Skip to main content

Could CMIP6 climate models reproduce the early-2000s global warming slowdown?

Abstract

The unexpected global warming slowdown during 1998–2013 challenges the existing scientific understanding of global temperature change mechanisms, and thus the simulation and prediction ability of state-of-the-art climate models since most models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) cannot simulate it. Here, we examine whether the new-generation climate models in CMIP6 can reproduce the recent global warming slowdown, and further evaluate their capacities for simulating key-scale natural variabilities which are the most likely causes of the slowdown. The results show that although the CMIP6 models present some encouraging improvements when compared with CMIP5, most of them still fail to reproduce the warming slowdown. They considerably overestimate the warming rate observed in 1998–2013, exhibiting an obvious warming acceleration rather than the observed deceleration. This is probably associated with their deficiencies in simulating the distinct temperature change signals from the human-induced long-term warming trend and or the three crucial natural variabilities at interannual, interdecadal, and multidecadal scales. In contrast, the 4 models that can successfully reproduce the slowdown show relatively high skills in simulating the long-term warming trend and the three key-scale natural variabilities. Our work may provide important insight for the simulation and prediction of near-term climate changes.

This is a preview of subscription content, access via your institution.

References

  • Banholzer S, Donner S. 2014. The influence of different El Niño types on global average temperature. Geophys Res Lett, 41: 2093–2099

    Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J. 2014. ENSO representation in climate models: From CMIP3 to CMIP5. Clim Dyn, 42: 1999–2018

    Google Scholar 

  • Chen X, Tung K K. 2014. Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345: 897–903

    Google Scholar 

  • Chen X, Tung K K. 2018a. Global-mean surface temperature variability: Space-time perspective from rotated EOFs. Clim Dyn, 51: 1719–1732

    Google Scholar 

  • Chen X, Tung K K. 2018b. Global surface warming enhanced by weak Atlantic overturning circulation. Nature, 559: 387–391

    Google Scholar 

  • Cheng L, Wang G, Abraham J, Huang G. 2018. Decadal ocean heat redistribution since the late 1990s and its association with key climate modes. Climate, 6: 91

    Google Scholar 

  • Cowtan K, Way R G. 2014. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. QJR Meteorol Soc, 140: 1935–1944

    Google Scholar 

  • Dai A, Fyfe J C, Xie S P, Dai X. 2015. Decadal modulation of global surface temperature by internal climate variability. Nat Clim Change, 5: 555–559

    Google Scholar 

  • England M H, McGregor S, Spence P, Meehl G A, Timmermann A, Cai W, Gupta A S, McPhaden M J, Purich A, Santoso A. 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change, 4: 222–227

    Google Scholar 

  • Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J, Taylor K E. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev, 9: 1937–1958

    Google Scholar 

  • Fyfe J C, Gillett N P, Zwiers F W. 2013. Overestimated global warming over the past 20 years. Nat Clim Change, 3: 767–769

    Google Scholar 

  • Gong H, Wang L, Chen W, Chen X, Nath D. 2017. Biases of the wintertime Arctic Oscillation in CMIP5 models. Environ Res Lett, 12: 014001

    Google Scholar 

  • Gong H, Wang L, Chen W, Wu R. 2019. Time-varying contribution of internal dynamics to wintertime land temperature trends over the Northern Hemisphere. Geophys Res Lett, 46: 14674–14682

    Google Scholar 

  • Guemas V, Doblas-Reyes F J, Andreu-Burillo I, Asif M. 2013. Retrospective prediction of the global warming slowdown in the past decade. Nat Clim Change, 3: 649–653

    Google Scholar 

  • Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg A. 2012. A first look at ENSO in CMIP5. CLIVAR Exchang, 17: 29–32

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K. 2010. Global surface temperature change. Rev Geophys, 48: G4004

    Google Scholar 

  • Huang J, Xie Y, Guan X, Li D, Ji F. 2017. The dynamics of the warming hiatus over the Northern Hemisphere. Clim Dyn, 48: 429–446

