnson K R, Kiessling W, Koeberl C, Kring D A, MacLeod K G, Matsui T, Melosh J, Montanari A, Morgan J V, Neal C R, Nichols D J, Norris R D, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold W U, Robin E, Salge T, Speijer R P, Sweet A R, Urrutia-Fucugauchi J, Vajda V, Whalen M T, Willumsen P S. 2010. The Chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science, 327: 1214–1218

    Google Scholar 

  • Schulte P, Deutsch A, Salge T, Berndt J, Kontny A, MacLeod K G, Neuser R D, Krumm S. 2009. A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous-Paleogene (K-Pg) boundary, Demerara Rise, western Atlantic. GeoChim CosmoChim Acta, 73: 1180–1204

    Google Scholar 

  • Seibel B A. 2011. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J Exp Biol, 214: 326–336

    Google Scholar 

  • Severinghaus J P, Broecker W S, Dempster W F, MacCallum T, Wahlen M. 1994. Oxygen loss in biosphere 2. Eos Trans AGU, 75: 33–37

    Google Scholar 

  • Shaffer G, Olsen S M, Pedersen J O P. 2009. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels. Nat Geosci, 2: 105–109

    Google Scholar 

  • Shen S, Crowley J L, Wang Y, Bowring S A, Erwin D H, Sadler P M, Cao C, Rothman D H, Henderson C M, Ramezani J, Zhang H, Shen Y, Wang X, Wang W, Mu L, Li W, Tang Y, Liu X, Liu L, Zeng Y, Jiang Y, Jin Y. 2011. Calibrating the end-permian mass extinction. Science, 334: 1367–1372

    Google Scholar 

  • Shen S Z, Zhang H. 2017. What caused the five mass extinctions? (in Chinese). Chin Sci Bull, 62: 1119–1135

    Google Scholar 

  • Shen S Z, Ramezani J, Chen J, Cao C Q, Erwin D H, Zhang H, Xiang L, Schoepfer S D, Henderson C M, Zheng Q F, Bowring S A, Wang Y, Li X H, Wang X D, Yuan D X, Zhang Y C, Mu L, Wang J, Wu Y S. 2019. A sudden end-Permian mass extinction in South China. GSA Bull, 131: 205–223

    Google Scholar 

  • Shepherd J G, Brewer P G, Oschlies A, Watson A J. 2017. Ocean ventilation and deoxygenation in a warming world: Introduction and overview. Phil Trans R Soc A, 375: 20170240

    Google Scholar 

  • Shi P, Chen Y, Zhang A, He Y, Gao M, Yang J, Mao R, Wu J, Ye T, Xiao C, Xu B. 2019. Factors contribution to oxygen concentration in Qinghai-Tibetan Plateau (in Chinese). Chin Sci Bull, 64: 715–724

    Google Scholar 

  • Shields G A, Mills B J W, Zhu M, Raub T D, Daines S J, Lenton T M. 2019. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nat Geosci, 12: 823–827

    Google Scholar 

  • Shonting D, Ezrailson C. 2017. A Scenario for the Chicxulub Impact and Energies. In: Chicxulub: The Impact and Tsunami. Springer International Publishing, Cham. 43–68, doi: https://doi.org/10.1007/978-3-319-39487-9_3

    Google Scholar 

  • Shu D. 2008. Cambrian explosion: Birth of tree of animals. Gondwana Res, 14: 219–240

    Google Scholar 

  • Shu D G, Conway Morris S, Zhang Z F, Han J. 2010. The earliest history of the deuterostomes: The importance of the Chengjiang Fossil-Lagerstätte. Proc R Soc B, 277: 165–174

    Google Scholar 

  • Smit M A, Mezger K. 2017. Earth’s early O2 cycle suppressed by primitive continents. Nat Geosci, 10: 788–792

    Google Scholar 

  • Smith F A, Payne J L, Heim N A, Balk M A, Finnegan S, Kowalewski M, Lyons S K, McClain C R, McShea D W, Novack-Gottshall P M, Anich P S, Wang S C. 2016. Body size evolution across the geozoic. Annu Rev Earth Planet Sci, 44: 523–553

    Google Scholar 

  • Soo R M, Hemp J, Parks D H, Fischer W W, Hugenholtz P. 2017. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science, 355: 1436–1440

    Google Scholar 

  • Sprain C J, Renne P R, Vanderkluysen L, Pande K, Self S, Mittal T. 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 363: 866–870

    Google Scholar 

  • Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. 2015. The trajectory of the Anthropocene: The great acceleration. Anthropocene Rev, 2: 81–98

    Google Scholar 

  • Steffen W, Rockström J, Richardson K, Lenton T M, Folke C, Liverman D, Summerhayes C P, Barnosky A D, Cornell S E, Crucifix M, Donges J F, Fetzer I, Lade S J, Scheffer M, Winkelmann R, Schellnhuber H J. 2018. Trajectories of the Earth system in the Anthropocene. Proc Natl Acad Sci USA, 115: 8252–8259

