Skip to main content

In situ cosmogenic 10Be, 26Al, and 21Ne dating in sediments from the Guizhou Plateau, southwest China

Abstract

Landscape evolution is modulated by the regional tectonic uplift, climate change, and river dynamics. However, how to distinguish these mechanisms through the research of surface exhumation and fluvial incision remains controversial. In this study, cosmogenic 10Be, 26Al, and 21Ne concentrations in quartz from cave deposits, modern river sediments, and bedrocks were measured to constrain the applicability of cosmogenic 21Ne and discuss Quaternary landscape evolution history in the Guizhou Plateau, southeast China. Using the 26Al-10Be and 21Ne-10Be pairs to distinguish the cosmogenic 21Ne concentration from the excess 21Ne, we found that the nucleogenic 21Ne produced by the U and Th decay in quartz is significant in the samples although there is the possibility of inherited cosmogenic 21Ne. Combining with previous studies, we suggest that the precise approach for applying the cosmogenic 21Ne could be reached by (1) estimating the contribution from nucleogenic 21Ne, (2) avoiding samples with complex burial histories to exclude inherited cosmogenic 21Ne, and (3) combining the 10Be-26Al-21Ne nuclides method for the Quaternary samples. In addition, both pre-burial basin denudation rates and burial ages derived from the 26Al-10Be pair were used to determine the different timescale surface denudation rate and fluvial incision rate in relation to previous work. The consistency of the different timescales pre-burial basin denudation rate, 36Cl surface denudation rate, and modern basin denudation rate indicates that the landscape-scale surface denudation has been likely stabilized since the Quaternary in the Guizhou Plateau area. The slightly higher river incision rates than the local surface denudation rate show that the river dynamics may not have reached a steady-state due to the regional tectonic uplift in the Guizhou Plateau.

References

  1. Balco G. 2017. Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data. Quat-Geochronol, 39: 150–173

    Article  Google Scholar 

  2. Balco G, Blard P H, Shuster D L, Stone J O H, Zimmermann L. 2019. Cosmogenic and nucleogenic 21Ne in quartz in a 28-meter sandstone core from the McMurdo Dry Valleys, Antarctica. Quat Geochronol, 52: 63–76

    Article  Google Scholar 

  3. Balco G, Rovey C W. 2008. An isochron method for cosmogenic-nuclide dating of buried soils and sediments. Am J Sci, 308: 1083–1114

    Article  Google Scholar 

  4. Balco G, Shuster D L. 2009a. 26Al-10Be-21Ne burial dating. Earth Planet Sci Lett, 286: 570–575

    Article  Google Scholar 

  5. Balco G, Shuster D L. 2009b. Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces. Earth Planet Sci Lett, 281: 48–58

    Article  Google Scholar 

  6. Balter-Kennedy A, Bromley G, Balco G, Thomas H, Jackson M S. 2020. A 14.5-million-year record of East Antarctic ice sheet fluctuations from the central transantarctic mountains, constrained with cosmogenic 3He, 10Be, 21Ne, and 26Al. Cryosphere, 14: 2647–2672

    Article  Google Scholar 

  7. Ben-Israel M, Matmon A, Haviv I, Niedermann S. 2018. Applying stable cosmogenic 21Ne to understand surface processes in deep geological time (107-108 yr). Earth Planet Sci Lett, 498: 266–274

    Article  Google Scholar 

  8. Ben-Israel M, Matmon A, Hidy A J, Avni Y, Balco G. 2020. Early-to-mid Miocene erosion rates inferred from pre-Dead Sea rift Hazeva River fluvial chert pebbles using cosmogenic 21Ne. Earth Surf Dynam, 8: 289–301

    Article  Google Scholar 

  9. Borchers B, Marrero S, Balco G, Caffee M, Goehring B, Lifton N, Nishiizumi K, Phillips F, Schaefer J, Stone J. 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat Geochronol, 31: 188–198

    Article  Google Scholar 

  10. Chmeleff J, von Blanckenburg F, Kossert K, Jakob D. 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl Instrum Meth Phys Res Sect B-Beam Interact Mater Atoms, 268: 192–199

    Article  Google Scholar 

  11. Clark M K, House M A, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33: 525–528

    Article  Google Scholar 

  12. Clark M K, Schoenbohm L M, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W, Wang E, Chen L. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23: TC1006

    Article  Google Scholar 

  13. Codilean A T, Bishop P, Stuart F M, Hoey T B, Fabel D, Freeman S P H T. 2008. Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates. Geology, 36: 159–162

    Article  Google Scholar 

  14. Cox S E, Farley K A, Cherniak D J. 2015. Direct measurement of neon production rates by (α, n) reactions in minerals. Geochim Cosmochim Acta, 148: 130–144

    Article  Google Scholar 

  15. Davis M, Matmon A, Fink D, Ron H, Niedermann S. 2011. Dating Pliocene lacustrine sediments in the central Jordan Valley, Israel—Implications for cosmogenic burial dating. Earth Planet Sci Lett, 305: 317–327