    Google Scholar 

  • Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A, 454: 903–995

    Google Scholar 

  • IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M, eds. Technical Summary Cambridge: Cambridge University Press. 1535

    Google Scholar 

  • Ji F, Wu Z, Huang J, Chassignet E P. 2014. Evolution of land surface air temperature trend. Nat Clim Change, 4: 462–466

    Google Scholar 

  • Joshi M K, Kucharski F. 2017. Impact of Interdecadal Pacific Oscillation on Indian summer monsoon rainfall: An assessment from CMIP5 climate models. Clim Dyn, 48: 2375–2391

    Google Scholar 

  • Kajtar J B, Collins M, Frankcombe L M, England M H, Osborn T J, Juniper M. 2019. Global Mean surface temperature response to large-scale patterns of variability in observations and CMIP5. Geophys Res Lett, 46: 2232–2241

    Google Scholar 

  • Kim S T, Yu J Y. 2012. The two types of ENSO in CMIP5 models. Geophys Res Lett, 39: L11704

    Google Scholar 

  • Knight J R, Allan R J, Folland C K, Vellinga M, Mann M E. 2005. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett, 32: L20708

    Google Scholar 

  • Knight J R, Kennedy J J, Folland C, Harris G, Jones G S, Palmer M, Parker D, Scaife A, Stott P. 2009. Do global temperature trends over the last decade falsify climate predictions? In: State of the Climate in 2008. Bull Amer Meteorol Soc, 90: S22–S23

    Google Scholar 

  • Kosaka Y, Xie S P. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501: 403–407

    Google Scholar 

  • Lean J L, Rind D H. 2009. How will Earth’s surface temperature change in future decades? Geophys Res Lett, 36: L15708

    Google Scholar 

  • Liu W, Xie S. 2018. An ocean view of the global surface warming hiatus. Oceanography, 31: 72–79

    Google Scholar 

  • Loeb N G, Lyman J M, Johnson G C, Allan R P, Doelling D R, Wong T, Soden B J, Stephens G L. 2012. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci, 5: 110–113

    Google Scholar 

  • Martin E R, Thorncroft C, Booth B B B. 2013. The multidecadal Atlantic SST—Sahel rainfall teleconnection in CMIP5 simulations. J Clim, 27: 784–806

    Google Scholar 

  • Meehl G A, Arblaster J M, Fasullo J T, Hu A, Trenberth K E. 2011. Modelbased evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change, 1: 360–364

    Google Scholar 

  • Meehl G A, Boer G J, Covey C, Latif M, Stouffer R J. 1997. Intercomparison makes for a better climate model. Eos Trans AGU, 78: 445–451

    Google Scholar 

  • Meehl G A, Hu A, Arblaster J M, Fasullo J, Trenberth K E. 2013. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim, 26: 7298–7310

    Google Scholar 

  • Morice C P, Kennedy J J, Rayner N A, Jones P D. 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J Geophys Res, 117: D08101

    Google Scholar 

  • Risbey J S, Lewandowsky S, Langlais C, Monselesan D P, O’Kane T J, Oreskes N. 2014. Well-estimated global surface warming in climate projections selected for ENSO phase. Nat Clim Change, 4: 835–840

    Google Scholar 

  • Rohde R, Muller R A, Jacobsen R, Muller E, Perlmutter S, Rosenfeld A, Wurtele J, Groom D, Wickham C. 2013. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geostat: An Overview 1

  • Santer B D, Bonfils C, Painter J F, Zelinka M D, Mears C, Solomon S, Schmidt G A, Fyfe J C, Cole J N S, Nazarenko L, Taylor K E, Wentz F J. 2014. Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci, 7: 185–189

    Google Scholar 

  • Smith D M, Allan R P, Coward A C, Eade R, Hyder P, Liu C, Loeb N G, Palmer M D, Roberts C D, Scaife A A. 2015. Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys Res Lett, 42: 1205–1213

    Google Scholar 

  • Solomon S, Rosenlof K H, Portmann R W, Daniel J S, Davis S M, Sanford T J, Plattner G K. 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327: 1219–1223

