Alcott L J, Mills B J W, Poulton S W. 2019. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science, 366: 1333–1337
Google Scholar
Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the cretaceous-tertiary extinction. Science, 208: 1095–1108
Google Scholar
Anser Li Z X, Aeolus Lee C T. 2004. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet Sci Lett, 228: 483–493
Google Scholar
Archibald J D, Clemens W A, Padian K, Rowe T, Macleod N, Barrett P M, Gale A, Holroyd P, Sues H D, Arens N C, Horner J R, Wilson G P, Goodwin M B, Brochu C A, Lofgren D L, Hurlbert S H, Hartman J H, Eberth D A, Wignall P B, Currie P J, Weil A, Prasad G V R, Dingus L, Courtillot V, Milner A, Milner A, Bajpai S, Ward D J, Sahni A. 2010. Cretaceous extinctions: Multiple causes. Science, 328: 973
Google Scholar
Aulbach S, Viljoen K S. 2015. Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: From convecting mantle source to palaeo-ocean floor and back. Earth Planet Sci Lett, 431: 274–286
Google Scholar
Bambach R K. 2006. Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci, 34: 127–155
Google Scholar
Barley M, Bekker A, Krapez B. 2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet Sci Lett, 238: 156–171
Google Scholar
Barnosky A D, Matzke N, Tomiya S, Wogan G O U, Swartz B, Quental T B, Marshall C, McGuire J L, Lindsey E L, Maguire K C, Mersey B, Ferrer E A. 2011. Has the Earth’s sixth mass extinction already arrived? Nature, 471: 51–57
Google Scholar
Battle M, Fletcher S M, Bender M L, Keeling R F, Manning A C, Gruber N, Tans P P, Hendricks M B, Ho D T, Simonds C, Mika R, Paplawsky B. 2006. Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models. Glob Biogeochem Cycle, 20: GB1010
Google Scholar
Battle M O, Munger J W, Conley M, Sofen E, Perry R, Hart R, Davis Z, Scheckman J, Woogerd J, Graeter K, Seekins S, David S, Carpenter J. 2019. Atmospheric measurements of the terrestrial O2: CO2 exchange ratio of a midlatitude forest. Atmos Chem Phys, 19: 8687–8701
Google Scholar
Bauer N, Hilaire J, Brecha R J, Edmonds J, Jiang K, Kriegler E, Rogner H H, Sferra F. 2016. Assessing global fossil fuel availability in a scenario framework. Energy, 111: 580–592
Google Scholar
Bekker A, Holland H D, Wang P L, Rumble Iii D, Stein H J, Hannah J L, Coetzee L L, Beukes N J. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117–120
Google Scholar
Bekker A, Slack J F, Planavsky N, Krapez B, Hofmann A, Konhauser K O, Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geol, 105: 467–508
Google Scholar
Bergman N M. 2004. COPSE: A new model of biogeochemical cycling over phanerozoic time. Am J Sci, 304: 397–437
Google Scholar
Berner R A. 2006. Geocarbsulf: A combined model for Phanerozoic atmospheric O2 and CO2. GeoChim CosmoChim Acta, 70: 5653–5664
Google Scholar
Berner R A. 2005. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. GeoChim CosmoChim Acta, 69: 3211–3217
Google Scholar
Berner R A. 2004. The Phanerozoic Carbon Cycle: CO2 and O2. Oxford University Press
Berner R A, Vandenbrooks J M, Ward P D. 2007. Evolution: Oxygen and evolution. Science, 316: 557–558
Google Scholar
Bonner J T. 1988. The Evolution of Complexity by Means of Natural Selection. Princeton University Press
Bopp L, Resplandy L, Orr J C, Doney S C, Dunne J P, Gehlen M, Halloran P, Heinze C, Ilyina T, Séférian R, Tjiputra J, Vichi M. 2013. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10: 6225–6245
Google Scholar
Bowring S A, Erwin D H, Jin Y G, Martin M W, Davidek K, Wang W. 1998. U/Pb zircon geochronology and tempo of the End-Permian mass extinction. Science, 280: 1039–1045
Google Scholar
Burgess S D, Bowring S, Shen S. 2014. High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA, 111: 3316–3321
Google Scholar
Burgess S D, Muirhead J D, Bowring S A. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat Commun, 8: 164
Google Scholar
Burron I, da Costa G, Sharpe R, Fayek M, Gauert C, Hofmann A. 2018. 3.2 Ga detrital uraninite in the Witwatersrand Basin, South Africa: Evidence of a reducing Archean atmosphere. Geology, 46: 295–298
Google Scholar
Butterfield N J. 2018. Oxygen, animals and aquatic bioturbation: An updated account. Geobiology, 16: 3–16
Google Scholar
Campbell I H, Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci, 1: 554–558