    Article  Google Scholar 

  16. Dunai T J. 2010. Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge: Cambridge University Press

    Book  Google Scholar 

  17. Eberhardt P, Eugster O, Marti K. 1965. Notizen: A redetermination of the isotopic composition of atmospheric Neon. Zeitschrift für Naturforschung A, 20: 623–624

    Article  Google Scholar 

  18. Fernandez-Mosquera D, Marti H, Hahm D, Vidal-Romani J, Braucher R, Bourlès D. 2008. Muon produced neon in quartz at large depths: BeNe project progress report. Geochim Cosmochim Acta, 72: A265

    Google Scholar 

  19. Fujioka T, Chappell J, Honda M, Yatsevich I, Fifield K, Fabel D. 2005. Global cooling initiated stony deserts in central Australia 2–4 Ma, dated by cosmogenic 21Ne-10Be. Geology, 33: 993–996

    Article  Google Scholar 

  20. Gosse J C, Phillips F M. 2001. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat Sci Rev, 20: 1475–1560

    Article  Google Scholar 

  21. Graf A A, Strasky S, Ivy-Ochs S, Akçar N, Kubik P W, Burkhard M, Schlüchter C. 2007. First results of cosmogenic dated pre-Last Glaciation erratics from the Montoz area, Jura Mountains, Switzerland. Quat Int, 164–165: 43–52

    Article  Google Scholar 

  22. Granger D E, Muzikar P F. 2001. Dating sediment burial with in situ-produced cosmogenic nuclides: Theory, techniques, and limitations. Earth Planet Sci Lett, 188: 269–281

    Article  Google Scholar 

  23. Han G, Liu C Q. 2004. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem Geol, 204: 1–21

    Article  Google Scholar 

  24. Heber V S, Wieler R, Baur H, Olinger C, Friedmann T A, Burnett D S. 2009. Noble gas composition of the solar wind as collected by the Genesis mission. Geochim Cosmochim Acta, 73: 7414–7432

    Article  Google Scholar 

  25. Hetzel R, Niedermann S, Ivy-Ochs S, Kubik P W, Tao M, Gao B. 2002. 21Ne versus 10Be and 26Al exposure ages of fluvial terraces: The influence of crustal Ne in quartz. Earth Planet Sci Lett, 201: 575–591

    Article  Google Scholar 

  26. Hu R Z, Zhou M F. 2012. Multiple Mesozoic mineralization events in South China—An introduction to the thematic issue. Miner Depos, 47: 579–588

    Article  Google Scholar 

  27. Kober F, Alfimov V, Ivy-Ochs S, Kubik P W, Wieler R. 2011. The cosmogenic 21Ne production rate in quartz evaluated on a large set of existing 21Ne-10Be data. Earth Planet Sci Lett, 302: 163–171

    Article  Google Scholar 

  28. Kohl C P, Nishiizumi K. 1992. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim Cosmochim Acta, 56: 3583–3587

    Article  Google Scholar 

  29. Korschinek G, Bergmaier A, Faestermann T, Gerstmann U C, Knie K, Rugel G, Wallner A, Dillmann I, Dollinger G, von Gostomski C L, Kossert K, Maiti M, Poutivtsev M, Remmert A. 2010. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl Instrum Meth Phys Res Sect B-Beam Interact Mater Atoms, 268: 187–191

    Article  Google Scholar 

  30. Lal D. 1991. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet Sci Lett, 104: 424–439

    Article  Google Scholar 

  31. Liu Y, Wang S J, Liu X M, Xu S, Fabel D, Luo W J. 2013a. Cosmogenic nuclides 26Al and 10Be burial age of Black Cave sediments, Libo of Guizhou, China. Quat Sci, 33: 437–444

    Google Scholar 

  32. Liu Y, Wang S, Xu S, Liu X, Fabel D, Zhang X, Luo W, Cheng A. 2013b. New evidence for the incision history of the Liuchong River, Southwest China, from cosmogenic 26Al/10Be burial ages in cave sediments. Asian Earth Sci, 73: 274–283

    Article  Google Scholar 

  33. Liu-Zeng, Tapponnier P, Gaudemer Y, Ding L. 2008. Quantifying landscape differences across the Tibetan Plateau: Implications for topographic relief evolution. J Geophys Res, 113: F04018

    Google Scholar 

  34. Ma Y, Stuart F M. 2018. The use of in-situ cosmogenic 21Ne in studies on long-term landscape development. Acta Geochim, 37: 310–322

    Article  Google Scholar 

  35. Ma Y, Wang W, Zheng D, Zhang H, Pang J, Wu Y, Stuart F M, Xu S. 2018. Mid-Miocene cosmogenic upper limit for 10Be/21Ne burial age. Quat Geochronol, 48: 72–79

    Article  Google Scholar 

  36. Ma Y, Wu Y, Li D, Zheng D, Zheng W, Zhang H, Pang J, Wang Y. 2016. Erosion rate in the Shapotou area, northwestern China, constrained by in situ-produced cosmogenic 21Ne in long-exposed erosional surfaces. Quat Geochronol, 31: 3–11

    Article  Google Scholar 

  37. Matmon A, Fink D, Davis M, Niedermann S, Rood D, Frumkin A. 2014. Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quat Res, 82: 281–295