    Google Scholar 

  • Stolper D A, Bender M L, Dreyfus G B, Yan Y, Higgins J A. 2016. A Pleistocene ice core record of atmospheric O2 concentrations. Science, 353: 1427–1430

    Google Scholar 

  • Sun Y, Joachimski M M, Wignall P B, Yan C, Chen Y, Jiang H, Wang L, Lai X. 2012. Lethally hot temperatures during the early triassic greenhouse. Science, 338: 366–370

    Google Scholar 

  • Vellekoop J, Woelders L, van Helmond N A G M, Galeotti S, Smit J, Slomp C P, Brinkhuis H, Claeys P, Speijer R P. 2018. Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact. Geology, 46: 683–686

    Google Scholar 

  • Vingrys A J, Garner L F. 1987. The effect of a moderate level of hypoxia on human color vision. Doc Ophthalmol, 66: 171–185

    Google Scholar 

  • Wade D C, Abraham N L, Farnsworth A, Valdes P J, Bragg F, Archibald A T. 2019. Simulating the climate response to atmospheric oxygen variability in the Phanerozoic: A focus on the Holocene, Cretaceous and Permian. Clim Past, 15: 1463–1483

    Google Scholar 

  • Wang M, Yan G, Yu L, Xie W, Dai Y. 2019. Effects of different artificial oxygen-supply systems on migrants’ physical and psychological reactions in high-altitude tunnel construction. Building Environ, 149: 458–467

    Google Scholar 

  • Waters C N, Zalasiewicz J, Summerhayes C, Barnosky A D, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis E C, Ellis M, Jeandel C, Leinfelder R, McNeill J R, Richter D B, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, Grinevald J, Odada E, Oreskes N, Wolfe A P. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351: aad2622

    Google Scholar 

  • Wishner K F, Seibel B A, Roman C, Deutsch C, Outram D, Shaw C T, Birk M A, Mislan K A S, Adams T J, Moore D, Riley S. 2018. Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci Adv, 4: eaau5180

    Google Scholar 

  • Xiang L, Zhang H, Schoepfer S D, Cao C, Zheng Q, Yuan D, Cai Y, Shen S. 2020. Oceanic redox evolution around the end-Permian mass extinction at Meishan, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 544: 109626

    Google Scholar 

  • Yang D, Guo X, Xie T, Luo X. 2018. Reactive oxygen species may play an essential role in driving biological evolution: The Cambrian Explosion as an example. J Environ Sci, 63: 218–226

    Google Scholar 

  • Zahnle K, Claire M, Catling D. 2006. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology, 4: 271–283

    Google Scholar 

  • Zahnle K J, Catling D C, Claire M W. 2013. The rise of oxygen and the hydrogen hourglass. Chem Geol, 362: 26–34

    Google Scholar 

  • Zamudio S, Postigo L, Illsley N P, Rodriguez C, Heredia G, Brimacombe M, Echalar L, Torricos T, Tellez W, Maldonado I, Balanza E, Alvarez T, Ameller J, Vargas E. 2007. Maternal oxygen delivery is not related to altitude- and ancestry-associated differences in human fetal growth. J Physiol, 582: 883–895

    Google Scholar 

  • Zeebe R E, Ridgwell A, Zachos J C. 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat Geosci, 9: 325–329

    Google Scholar 

  • Zhang F, Dahl T W, Lenton T M, Luo G, Shen S, Algeo T J, Planavsky N, Liu J, Cui Y, Qie W, Romaniello S J, Anbar A D. 2020. Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis. Earth Planet Sci Lett, 533: 115976

    Google Scholar 

  • Zhang F, Romaniello S J, Algeo T J, Lau K V, Clapham M E, Richoz S, Herrmann A D, Smith H, Horacek M, Anbar A D. 2018. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci Adv, 4: e1602921

    Google Scholar 

  • Zhang F, Shen S, Cui Y, Lenton T M, Dahl T W, Zhang H, Zheng Q, Wang W, Krainer K, Anbar A D. 2020. Two distinct episodes of marine anoxia during the Permian-Triassic crisis evidenced by uranium isotopes in marine dolostones. GeoChim CosmoChim Acta, 287: 165–179

    Google Scholar 

  • Zhang X L, Shu D G. 2014. Causes and consequences of the Cambrian explosion. Sci China Earth Sci, 57: 930–942

    Google Scholar 

  • Zimmer C. 2013. The Mystery of Earth’s Oxygen. New York Times. URL https://www.nytimes.com/2013/10/03/science/earths-oxygen-a-mystery-easy-to-take-for-granted.html (accessed 2.22.20)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 41888101, 41521004 & 41991231), and the China University Research Talents Recruitment Program (111 Projects, Grant No. B13045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Liu, X., He, Y. et al. The oxygen cycle and a habitable Earth. Sci. China Earth Sci. 64, 511–528 (2021). https://doi.org/10.1007/s11430-020-9747-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9747-1

Keywords

  • Oxygen cycle
  • Habitable earth
  • Mass extinction
  • Anthropocene