Google Scholar
Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci, 33: 1–36
Google Scholar
Cardona T. 2019. Thinking twice about the evolution of photosynthesis. Open Biol, 9: 180246
Google Scholar
Cartigny P, Palot M, Thomassot E, Harris J W. 2014. Diamond formation: A stable isotope perspective. Annu Rev Earth Planet Sci, 42: 699–732
Google Scholar
Catling D C, Kasting J F. 2017. Long-Term Climate Evolution. In: Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge: Cambridge University Press. 299–326, doi: https://doi.org/10.1017/9781139020558
Google Scholar
Catling D C, Zahnle K J. 2020. The Archean atmosphere. Sci Adv, 6: eaax1420
Google Scholar
Catling D C, Zahnle K J, McKay C P. 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science, 293: 839–843
Google Scholar
Ceballos G, Ehrlich P R, Barnosky A D, García A, Pringle R M, Palmer T M. 2015. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci Adv, 1: e1400253
Google Scholar
Ceballos G, Ehrlich P R, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA, 114: E6089–E6096
Google Scholar
Chen B, Dong L, Liu X, Shi G Y, Chen L, Nakajima T, Habib A. 2016. Exploring the possible effect of anthropogenic heat release due to global energy consumption upon global climate: A climate model study. Int J Climatol, 36: 4790–4796
Google Scholar
Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi R K, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu Z, Nemani R R, Myneni R B. 2019. China and India lead in greening of the world through land-use management. Nat Sustain, 2: 122–129
Google Scholar
Chen J, Shen S, Li X, Xu Y, Joachimski M M, Bowring S A, Erwin D H, Yuan D, Chen B, Zhang H, Wang Y, Cao C, Zheng Q, Mu L. 2016. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 26–38
Google Scholar
Ciborowski T J R, Kerr A C. 2016. Did mantle plume magmatism help trigger the Great Oxidation Event? Lithos, 246–247: 128–133
Google Scholar
Clapham M E, Karr J A. 2012. Environmental and biotic controls on the evolutionary history of insect body size. Proc Natl Acad Sci USA, 109: 10927–10930
Google Scholar
Cole D B, Mills D B, Erwin D H, Sperling E A, Porter S M, Reinhard C T, Planavsky N J. 2020. On the co-evolution of surface oxygen levels and animals. Geobiology, 18: 260–281
Google Scholar
Colman A S, Mackenzie F T, Holland H D, Van Cappellen P, Ingall E D. 1997. Redox stabilization of the atmosphere and oceans and marine productivity. Science, 275: 406–408
Google Scholar
Condie K C. 2018. A planet in transition: The onset of plate tectonics on Earth between 3 and 2 Ga? GeoSci Front, 9: 51–60
Google Scholar
Cox G M, Lyons T W, Mitchell R N, Hasterok D, Gard M. 2018. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth Planet Sci Lett, 489: 28–36
Google Scholar
Crowe S A, Døssing L N, Beukes N J, Bau M, Kruger S J, Frei R, Canfield D E. 2013. Atmospheric oxygenation three billion years ago. Nature, 501: 535–538
Google Scholar
Crutzen P J. 2002. Geology of mankind. Nature, 415: 23
Google Scholar
Dart T, Gallo M, Beer J, Fischer J, Morgan T, Pilmanis A. 2017. Hyperoxia and hypoxic hypoxia effects on simple and choice reaction times. Aerospace Med Human Performance, 88: 1073–1080
Google Scholar
Dauphas N, Craddock P R, Asimow P D, Bennett V C, Nutman A P, Ohnenstetter D. 2009. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett, 288: 255–267
Google Scholar
de Aquino Lemos V, dos Santos R V T, Lira F S, Rodrigues B, Tufik S, de Mello M T. 2013. Can high altitude influence cytokines and sleep? Mediat Inflamm, 2013: 1–8
Google Scholar
DePalma R A, Smit J, Burnham D A, Kuiper K, Manning P L, Oleinik A, Larson P, Maurrasse F J, Vellekoop J, Richards M A, Gurche L, Alvarez W. 2019. A seismically induced onshore surge deposit at the KPg boundary, North Dakota. Proc Natl Acad Sci USA, 116: 8190–8199
Google Scholar
Diaz R J, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321: 926–929
Google Scholar
Duncan M S, Dasgupta R. 2017. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nat Geosci, 10: 387–392
Google Scholar
Eguchi J, Seales J, Dasgupta R. 2020. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nat Geosci, 13: 71–76
Google Scholar
Erwin D H. 2020. The origin of animal body plans: A view from fossil evidence and the regulatory genome. Development, 147: dev182899