    Article  Google Scholar 

  38. McPhillips D, Hoke G D, Liu-Zeng J, Bierman P R, Rood D H, Niedermann S. 2016. Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages. Geophys Res Lett, 43: 101–110

    Article  Google Scholar 

  39. Middleton J L, Ackert Jr. R P, Mukhopadhyay S. 2012. Pothole and channel system formation in the McMurdo Dry Valleys of Antarctica: New insights from cosmogenic nuclides. Earth Planet Sci Lett, 355–356: 341–350

    Article  Google Scholar 

  40. Niedermann S. 2002. Cosmic-ray-produced noble gases in terrestrial rocks: Dating tools for surface processes. Rev Mineral Geochem, 47: 731–784

    Article  Google Scholar 

  41. Nishiizumi K. 2004. Preparation of 26Al AMS standards. Nucl Instrum Meth Phys Res Sect B-Beam Interact Mater Atoms, 223–224: 388–392

    Article  Google Scholar 

  42. Phillips W M, McDonald E V, Reneau S L, Poths J. 1998. Dating soils and alluvium with cosmogenic 21Ne depth profiles: Case studies from the Pajarito Plateau, New Mexico, USA. Earth Planet Sci Lett, 160: 209–223

    Article  Google Scholar 

  43. Sartégou A, Bourlès D L, Blard P H, Braucher R, Tibari B, Zimmermann L, Leanni L, Aumaître G, Keddadouche K. 2018. Deciphering landscape evolution with karstic networks: A Pyrenean case study. Quat Geochronol, 43: 12–29

    Article  Google Scholar 

  44. Schäfer J M, Tschudi S, Zhao Z, Wu X, Ivy-Ochs S, Wieler R, Baur H, Kubik P W, Schlüchter C. 2002. The limited influence of glaciations in Tibet on global climate over the past 170,000 yr. Earth Planet Sci Lett, 194: 287–297

    Article  Google Scholar 

  45. Shuster D L, Farley K A. 2005. Diffusion kinetics of proton-induced 21Ne, 3He, and 4He in quartz. Geochim Cosmochim Acta, 69: 2349–2359

    Article  Google Scholar 

  46. Smart P L, Waltham A C, Yang M, Zhang Y. 1985. Karst Geomorphology of Western Guizhou, China. Cave Sci, 13: 89–104

    Google Scholar 

  47. Stone J O. 2000. Air pressure and cosmogenic isotope production. J Geophys Res-Solid Earth, 105: 23753–23759

    Article  Google Scholar 

  48. Strasky S, Graf A A, Zhao Z, Kubik P W, Baur H, Schlüchter C, Wieler R. 2009. Late Glacial ice advances in southeast Tibet. J Asian Earth Sci, 34: 458–465

    Article  Google Scholar 

  49. Vermeesch P, Balco G, Blard P H, Dunai T J, Kober F, Niedermann S, Shuster D L, Strasky S, Stuart F M, Wieler R, Zimmermann L. 2015. Interlaboratory comparison of cosmogenic 21Ne in quartz. Quat Geochronol, 26: 20–28

    Article  Google Scholar 

  50. Xu S, Liu C Q, Freeman S, Lang Y C, Schnabel C, Tu C L, Wilcken K, Zhao Z Q. 2013. In-situ cosmogenic 36Cl denudation rates of carbonates in Guizhou karst area. Chin Sci Bull, 58: 2473–2479

    Article  Google Scholar 

  51. Xu Z, Liu C Q. 2010. Water geochemistry of the Xijiang basin rivers, South China: Chemical weathering and CO2 consumption. Appl Geochem, 25: 1603–1614

    Article  Google Scholar 

  52. Yang Y, Lang Y C, Xu S, Liu C Q, Cui L F, Freeman S P H T, Wilcken K M. 2020. Combined unsteady denudation and climatic gradient factors constrain carbonate landscape evolution: New insights from in situ cosmogenic 36Cl. Quat Geochronol, 58: 101075

    Article  Google Scholar 

  53. Yang Y, Liu C Q, Van der Woerd J, Xu S, Cui L F, Zhao Z Q, Wang Q L, Jia G D, Chabaux F. 2019. New constraints on the late Quaternary landscape evolution of the eastern Tibetan Plateau from 10Be and 26Al in-situ cosmogenic nuclides. Quat Sci Rev, 220: 244–262

    Article  Google Scholar 

Download references

Acknowledgements

Constructive comments by responsible editor and two anonymous reviewers significantly improved the paper. We are grateful to Dr L. Di Nicola for help in the Ne isotope measurement. This work was supported by the National Natural Science Foundation of China (Grant No. 41930642).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sheng Xu or Cong-Qiang Liu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, Y., Ma, Y. et al. In situ cosmogenic 10Be, 26Al, and 21Ne dating in sediments from the Guizhou Plateau, southwest China. Sci. China Earth Sci. 64, 1305–1317 (2021). https://doi.org/10.1007/s11430-020-9744-6

Download citation

Keywords

  • Cosmogenic 10Be-26Al-21Ne
  • Burial dating
  • Incision rate
  • Landscape evolution
  • Guizhou Plateau