    Google Scholar 

  • Solomon S, Daniel J S, Neely R R, Vernier J P, Dutton E G, Thomason L W. 2011. The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333: 866–870

    Google Scholar 

  • Stauning P. 2014. Reduced solar activity disguises global temperature rise. ACS, 04: 60–63

    Google Scholar 

  • Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc, 93: 485–498

    Google Scholar 

  • Thompson D W J, Wallace J M. 2001. Regional climate impacts of the Northern Hemisphere annular mode. Science, 293: 85–89

    Google Scholar 

  • Trenberth K E, Fasullo J T. 2013. An apparent hiatus in global warming? Earth’s Future, 1: 19–32

    Google Scholar 

  • Tung K K, Zhou J. 2013. Using data to attribute episodes of warming and cooling in instrumental records. Proc Natl Acad Sci USA, 110: 2058–2063

    Google Scholar 

  • Vose R S, Arndt D, Banzon V F, Easterling D R, Gleason B, Huang B, Kearns E, Lawrimore J H, Menne M J, Peterson T C, Reynolds R W, Smith T M, Williams Claude N. J, Wuertz D B. 2012. NOAA’s merged land-ocean surface temperature analysis. Bull Am Meteorol Soc, 93: 1677–1685

    Google Scholar 

  • Wei M, Qiao F L. 2017. Attribution analysis for the failure of CMIP5 climate models to simulate the recent global warming hiatus. Sci China Earth Sci, 60: 397–408

    Google Scholar 

  • Wei M, Qiao F, Guo Y, Deng J, Song Z, Shu Q, Yang X. 2019. Quantifying the importance of interannual, interdecadal and multidecadal climate natural variabilities in the modulation of global warming rates. Clim Dyn, 53: 6715–6727

    Google Scholar 

  • Wu Z, Huang N E, Long S R, Peng C K. 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA, 104: 14889–14894

    Google Scholar 

  • Wu Z, Huang N E. 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv Adapt Data Anal, 01: 1–41

    Google Scholar 

  • Wu Z, Huang N E, Wallace J M, Smoliak B V, Chen X. 2011. On the time-varying trend in global-mean surface temperature. Clim Dyn, 37: 759–773

    Google Scholar 

  • Xie S P, Kosaka Y. 2017. What caused the global surface warming hiatus of 1998–2013? Curr Clim Change Rep, 3: 128–140

    Google Scholar 

  • Zhang L. 2016. The roles of external forcing and natural variability in global warming hiatuses. Clim Dyn, 47: 3157–3169

    Google Scholar 

  • Zhang L, Delworth T L. 2015. Analysis of the characteristics and mechanisms of the pacific decadal oscillation in a suite of coupled models from the geophysical fluid dynamics laboratory. J Clim, 28: 7678–7701

    Google Scholar 

  • Zhang T, Sun D Z. 2014. ENSO asymmetry in CMIP5 models. J Clim, 27: 4070–4093

    Google Scholar 

Download references

Acknowledgements

We thank all the data providers. This work was supported by the National Natural Science Foundation of China (Grant No. 41806043), the Basic Scientific Fund for National Public Research Institutes of China (Grant No. 2019Q08), the National Natural Science Foundation of China (Grant No. 41821004), the Basic Scientific Fund for National Public Research Institute of China (Shu Xingbei Young Talent Program Grant No. 2019S06), the National Program on Global Change and Air-Sea Interaction (Grant No. GASI-IPOVAI-06), and the National Natural Science Foundation of China (Grant No. 41906029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangli Qiao.

Supplemental Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Shu, Q., Song, Z. et al. Could CMIP6 climate models reproduce the early-2000s global warming slowdown?. Sci. China Earth Sci. 64, 853–865 (2021). https://doi.org/10.1007/s11430-020-9740-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9740-3

Keywords

  • CMIP6 climate models
  • Global warming
  • Global warming slowdown
  • Hiatus
  • Climate natural variability
  • Anthropogenic warming trend