Google Scholar
Erwin D H, Laflamme M, Tweedt S M, Sperling E A, Pisani D, Peterson K J. 2011. The cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334: 1091–1097
Google Scholar
Evans K A. 2012. The redox budget of subduction zones. Earth-Sci Rev, 113: 11–32
Google Scholar
Fan J X, Shen S Z, Erwin D H, Sadler P M, MacLeod N, Cheng Q M, Hou X D, Yang J, Wang X D, Wang Y, Zhang H, Chen X, Li G X, Zhang Y C, Shi Y K, Yuan D X, Chen Q, Zhang L N, Li C, Zhao Y Y. 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367: 272–277
Google Scholar
Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289: 756–758
Google Scholar
Farquhar J, Savarino J, Airieau S, Thiemens M H. 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere. J Geophys Res, 106: 32829–32839
Google Scholar
Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nat Commun, 8: 14845
Google Scholar
Gaillard F, Scaillet B, Arndt N T. 2011. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature, 478: 229–232
Google Scholar
Goffner D, Sinare H, Gordon L J. 2019. The Great Green Wall for the Sahara and the Sahel Initiative as an opportunity to enhance resilience in Sahelian landscapes and livelihoods. Reg Environ Change, 19: 1417–1428
Google Scholar
Gold D A, Caron A, Fournier G P, Summons R E. 2017. Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature, 543: 420–423
Google Scholar
Gulick S P S, Bralower T J, Ormö J, Hall B, Grice K, Schaefer B, Lyons S, Freeman K H, Morgan J V, Artemieva N, Kaskes P, de Graaff S J, Whalen M T, Collins G S, Tikoo S M, Verhagen C, Christeson G L, Claeys P, Coolen M J L, Goderis S, Goto K, Grieve R A F, McCall N, Osinski G R, Rae A S P, Riller U, Smit J, Vajda V, Wittmann A. 2019. The first day of the Cenozoic. Proc Natl Acad Sci USA, 116: 19342–19351
Google Scholar
Gumsley A P, Chamberlain K R, Bleeker W, Söderlund U, de Kock M O, Larsson E R, Bekker A. 2017. Timing and tempo of the Great Oxidation Event. Proc Natl Acad Sci USA, 114: 1811–1816
Google Scholar
Hayes J M, Waldbauer J R. 2006. The carbon cycle and associated redox processes through time. Phil Trans R Soc B, 361: 931–950
Google Scholar
Hazen R M, Papineau D, Bleeker W, Downs R T, Ferry J M, McCoy T J, Sverjensky D A, Yang H. 2008. Mineral evolution. Am Miner, 93: 1693–1720
Google Scholar
He Y, Meng X, Ke S, Wu H, Zhu C, Teng F Z, Hoefs J, Huang J, Yang W, Xu L, Hou Z, Ren Z Y, Li S. 2019. A nephelinitic component with unusual δ56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle. Earth Planet Sci Lett, 512: 175–183
Google Scholar
Herman J K, Ingermann R L. 1996. Effects of hypoxia and hyperoxia on oxygen-transfer properties of the blood of a viviparous snake. J Exp Biol, 199: 2061–2070
Google Scholar
Hinojosa J L, Brown S T, Chen J, DePaolo D J, Paytan A, Shen S, Payne J L. 2012. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology, 40: 743–746
Google Scholar
Hobkirk J P, Damy T, Walters M, Bennett A, Smith S J, Ingle L, Clark A L, Cleland J G F. 2013. Effects of reducing inspired oxygen concentration for one hour in patients with chronic heart failure: Implications for air travel. Eur J Heart Failure, 15: 505–510
Google Scholar
Holland H D. 1985. The chemical evolution of the atmosphere and oceans. Geol Mag, 122: 404–405
Google Scholar
Holland H D. 2009. Why the atmosphere became oxygenated: A proposal. GeoChim CosmoChim Acta, 73: 5241–5255
Google Scholar
Holland H D, Lazar B, McCaffrey M. 1986. Evolution of the atmosphere and oceans. Nature, 320: 27–33
Google Scholar
Hong L, Xu Y G, Zhang L, Wang Y, Ma L. 2020. Recycled carbonate-induced oxidization of the convective mantle beneath Jiaodong, Eastern China. Lithos, 366–367: 105544
Google Scholar
Hu Q, Kim D Y, Yang W, Yang L, Meng Y, Zhang L, Mao H K. 2016. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles. Nature, 534: 241–244
Google Scholar
Hu Y, Ding F. 2011. Radiative constraints on the habitability of exoplanets Gliese 581c and Gliese 581d. Astron Astrophys, 526: A135
Google Scholar
Hu Y, Yang J, Ding F, Peltier W R. 2011. Model-dependence of the CO2 threshold for melting the hard Snowball Earth. Clim Past, 7: 17–25
Google Scholar
Huang J, Yu H, Dai A, Wei Y, Kang L. 2017. Drylands face potential threat under 2°C global warming target. Nat Clim Change, 7: 417–422
Google Scholar
Huang J, Yu H, Guan X, Wang G, Guo R. 2016. Accelerated dryland expansion under climate change. Nat Clim Change, 6: 166–171
Google Scholar
Huang J, Huang J, Liu X, Li C, Ding L, Yu H. 2018. The global oxygen budget and its future projection. Sci Bull, 63: 1180–1186
Google Scholar
Huey R B, Ward P D. 2005. Hypoxia, global warming, and terrestrial late permian extinctions. Science, 308: 398–401
Google Scholar
IPCC. 2014. AR5 - Working Group 3, Mitigation of Climate Change-Contribution of Working Group III. Cambridge: Cambridge University Press
Google Scholar
Jin Y G, Wang Y, Wang W, Shang Q H, Cao C Q, Erwin D H. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289: 432–436
Google Scholar
Joachimski M M, Lai X, Shen S, Jiang H, Luo G, Chen B, Chen J, Sun Y. 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40: 195–198
Google Scholar
Kasting J F. 2013. What caused the rise of atmospheric O2? Chem Geol, 362: 13–25
Google Scholar
Kasting J F, Ackerman T P, Series N, Jan N. 1993. Earth’s Early atmosphere: Response. Science, 235: 2341–2343
Google Scholar
Kasting J F, Canfield D E. 2012. The Global Oxygen Cycle. In: Knoll A H, Canfield D E, Konhauser K O, eds. Fundamentals of Geobiology. John Wiley & Sons, Ltd, Chichester, UK. 93–104, doi: https://doi.org/10.1002/9781118280874.ch7
Google Scholar
Keeling R F, Manning A C. 2014. Studies of recent changes in atmospheric O2 Content. In: Treatise on Geochemistry. Elsevier. 385–404, doi: https://doi.org/10.1016/B978-0-08-095975-7.0042004
Keeling R F, Najjar R P, Bender M L, Tans P P. 1993. What atmospheric oxygen measurements can tell us about the global carbon cycle. Glob Biogeochem Cycle, 7: 37–67
Google Scholar
Keeling R F, Shertz S R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature, 358: 723–727
Google Scholar
Keller C B, Schoene B. 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature, 485: 490–493
Google Scholar
Kirschvink J L, Gaidos E J, Bertani L E, Beukes N J, Gutzmer J, Maepa L N, Steinberger R E. 2000. Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA, 97: 1400–1405
Google Scholar
Knoll A H, Bambach R K, Payne J L, Pruss S, Fischer W W. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett, 256: 295–313
Google Scholar
Knoll A H, Nowak M A. 2017. The timetable of evolution. Sci Adv, 3: e1603076
Google Scholar
Konhauser K O, Pecoits E, Lalonde S V, Papineau D, Nisbet E G, Barley M E, Arndt N T, Zahnle K, Kamber B S. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458: 750–753
Google Scholar
Krause A J, Mills B J W, Zhang S, Planavsky N J, Lenton T M, Poulton S W. 2018. Stepwise oxygenation of the Paleozoic atmosphere. Nat Commun, 9: 4081
Google Scholar
Kring D A. 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol, 255: 4–21
Google Scholar
Krissansen-Totton J, Buick R, Catling D C. 2015. A statistical analysis of the carbon isotope record from the Archean to phanerozoic and implications for the rise of oxygen. Am J Sci, 315: 275–316
Google Scholar
Kump L R. 2014. The Geochemistry of Mass Extinction. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Elsevier. 269–280, doi: https://doi.org/10.1016/B978-0-08-095975-7.01313-9
Kump L R, Barley M E. 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature, 448: 1033–1036
Google Scholar
Kump L R, Garrels R M. 1986. Modeling atmospheric O2 in the global sedimentary redox cycle. Am J Sci, 286: 337–360
Google Scholar
Laakso T A, Schrag D P. 2014. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet Sci Lett, 388: 81–91
Google Scholar
Laakso T A, Strauss J V, Peterson K J. 2020. Herbivory and its effect on Phanerozoic oxygen concentrations. Geology, 48: 410–414
Google Scholar
Laurance W F. 2019. The Anthropocene. Curr Biol, 29: R953–R954
Google Scholar
Le Quéré C, Andrew R M, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers P A, Korsbakken J I, Peters G P, Canadell J G, Arneth A, Arora V K, Barbero L, Bastos A, Bopp L, Chevallier F, Chini L P, Ciais P, Doney S C, Gkritzalis T, Goll D S, Harris I, Haverd V, Hoffman F M, Hoppema M, Houghton R A, Hurtt G, Ilyina T, Jain A K, Johannessen T, Jones C D, Kato E, Keeling R F, Goldewijk K K, Landschützer P, Lefèvre N, Lienert S, Liu Z, Lombardozzi D, Metzl N, Munro D R, Nabel J E M S, Nakaoka S, Neill C, Olsen A, Ono T, Patra P, Peregon A, Peters W, Peylin P, Pfeil B, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rocher M, Rödenbeck C, Schuster U, Schwinger J, Séférian R, Skjelvan I, Steinhoff T, Sutton A, Tans P P, Tian H, Tilbrook B, Tubiello F N, van der Laan-Luijkx I T, van der Werf G R, Viovy N, Walker A P, Wiltshire A J, Wright R, Zaehle S, Zheng B. 2018. Global carbon budget 2018. Earth Syst Sci Data, 10: 2141–2194
Google Scholar
Lee C T A, Yeung L Y, McKenzie N R, Yokoyama Y, Ozaki K, Lenardic A. 2016. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat Geosci, 9: 417–424
Google Scholar
Lee H, Muirhead J D, Fischer T P, Ebinger C J, Kattenhorn S A, Sharp Z D, Kianji G. 2016. Massive and prolonged deep carbon emissions associated with continental rifting. Nat Geosci, 9: 145–149
Google Scholar
Lenton T M, Dahl T W, Daines S J, Mills B J W, Ozaki K, Saltzman M R, Porada P. 2016. Earliest land plants created modern levels of atmospheric oxygen. Proc Natl Acad Sci USA, 113: 9704–9709
Google Scholar
Lenton T M, Held H, Kriegler E, Hall J W, Lucht W, Rahmstorf S, Schellnhuber H J. 2008. Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA, 105: 1786–1793
Google Scholar
Lewis S L, Maslin M A. 2015. Defining the Anthropocene. Nature, 519: 171–180
Google Scholar
Li C, Huang J, Ding L, Liu X, Yu H, Huang J. 2020. Increasing escape of oxygen from oceans under climate change. Geophys Res Lett, 47: e86345
Google Scholar
Liu H, Zartman R E, Ireland T R, Sun W D. 2019. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks. Proc Natl Acad Sci USA, 116: 18854–18859
Google Scholar
Liu X, Huang J, Huang J, Li C, Ding L, Meng W. 2020. Estimation of gridded atmospheric oxygen consumption from 1975 to 2018. J Meteorol Res, 34: 646–658
Google Scholar
Livina V N, Vaz Martins T M, Forbes A B. 2015. Tipping point analysis of atmospheric oxygen concentration. Chaos, 25: 036403
Google Scholar
Lueker T J, Keeling R F, Dubey M K. 2001. The oxygen to carbon dioxide ratios observed in emissions from a wildfire in northern California. Geophys Res Lett, 28: 2413–2416
Google Scholar
Luo G, Ono S, Beukes N J, Wang D T, Xie S, Summons R E. 2016. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv, 2: e1600134
Google Scholar
Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315
Google Scholar
Machta L, Hughes E. 1970. Atmospheric oxygen in 1967 to 1970. Science, 168: 1582–1584
Google Scholar
Manning A C, Keeling R F. 2006. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B-Chem Phys Meteor, 58: 95–116
Google Scholar
Mao H K, Hu Q, Yang L, Liu J, Kim D Y, Meng Y, Zhang L, Prakapenka V B, Yang W, Mao W L. 2017. When water meets iron at Earth’s core-mantle boundary. Natl Sci Rev, 4: 870–878
Google Scholar
Martin D, McKenna H, Livina V. 2017. The human physiological impact of global deoxygenation. J Physiol Sci, 67: 97–106
Google Scholar
McCormick L R, Levin L A, Oesch N W. 2019. Vision is highly sensitive to oxygen availability in marine invertebrate larvae. J Exp Biol, 222: jeb200899
Google Scholar
Minejima C, Kubo M, Tohjima Y, Yamagishi H, Koyama Y, Maksyutov S, Kita K, Mukai H. 2012. Analysis of ΔO2/ΔCO2 ratios for the pollution events observed at Hateruma Island, Japan. Atmos Chem Phys, 12: 2713–2723
Google Scholar
Morris S C. 1993. The fossil record and the early evolution of the Metazoa. Nature, 361: 219–225
Google Scholar
Nicklas R W, Puchtel I S, Ash R D, Piccoli P M, Hanski E, Nisbet E G, Waterton P, Pearson D G, Anbar A D. 2019. Secular mantle oxidation across the Archean-Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. GeoChim CosmoChim Acta, 250: 49–75
Google Scholar
Nowak D J, Hoehn R, Crane D E. 2007. Oxygen production by urban trees in the United States. Arboric Urban For, 33: 220–226
Google Scholar
Nursall J R. 1959. Oxygen as a prerequisite to the origin of the metazoa. Nature, 183: 1170–1172
Google Scholar
Och L M, Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci Rev, 110: 26–57
Google Scholar
Olson S L, Ostrander C M, Gregory D D, Roy M, Anbar A D, Lyons T W. 2019. Volcanically modulated pyrite burial and ocean-atmosphere oxidation. Earth Planet Sci Lett, 506: 417–427
Google Scholar
Oschlies A, Brandt P, Stramma L, Schmidtko S. 2018. Drivers and mechanisms of ocean deoxygenation. Nat Geosci, 11: 467–473
Google Scholar
Overpeck J T, Cole J E. 2006. Abrupt change in Earth’s climate system. Annu Rev Environ Resour, 31: 1–31
Google Scholar
Pavlov A A, Kasting J F. 2002. Mass-independent fractionation of sulfur isotopes in archean sediments: Strong evidence for an anoxic archean atmosphere. Astrobiology, 2: 27–41
Google Scholar
Payne J L, Boyer A G, Brown J H, Finnegan S, Kowalewski M, Krause R A, Lyons S K, McClain C R, McShea D W, Novack-Gottshall P M, Smith F A, Stempien J A, Wang S C. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci USA, 106: 24–27
Google Scholar
Payne J L, McClain C R, Boyer A G, Brown J H, Finnegan S, Kowalewski M, Krause Jr. R A, Lyons S K, McShea D W, Novack-Gottshall P M, Smith F A, Spaeth P, Stempien J A, Wang S C. 2011. The evolutionary consequences of oxygenic photosynthesis: A body size perspective. Photosynth Res, 107: 37–57
Google Scholar
Petsch S T. 2014a. The Global Oxygen Cycle. In: Treatise on Geochemistry. Elsevier. 437–473, doi: https://doi.org/10.1016/B978-0-08-095975-7.00811-1
Petsch S T. 2014b. Weathering of Organic Carbon. In: Treatise on Geochemistry. Elsevier. 217–238, doi: https://doi.org/10.1016/B978-0-08-095975-7.01013-5
Pierazzo E, Kring D A, Melosh H J. 1998. Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J Geophys Res, 103: 28607–28625
Google Scholar
Planavsky N J, Asael D, Hofmann A, Reinhard C T, Lalonde S V, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith A J B, Beukes N J, Bekker A, Johnson T M, Konhauser K O, Lyons T W, Rouxel O J. 2014. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci, 7: 283–286
Google Scholar
Pörtner H O, Peck M A. 2010. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J Fish Biol, 77: 1745–1779
Google Scholar
Poulsen C J, Tabor C, White J D. 2015. Long-term climate forcing by atmospheric oxygen concentrations. Science, 348: 1238–1241
Google Scholar
Prince E D, Goodyear C P. 2006. Hypoxia-based habitat compression of tropical pelagic fishes. Fisheries Oceanogr, 15: 451–464
Google Scholar
Rasmussen B, Buick R. 1999. Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology, 27: 115
Google Scholar
Raymond J, Segrè D. 2006. The effect of oxygen on biochemical networks and the evolution of complex life. Science, 311: 1764–1767
Google Scholar
Reinhard C T, Fischer W W. 2019. Mechanistic links between the sedimentary redox cycle and marine acid-base chemistry. Geochem Geophys Geosyst, 20: 5968–5978
Google Scholar
Reinhard C T, Planavsky N J, Olson S L, Lyons T W, Erwin D H. 2016. Earth’s oxygen cycle and the evolution of animal life. Proc Natl Acad Sci USA, 113: 8933–8938
Google Scholar
Renne P R, Sprain C J, Richards M A, Self S, Vanderkluysen L, Pande K. 2015. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, 350: 76–78
Google Scholar
Robertson D S, McKenna M C, Toon O B, Hope S, Lillegraven J A. 2004. Survival in the first hours of the Cenozoic. Geo Soc Am Bull, 116: 760
Google Scholar
Rogner H H, Aguilera R F, Archer C L, Bertani R, Bhattacharya S C, Dusseault M B, Gagnon L, Haberl H., Hoogwijk M, Johnson A, Rogner M L, Wagner H, Yakushev V, Arent D J, Bryden I, Krausmann F, Odell P, Schillings C, Shafiei A. 2012. Chapter 7 - Energy resources and potentials. In: Team G E A W, ed. Global Energy Assessment—Toward a Sustainable Future. Cambridge University Press and IIASA. 423–512, doi: https://doi.org/10.13140/RG.2.1.3049.8724
Rosing M T, Frei R. 2004. U-rich Archaean sea-floor sediments from Greenland—Indications of >3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett, 217: 237–244
Google Scholar
Ruddiman W F. 2018. Three flaws in defining a formal ‘Anthropocene’. Prog Phys Geography-Earth Environ, 42: 451–461
Google Scholar
Rutten M G. 1966. Geologic data on atmospheric history. Palaeogeogr Palaeoclimatol Palaeoecol, 2: 47–57
Google Scholar
Rye R, Holland H D. 1998. Paleosols and the evolution of atmospheric oxygen: A critical review. Am J Sci, 298: 621–672
Google Scholar
Sahoo S K, Planavsky N J, Jiang G, Kendall B, Owens J D, Wang X, Shi X, Anbar A D, Lyons T W. 2016. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology, 14: 457–468
Google Scholar
Schimel D S. 1995. Terrestrial ecosystems and the carbon cycle. Glob Change Biol, 1: 77–91
Google Scholar
Schmidtko S, Stramma L, Visbeck M. 2017. Decline in global oceanic oxygen content during the past five decades. Nature, 542: 335–339
Google Scholar
Schoene B, Eddy M P, Samperton K M, Keller C B, Keller G, Adatte T, Khadri S F R. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363: 862–866
Google Scholar
Schoene B, Eddy M P, Samperton K M, Keller C B, Keller G, Adatte T, Khadri S F R. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363: 862–866
Google Scholar
Schulte P, Alegret L, Arenillas I, Arz J A, Barton P J, Bown P R, Bralower T J, Christeson G L, Claeys P, Cockell C S, Collins G S, Deutsch A, Goldin T J, Goto K, Grajales-Nishimura J M, Grieve R A F, Gulick S P S, Johnson K R, Kiessling W, Koeberl C, Kring D A, MacLeod K G, Matsui T, Melosh J, Montanari A, Morgan J V, Neal C R, Nichols D J, Norris R D, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold W U, Robin E, Salge T, Speijer R P, Sweet A R, Urrutia-Fucugauchi J, Vajda V, Whalen M T, Willumsen P S. 2010. The Chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science, 327: 1214–1218
Google Scholar
Schulte P, Deutsch A, Salge T, Berndt J, Kontny A, MacLeod K G, Neuser R D, Krumm S. 2009. A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous-Paleogene (K-Pg) boundary, Demerara Rise, western Atlantic. GeoChim CosmoChim Acta, 73: 1180–1204
Google Scholar
Seibel B A. 2011. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J Exp Biol, 214: 326–336
Google Scholar
Severinghaus J P, Broecker W S, Dempster W F, MacCallum T, Wahlen M. 1994. Oxygen loss in biosphere 2. Eos Trans AGU, 75: 33–37
Google Scholar
Shaffer G, Olsen S M, Pedersen J O P. 2009. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels. Nat Geosci, 2: 105–109
Google Scholar
Shen S, Crowley J L, Wang Y, Bowring S A, Erwin D H, Sadler P M, Cao C, Rothman D H, Henderson C M, Ramezani J, Zhang H, Shen Y, Wang X, Wang W, Mu L, Li W, Tang Y, Liu X, Liu L, Zeng Y, Jiang Y, Jin Y. 2011. Calibrating the end-permian mass extinction. Science, 334: 1367–1372
Google Scholar
Shen S Z, Zhang H. 2017. What caused the five mass extinctions? (in Chinese). Chin Sci Bull, 62: 1119–1135
Google Scholar
Shen S Z, Ramezani J, Chen J, Cao C Q, Erwin D H, Zhang H, Xiang L, Schoepfer S D, Henderson C M, Zheng Q F, Bowring S A, Wang Y, Li X H, Wang X D, Yuan D X, Zhang Y C, Mu L, Wang J, Wu Y S. 2019. A sudden end-Permian mass extinction in South China. GSA Bull, 131: 205–223
Google Scholar
Shepherd J G, Brewer P G, Oschlies A, Watson A J. 2017. Ocean ventilation and deoxygenation in a warming world: Introduction and overview. Phil Trans R Soc A, 375: 20170240
Google Scholar
Shi P, Chen Y, Zhang A, He Y, Gao M, Yang J, Mao R, Wu J, Ye T, Xiao C, Xu B. 2019. Factors contribution to oxygen concentration in Qinghai-Tibetan Plateau (in Chinese). Chin Sci Bull, 64: 715–724
Google Scholar
Shields G A, Mills B J W, Zhu M, Raub T D, Daines S J, Lenton T M. 2019. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nat Geosci, 12: 823–827
Google Scholar
Shonting D, Ezrailson C. 2017. A Scenario for the Chicxulub Impact and Energies. In: Chicxulub: The Impact and Tsunami. Springer International Publishing, Cham. 43–68, doi: https://doi.org/10.1007/978-3-319-39487-9_3
Google Scholar
Shu D. 2008. Cambrian explosion: Birth of tree of animals. Gondwana Res, 14: 219–240
Google Scholar
Shu D G, Conway Morris S, Zhang Z F, Han J. 2010. The earliest history of the deuterostomes: The importance of the Chengjiang Fossil-Lagerstätte. Proc R Soc B, 277: 165–174
Google Scholar
Smit M A, Mezger K. 2017. Earth’s early O2 cycle suppressed by primitive continents. Nat Geosci, 10: 788–792
Google Scholar
Smith F A, Payne J L, Heim N A, Balk M A, Finnegan S, Kowalewski M, Lyons S K, McClain C R, McShea D W, Novack-Gottshall P M, Anich P S, Wang S C. 2016. Body size evolution across the geozoic. Annu Rev Earth Planet Sci, 44: 523–553
Google Scholar
Soo R M, Hemp J, Parks D H, Fischer W W, Hugenholtz P. 2017. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science, 355: 1436–1440
Google Scholar
Sprain C J, Renne P R, Vanderkluysen L, Pande K, Self S, Mittal T. 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 363: 866–870
Google Scholar
Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. 2015. The trajectory of the Anthropocene: The great acceleration. Anthropocene Rev, 2: 81–98
Google Scholar
Steffen W, Rockström J, Richardson K, Lenton T M, Folke C, Liverman D, Summerhayes C P, Barnosky A D, Cornell S E, Crucifix M, Donges J F, Fetzer I, Lade S J, Scheffer M, Winkelmann R, Schellnhuber H J. 2018. Trajectories of the Earth system in the Anthropocene. Proc Natl Acad Sci USA, 115: 8252–8259
Google Scholar
Stolper D A, Bender M L, Dreyfus G B, Yan Y, Higgins J A. 2016. A Pleistocene ice core record of atmospheric O2 concentrations. Science, 353: 1427–1430
Google Scholar
Sun Y, Joachimski M M, Wignall P B, Yan C, Chen Y, Jiang H, Wang L, Lai X. 2012. Lethally hot temperatures during the early triassic greenhouse. Science, 338: 366–370
Google Scholar
Vellekoop J, Woelders L, van Helmond N A G M, Galeotti S, Smit J, Slomp C P, Brinkhuis H, Claeys P, Speijer R P. 2018. Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact. Geology, 46: 683–686
Google Scholar
Vingrys A J, Garner L F. 1987. The effect of a moderate level of hypoxia on human color vision. Doc Ophthalmol, 66: 171–185
Google Scholar
Wade D C, Abraham N L, Farnsworth A, Valdes P J, Bragg F, Archibald A T. 2019. Simulating the climate response to atmospheric oxygen variability in the Phanerozoic: A focus on the Holocene, Cretaceous and Permian. Clim Past, 15: 1463–1483
Google Scholar
Wang M, Yan G, Yu L, Xie W, Dai Y. 2019. Effects of different artificial oxygen-supply systems on migrants’ physical and psychological reactions in high-altitude tunnel construction. Building Environ, 149: 458–467
Google Scholar
Waters C N, Zalasiewicz J, Summerhayes C, Barnosky A D, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis E C, Ellis M, Jeandel C, Leinfelder R, McNeill J R, Richter D B, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, Grinevald J, Odada E, Oreskes N, Wolfe A P. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351: aad2622
Google Scholar
Wishner K F, Seibel B A, Roman C, Deutsch C, Outram D, Shaw C T, Birk M A, Mislan K A S, Adams T J, Moore D, Riley S. 2018. Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci Adv, 4: eaau5180
Google Scholar
Xiang L, Zhang H, Schoepfer S D, Cao C, Zheng Q, Yuan D, Cai Y, Shen S. 2020. Oceanic redox evolution around the end-Permian mass extinction at Meishan, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 544: 109626
Google Scholar
Yang D, Guo X, Xie T, Luo X. 2018. Reactive oxygen species may play an essential role in driving biological evolution: The Cambrian Explosion as an example. J Environ Sci, 63: 218–226
Google Scholar
Zahnle K, Claire M, Catling D. 2006. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology, 4: 271–283
Google Scholar
Zahnle K J, Catling D C, Claire M W. 2013. The rise of oxygen and the hydrogen hourglass. Chem Geol, 362: 26–34
Google Scholar
Zamudio S, Postigo L, Illsley N P, Rodriguez C, Heredia G, Brimacombe M, Echalar L, Torricos T, Tellez W, Maldonado I, Balanza E, Alvarez T, Ameller J, Vargas E. 2007. Maternal oxygen delivery is not related to altitude- and ancestry-associated differences in human fetal growth. J Physiol, 582: 883–895
Google Scholar
Zeebe R E, Ridgwell A, Zachos J C. 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat Geosci, 9: 325–329
Google Scholar
Zhang F, Dahl T W, Lenton T M, Luo G, Shen S, Algeo T J, Planavsky N, Liu J, Cui Y, Qie W, Romaniello S J, Anbar A D. 2020. Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis. Earth Planet Sci Lett, 533: 115976
Google Scholar
Zhang F, Romaniello S J, Algeo T J, Lau K V, Clapham M E, Richoz S, Herrmann A D, Smith H, Horacek M, Anbar A D. 2018. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci Adv, 4: e1602921
Google Scholar
Zhang F, Shen S, Cui Y, Lenton T M, Dahl T W, Zhang H, Zheng Q, Wang W, Krainer K, Anbar A D. 2020. Two distinct episodes of marine anoxia during the Permian-Triassic crisis evidenced by uranium isotopes in marine dolostones. GeoChim CosmoChim Acta, 287: 165–179
Google Scholar
Zhang X L, Shu D G. 2014. Causes and consequences of the Cambrian explosion. Sci China Earth Sci, 57: 930–942
Google Scholar
Zimmer C. 2013. The Mystery of Earth’s Oxygen. New York Times. URL https://www.nytimes.com/2013/10/03/science/earths-oxygen-a-mystery-easy-to-take-for-granted.html (accessed 2.22.20)